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Abstract: Using remote sensing techniques to monitor landslides and their resultant land cover
changes is fundamentally important for risk assessment and hazard prevention. Despite enormous
efforts in developing intelligent landslide mapping (LM) approaches, LM remains challenging owing
to high spectral heterogeneity of very-high-resolution (VHR) images and the daunting labeling efforts.
To this end, a deep learning model based on semi-supervised multi-temporal deep representation
fusion network, namely SMDRF-Net, is proposed for reliable and efficient LM. In comparison with
previous methods, the SMDRF-Net possesses three distinct properties. (1) Unsupervised deep
representation learning at the pixel- and object-level is performed by transfer learning using the
Wasserstein generative adversarial network with gradient penalty to learn discriminative deep
features and retain precise outlines of landslide objects in the high-level feature space. (2) Attention-
based adaptive fusion of multi-temporal and multi-level deep representations is developed to exploit
the spatio-temporal dependencies of deep representations and enhance the feature representation
capability of the network. (3) The network is optimized using limited samples with pseudo-labels that
are automatically generated based on a comprehensive uncertainty index. Experimental results from
the analysis of VHR aerial orthophotos demonstrate the reliability and robustness of the proposed
approach for LM in comparison with state-of-the-art methods.

Keywords: landslide mapping; deep representation learning; WGAN; attention; multi-temporal
fusion; semi-supervised

1. Introduction

Landslides are among the most hazardous geological events that can cause widespread
destructions, mass casualties, and substantial economic losses every year [1,2]. To better
detect and monitor landslides, remote sensing (RS) techniques have attracted increasing
attention in recent years [3–5]. Landslide mapping (LM) can be regarded as the quan-
tification of land cover changes that are automatically derived from pre- and post-event
RS imagery [6,7]. More specifically, LM records the attribute information of landslides,
including the location, spatial extent, size, type, and date of occurrence [8,9]. This informa-
tion is essential for quantitative hazard and risk assessment. Land cover change detection
(CD) techniques based on multi-temporal RS datasets are usually selected to identify the
differences between the pre- and post-event RS imagery and these changes are attributed to
the landslide occurrence. Numerous CD methods have been developed for high-resolution
RS imagery, including image difference, image transformation, post-classification compar-
ison, and object-oriented analysis (OOA) [10,11]. In particular, the very-high-resolution
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(VHR) images can provide rich spectral information at the cost of enlarging the spectral
heterogeneity within image objects, which incurs more speckle noises [11–13].

In the literature, existing LM methods using high-resolution images can be divided
into pixel-based and object-based methods [14,15]. More specifically, pixel-based meth-
ods generally exploit the spatial information corresponding to each pixel or usually in-
volve the multi-step pre-processing of images to reduce noise spots [16–19]. For instance,
Cheng et al. [20] developed a semi-automatic method based on the band ratio to perform
LM of SPOT images while Mondini et al. [21] developed an LM approach to directly com-
pare and classify multi-temporal Quickbird images. Additionally, Li et al. [15] proposed
a LM approach based on threshold segmentation and level set evolution and it has been
proven to be effective in large-scale LM. The Markov random field (MRF) model, due to
its superiority in combining spectral and spatial information, was introduced into LM to
improve its accuracy [14,22].

In contrast, object-based methods take homogeneous image objects as processing units,
aiming at classifying RS images into two classes, namely landslide and non-landslide, by
image classification algorithms. For instance, Nichol and Wong [23] used unsupervised CD
analysis based on multi-temporal segmentation at the object level and thresholding method
to extract landslide-prone regions. In addition, Stumpf and Kerle [24] combined object-
oriented analysis and random forest classification to perform LM. It reduced manual labor
and improved feature selection and classification thresholds. Furthermore, Kurtz et al. [25]
proposed a multi-resolution-based LM method to solve the spectral heterogeneity problems
of landslide objects. Lv et al. [26] combined object-oriented multi-scale segmentation and
the majority voting method to merge the spatial information of landslides and reduce
heterogeneous pixels. Tavakkoli Piralilou et al. [27] combined object-oriented segmentation
with the neural network and random forest for LM, and the optimal scale parameters
were considered in the segmentation. Knevels et al. [28] investigated the potential of open-
source geographic information system for object-based LM. The object-based methods
were shown to provide LM results with fewer false positives and well-retained geometry
compared with pixel-based methods [11]. However, these object-based methods still
encounter challenges in many aspects such as feature selection, segmentation scale, and
the training set size [29,30].

In recent years, deep learning has gained tremendous success in various remote-
sensing applications due to its capability of unveiling latent representations from raw
data [13,31]. Wang et al. [32] compared convolutional neural network (CNN) with four
machine learning algorithms and the results demonstrated that CNN could achieve a better
performance. However, CNN relied on its network structure, parameters settings, and
training strategies, which limited its robustness [33]. In [34], deep CNNs with pyramid
pooling were developed to merge multi-scale features for LM and Lv et al. [35] established
a dual-path fully convolutional network model to extract landslides. One clear advantage
of the CNN-based methods is that they can directly draw landslide maps without the
generation of change magnitudes in an end-to-end manner.

Current deep learning-based LM methods mainly include three processes or modules,
namely feature extraction, multi-temporal fusion, and network training [35]. Since deep
learning-based image analysis extracts deep feature representations of the image patches for
a given pixel, these representations are usually highly abstracted. As a result, it is generally
difficult to retain precise outlines of the extracted objects during convolutions [36]. As
LM is a multi-temporal feature fusion task, the extracted multi-temporal deep features are
usually concatenated and fused by the convolutional functions to detect landslides [35].
However, spatio-temporal dependencies of deep features have been neglected. It has been
proven that attention mechanism is capable of capturing channel and spatial dependencies
of features [37]. With respect to the multi-temporal representation fusion, the non-linear
relevance of features will be more sophisticated. In terms of network training, current deep
learning approaches, together with feature extraction, require a large amount of labeled
data, which can be an issue of concern in practice [38]. In order to reduce labeling efforts,
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semi-supervised deep learning has been widely used in the RS imagery analysis [39].
Pseudo-labels generated by the unsupervised clustering or classification algorithms are
utilized to train the deep learning network [40]. Uncertainty analysis based on uncertainty
indices such as Shannon entropy is an effective way to exploit pseudo-labels, in which data
with low uncertainty have a high confidence of being correctly labeled [16,41].

Motivated by the aforementioned challenges, this study proposes a semi-supervised
multi-temporal deep representation fusion network (SMDRF-Net) for LM using the VHR
aerial orthophotos. The proposed SMDRF-Net is developed by integrating multi-level
deep representation learning (DRL) and multi-temporal deep representations fusion (DRF).
The DRL is transferred from the Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) [42] through unsupervised adversarial training while the DRF is
conducted by employing the attention mechanism to capture spatio-temporal interde-
pendencies of multi-temporal and multi-level deep representations. The proposed LM
framework is semi-supervised because the DRF network is optimized by the pseudo-labels
that are automatically generated via unsupervised object-level CD and uncertainty analysis.
To the best of our knowledge, it is the first time WGAN-GP-based DRL and attention-based
DRF are applied for detecting landslides.

The contributions of this study include the following aspects:

1. This study proposes a semi-supervised deep-learning-based LM framework for
learning spatio-temporal relationships between pre- and post-event imagery and
directly achieving LM results without manual annotations by automatically generat-
ing pseudo-labels based on a comprehensive uncertainty index.

2. WGAN-GP is adopted to extract discriminative deep features through unsupervised
adversarial training. It is then applied as the deep feature extractor in the SMDRF-Net
through transfer learning to efficiently learn pixel- and object-level deep representa-
tions. This can improve the class separability between landslide and non-landslide
patterns while retaining the precise outlines of landslide objects in the high-level
feature space.

3. The novel spatio-temporal DRF in the SMDRF-Net is developed to merge multi-
temporal and multi-level deep representations using the channel and spatial attention;
the former exploits the non-linear dependencies of multi-temporal deep feature
maps whereas the latter characterizes the inter-spatial relationship of the combined
representations. Integrating the two can further enhance the feature representation
ability of network models.

2. Proposed Method

The general framework of the proposed LM approach is illustrated in Figure 1.
First, the initial analysis is performed along with object-oriented CD. Multi-temporal
co-segmentation and uncertainty analyses are conducted to exploit segmented image ob-
jects and generate the pseudo-labeling information of the landslides and non-landslide
patterns. Next, the proposed SMDRF-Net is constructed by combining a multi-level DRL
module and multi-temporal DRF module. Specifically, the WGAN-GP model with unla-
beled image data is built through unsupervised adversarial training and the multi-level
DRL module is developed by transfer learning from the WGAN-GP model to generate
pixel- and object-level deep representations of the pre- and post-event imagery. Further-
more, the multi-temporal DRF module is developed based on the novel channel-spatial
attention mechanisms to model the spatio-temporal dependencies of deep representations.
The network is then optimized using limited samples with pseudo-labels. These samples
have a high confidence of being correctly labeled and they can provide considerable super-
vised information containing landslide and non-landslide patterns for the network training.
Finally, pixel-wise LM results are derived from the predictions of the trained network.
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Figure 1. Flowchart of the proposed landslide mapping (LM) approach.

2.1. Initial CD and Analysis

The pre- and post-event images, I1 and I2 each having B bands, are stacked and
co-segmented via object-oriented image analysis to create homogeneous image objects
with spatially consistent boundaries in multi-temporal images. The fractal net evolution
approach (FNEA) is conducted on the stacked images to generate segmented objects. More
specifically, FNEA splits an image into homogeneous regions and the optimal segment
parameters are determined with the aid of the estimation of scale parameter (ESP) tool as
reported in [43]. Based on unsupervised CD methods, the object-level change intensity
map can be obtained using the following equation:

S(i) =
1

Qp × B

√√√√ B

∑
b=1

∑
i∈Rp

(
Ib
2(i)− Ib

1(i)
)2

(1)

where S(i) is the change intensity of the ith pixel belonging to the pth object and Qp denotes
the pixel number in the region denoted by Rp that the pth object covers.

The fast fuzzy C-means (FCM) clustering algorithm is incorporated into the framework
to effectively cluster areas into two categories, namely, landslide and non-landslide, by
minimizing the following objective function via an iterative process [44]:

J =
P

∑
p=1

L

∑
l=1

Qpu2
pl

∥∥∥∥∥∥
 1

Qp
∑

i∈Rp

S(i)

− vl

∥∥∥∥∥∥
2

(2)

where P is the total number of objects and L = 2 LM categories with l = 1 and l = 2
representing the landslide and non-landslide categories, respectively. Furthermore, vl is
the cluster center of the lth category while upl is the fuzzy membership of the pth object
associated with the lth cluster derived from the fast FCM.
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Subsequently, the fuzzy uncertainty of each pixel is characterized by a comprehensive
uncertainty index (CUI):

CUIi∈Rp = up,1(1− up,1 −
1
2

log up,1) + up,2(1− up,2 −
1
2

log up,2). (3)

The CUI is developed by combining the Shannon entropy en = −∑
l

upl log upl [16],

and square error se = −∑
l
(upl − 1/L)2 [45], to measure the uncertainty of each object label.

It is normalized to fall within (0,1). Pixels with low uncertainty and their corresponding
labels can be chosen as pseudo-labeling samples in ascending order of uncertainty values.
Then, the pseudo-training set with the sample size of M can be obtained.

2.2. The Proposed SMDRF-Net

The proposed deep learning network contains two modules, namely the multi-level
DRL module and multi-temporal DRF module. The DRL network is constructed with
transfer learning from the adversarial training of the WGAN-GP model to extract pixel-
and object-level deep features of multi-temporal imagery. The DRF network is built based
on the channel-spatial attention mechanism to fuse the multi-temporal and multi-level
deep representations for the classification task. The resulting network then performs the
pixel-wise classification decision for LM.

2.2.1. Unsupervised DRL with WGAN-GP

For the unlabeled post-event imagery I2 with B bands, we use the image patch contain-
ing the ith pixel and its spatial neighborhood Ni(ω) as the input data to learn the abstract
representations, where ω represents the window size of its neighborhood. The generative
adversarial network (GAN) model consists of a generator and a discriminator. It is adopted
to learn reusable deep representations from unlabeled data in an unsupervised manner
using the image patches and some noises that obey a fixed distribution [46].

Considering noise sources, the generator can generate synthetic data and the discrimi-
nator discriminates between the real data and synthetic data. These two models compete
against each other during the training process in the form of a zero-sum game to improve
their functionalities. GANs have proven useful for unsupervised and semi-supervised
learning as a form of generative model [47]. Parts of the discriminator networks can
then be used as feature extractors for supervised tasks such as classification and CD [48].
However, training a GAN model is challenging due to possible training instability or
convergence failure.

The WGAN has made significant progress in the training of GANs by adopting the
metric of Wasserstein distance for measuring the distance between the discriminator’s and
the generator’s distribution [49]. The WGAN discriminator is more actually called a ‘critic’
instead of a ‘discriminator’ because it is used to narrow the difference between the deep
features of the real data and the generated samples instead of discriminating between the
real and synthetic data. As reported by Arjovsky et al. [49], the critic in WGAN must satisfy
the Lipschitz-continuity, i.e., the gradient of each point in the defined domain does not
exceed a certain constant. WGAN uses weight clipping to force Lipschitz restrictions in
the critic; however, it sometimes produces low-quality samples and does not converge on
certain settings.

Compared with WGAN, WGAN-GP [42] adds a soft constraint on the critic’s gradient
regularization term to enforce Lipschitz constraints instead of weight clipping. As a result,
this method converges more quickly and can produce higher-quality samples. The gradient
penalty term in WGAN-GP can keep the gradient stable during the backward propagation
process and solve the problem of slow convergence that exists in the original WGAN [42].

The generator and critic loss functions in WGAN-GP are as follows:

LWGAN−GP
C = − E

x∼Pr
[C(x)] + E

x̃∼Pg
[C(x̃)] + λ E

x̂∼Px̂
[(‖∇x̂C(x̂)‖2 − 1)2] (4)
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LWGAN−GP
G = − E

x̃∼Pg
[C(x̃)] (5)

where LWGAN−GP
C and LWGAN−GP

G are the loss functions of the generator G and the critic C,
respectively. The variable E is the expectation operator, λ is the gradient penalty coefficient,
Pr denotes the real data distribution, and Pg represents the generator’s distribution over
data x̃ defined by x̃ = G(z), in which the input z to the generator is sampled from some
simple noise distribution z ∼ p(z). x̂ ∼ Px̂ is sampled uniformly by linear interpolation
between the data distribution Pr and the distribution of generated samples Pg, i.e., x̂ ∼ ηx+
(1− η)x̃ where η is a random number and η ∼ U[0, 1].

In this study, the generator consists of a fully connected (FC) layer, a series of convolu-
tional (Conv) layers, upsampling (UP) layers, batch normalization (BN) layers, and rectified
linear unit (ReLU) layers. The critic is composed of multiple fractional-strided Conv layers
followed by BN layers and leaky version of ReLU (LeakyReLU) layers, together with FC
layers. The two networks compete against each other during the training process and their
parameters are updated alternately.

2.2.2. Multi-Level DRL Module Based on Transfer Learning

The critic of WGAN-GP after the adversarial training can extract discriminant features
from unlabeled data. More specifically, the pixel- and object-level deep features can be
generated from the convolutional streams of the critic with transfer learning, as illustrated
in Figure 1. We use the image patch with all bands centering around the given pixel as the
pixel-level input of the network while exploiting the object-level input by using the object
spectral value with the same size as the pixel-level input, as shown in Figure 2. These input
feature patches can be expressed as follows:

VPix
t (i) =

{[
Ib
t (i)
]ω×ω

i=1

}B

b=1
, i ∈ Ni(ω), (6)

VObj
t (i) =

{[
Ob

t (i)
]ω×ω

i=1

}B

b=1
, i ∈ Rj, (7)

Ob
t (i) = ∑

i∈Rp

Ib
t (i)/Qp, (8)

where VPix
t (i) represents the image patch of the ith pixel at time t while VObj

t (i) is the
object-level feature of the ith pixel. Furthermore, Ob

t (i) is the spectral mean value of the
object covering the ith pixel at the bth band.

With respect to the adversarial training of the WGAN-GP model, the deep representa-
tions can be extracted by cascading convolutional streams of the critic:

f (Vt) = Conv(n)
(

Conv(n−1) · · ·Conv(1)(Vt) · · ·
)

, (9)

where f (Vt) stands for the deep representations of image patch Vt and Conv(n) denotes the
convolutional streams with the depth of n.
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Figure 2. Illustration of pixel- and object-level deep representation learning (DRL) input, taking
ω = 3 as an example.

2.2.3. Attention-Based Multi-Temporal DRF Module

To make full use of the extracted deep representations, we employ the attention
mechanism to capture the spatio-temporal dependencies of multi-temporal and multi-
level deep representations [50]. The channel attention is used to exploit the inter-channel
relationship of multi-temporal features and the spatial attention focusses on identifying the
informative part along the spatial axis considering the importance of each pixel location [51].
The details of the proposed DRF are displayed in Figure 3.

Figure 3. Details of the proposed deep representation fusion (DRF) module based on the attention
mechanism.

The pixel- and object-level deep representations, i.e., uPix and uObj obtained by the
DRL module can be expressed as:

uPix = f (VPix
t=1)⊕ f (VPix

t=2), (10)
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uObj = f (VObj
t=1)⊕ f (VObj

t=2), (11)

where the symbol ⊕ denotes the operation of concatenating the feature vectors. Accord-
ingly, the channel-level attention coefficients z for the feature maps can be calculated based
on a gating function FG with a sigmoid activation σ:

z = FG(FA(u), W) = σ(g(FA(u), W)) = σ(W2δ(W1FA(u))) (12)

where W1 ∈ RK/r×K and W2 ∈ RK×K/r represent the trainable parameters with K and r
being the dimension of deep features and the dimensionality-reduction ratio, respectively.
Furthermore, δ refers to the ReLU function. The function FA performs feature compression
along the spatial axis and turns each 2-D feature channel into a real number using global
average pooling to obtain a global receptive field. The gating function FG can learn a
non-mutually-exclusive relationship between multiple channels [52] to enhance target-
relevant features while filtering out irrelevant features of the combined multi-temporal
representations. Thus, it becomes possible to transform the feature map by rescaling u
as follows:

ũc = FScale(z, u) = z� u, (13)

where ũc represents the rescaled deep representations by the channel attention and FScale
denotes the element-wise multiplication function between deep representations u and
attention coefficients z. Furthermore, the importance of each pixel location is recalibrated
to characterize the beneficial information across the spatial dimension and improve the
feature representation capability. Two branches, i.e., ũPix

c and ũObj
c , are further merged

based on the spatial attention mechanism.
Two pooling operations, i.e., average-pooling F′A and max-pooling FM, are applied to

rescaled pixel-level deep representations ũPix
c to gather channel information and generate

an efficient feature descriptor along the spatial axis. After this is completed, the spatial
attention map can be obtained as follows:

z̃ = σ(Conv(F′A(ũ
Pix
c )⊕ FM(ũPix

c ))), (14)

where Conv(·) denotes a convolution operation. The object-level deep representations
can be rescaled by the element-wise multiplication between deep representations and
the spatial attention map z̃. As a result, the importance of each pixel location can be
iteratively recalibrated during the network training so that it characterizes the beneficial
information across the spatial dimension. Then, the rescaled deep representations by the
spatial attention can be obtained as follows:

ũs = FScale(z̃, (ũPix
c ⊕ ũObj

c )) = z̃� (ũPix
c ⊕ ũObj

c ) (15)

where ũs represents the rescaled deep representations by the spatial attention which can be
further followed by a FC layer and a Softmax layer at the end of the network to conduct
the classification task.

3. Experiments and Analyses
3.1. Dataset Descriptions

Four datasets, namely, Datasets A, B, C, and D, were used as the experimental data,
as shown in Figure 4 and Table 1. The datasets were acquired using Zeiss RMK top-level
aerial survey camera systems, and each contained pre- and post-event aerial orthophotos of
the Lantau Island, Hong Kong, China, as shown in Figure 5. A great number of landslides
and debris flows occurred because of the heavy rainfall and we chose four of the most
damaged areas as the study sites. The bi-temporal images in the four datasets had three
bands (i.e., RGB) with the same spatial resolution of 0.5 m. Details of the experimental
datasets in this study are shown in Table 1 and the study area locations are illustrated in
Figure 4. The test datasets contain landslides that occurred in varied land cover conditions
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with topographic heterogeneity, as shown in Table 1. For example, Dataset C is covered
with dense grasslands and sparse woodlands, while numerous volcanic rocks exist in
Dataset B, which have similar spectral features to landslides and pose challenges to LM.
What is more, these landslides are different in shape and size, as shown in Figure 5. Pre-
processing, including co-registration and radiation correction, through ENVI software
was performed on the multi-temporal images to reduce the influence of positioning and
radiometric errors on the results; this allowed us to directly compare the multi-temporal
images. Ground-truth maps were produced via manual interpretation using the editor tool
of ESRI ArcGIS 10.7 [53].

Table 1. Details of experimental datasets.

Dataset The Center Coordinate Resolution (m) Size (Pixels) Acquisition Time Land Cover Types

A 22◦ 14′ 52′ ′ N, 113◦53′ 52′ ′ E 0.5 960 × 960 December 2007 and
November 2014 forests

B 22◦ 16′ 14′ ′ N, 113◦53′ 24′ ′ E 0.5 740 × 780 December 2007 and
November 2014

shrublands and
volcanic rocks

C 22◦ 14′ 28′ ′ N, 113◦51′ 14′ ′ E 0.5 700 × 700 December 2005 and
November 2008

dense grasslands and sparse
woodlands

D 22◦ 16′ 06′ ′ N, 113◦54′ 05′ ′ E 0.5 600 × 600 December 2005 and
November 2008

sparse shrublands and
grasslands with some rocks

Figure 4. Cont.
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Figure 4. Study area: (a) China map. (b) The location of Hong Kong. (c) Locations of Datasets A, B, C, and D on Lantau
Island, Hong Kong, China.

Figure 5. Cont.
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Figure 5. Datasets used in the experiments: (a,b) Pre- and post-event images of Dataset A; (c,d) Pre-
and post-event images of Dataset B; (e,f) Pre- and post-event images of Dataset C; (g,h) Pre- and
post-event images of Dataset D.

3.2. Experimental Setting
3.2.1. General Information

The proposed approach was compared with the following two unsupervised LM
algorithms: the change-detection-based MRF (CDMRF) model [22] and the object-based
majority voting (OMV) method [26]. Furthermore, we benchmarked our proposed ap-
proach against two semi-supervised deep learning methods, i.e., the superpixel-based
difference representation learning (SDRL) algorithm [54] and the semi-supervised GAN-
based (SGAN) CD method [55]. To verify the effectiveness of the proposed approach, the
following five indicators were used as the quantitative evaluation criteria:

1. Completeness (CP): CP =Pt/Pg, where Pt is the number of correctly detected landslide
pixels and Pg indicates the number of real landslide pixels in the ground truth map;

2. Correctness (CR): CR =Pt/Pd, where Pd is the number of all detected landslide pixels;
3. Quality (QA): QA =Pt/(Pd +Pu), where Pu is the number of misdetected landslide pixels;
4. Kappa coefficient (KC): KC =(Pa − Pe)/(1− Pe), where Pa and Pe are the proportion

of agreement and chance agreement with respect to the confusion matrix, respectively;
5. Overall Accuracy (OA): OA = 1− (Pf + Pu)/Po, where Pf is the number of incorrectly

detected landslide pixels in the LM map and Po is the total number of pixels in the
ground truth map.
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3.2.2. Network Structures

In the proposed framework, the input image size of the network was 9×9 pixels with
three channels (i.e., 9×9×3). The critic in the WGAN-GP was composed of two Conv layers
with depths of 32 and 64 and the kernel size was 3×3 pixels with stride 2 in each layer.
Each Conv layer was followed by the BN layer and the LeakyReLU layer parameterised
by 0.2. The outputs of the last LeakyReLU layer were flattened to 1-D before they were
put into the FC layers and the activation function was deprecated in the output layer. With
respect to the generator, the input noises were fed into the FC layer and reshaped to a
three-dimensional tensor followed by two UP layers and three Conv layers. We adopted
4×4 Conv layers with depths of 128, 64, and 3 and strides of 1 followed by BN layers and
ReLU layers except the last Conv layer where the Tanh was applied.

The Conv layers together with BN layers and LeakyReLU layers in the critic were
transferred from WGAN-GP to the multi-level DRL module. After that, the generated deep
representations were fused based on the channel-spatial attention, and then fed into a FC
layer with 200 neurons and a Softmax layer for the classification task.

3.2.3. Network Training

In the proposed framework, the parameters of Scale, Shape, and Compactness in the
FANE algorithm were set to 30, 0.7, and 0.8, respectively, with the aid of the ESP tool.
Subsequently, the generated object features were incorporated into the SMDRF-Net. The
size M of pseudo-labeled samples was set to 4000, and the landslide and non-landslide
sample sets were assigned the same size, i.e., M/2.

We set the following parameters for the WGAN-GP training: the gradient penalty
coefficient λ = 10; the batch size s = 64; the number of critic iterations per generator
iteration ncritic = 5; and the Adam hyperparameters β1 = 0, β2 = 0.9, and lr = 0.0001. The
SMDRF-Net did not need to learn new deep features of imagery because the deep features
extraction process was completed by the multi-level DRL module. Thus, training the
SMDRF-Net actually implied training the multi-temporal DRF module. The parameters of
the DRF network were updated using the Adam optimizer. We fixed all the parameters of
Adam by setting β1 = 0.9, β2 = 0.999, and lr = 0.001. All network weights were initialized
with a Glorot uniform distribution. In addition, the dimensionality-reduction ratio r in the
DRF network was set to 8. Finally, the samples and pseudo-labels obtained by the initial
CD and uncertainty analysis were fed into the network to train the proposed deep learning
network. The cross-entropy loss function was adopted to measure the difference between
the predicted value p̂i and the actual label pi as follows:

Loss = − 1
M

M

∑
i
[pi log p̂i + (1− pi) log(1− p̂i)]. (16)

We used a smaller minibatch size of 32 and trained the network for 50 epochs. The
training was implemented on a TensorFlow 2.0.0 (GPU) framework on a workstation with
a graphics card of NVIDIA GeForce RTX 2080 Ti.

3.3. Results and Analysis

The LM results for the test datasets are shown in Figures 6–9. The quantitative
evaluation of each algorithm is shown in Table 2. It is evident that CDMRF suffers from
significant noise and generates some omissions, resulting in lower CP scores and higher
QA values. On the other hand, OMV yields some object-level false alarms and loses some
details of landslide objects, as shown in Figure 6b,h. As shown in Table 2, OMV obtains
higher CP scores, but some misclassifications lead to a decreased CR. With respect to SGAN,
although false alarms can be reduced to some extent, as illustrated in Figure 7d,j, its use
still results in the misdetection of some landslide regions because discriminators obtained
through adversarial training are used to extract deep features. The corresponding LM
maps have lower QA values, as shown in Table 2. In addition, some accurately labeled
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samples are required for fine-tuning SGAN [55]. Compared to CDMRF, OMV, and SGAN,
the SDRL which uses local and high-level representations from deep neural networks
offers effective detection of homogenous landslide regions, but it still suffers from losses
of detailed information in the boundaries, as shown in Figures 6c and 9c. In contrast,
the proposed approach can achieve a higher level of performance for all the evaluation
indicators. Specifically, the highest CP, CR, QA, KC, and OA values are 0.92, 0.92, 0.83, 0.90,
and 99.59%, respectively, as shown in Table 2. In addition, it can retain detailed landslide
regions while significantly reducing noise, as shown in Figures 6–9k.

Figure 6. The LM results for Dataset A: (a) Change-detection-based Markov random field (CDMRF); (b) Object-based
majority voting (OMV); (c) Superpixel-based difference representation learning (SDRL); (d) Semi-supervised GAN (SGAN);
(e) Semi-supervised multi-temporal deep representation fusion network (SMDRF-Net); (f) Ground reference data; (g) Zoom
for CDMRF; (h) Zoom for OMV; (i) Zoom for SDRL; (j) Zoom for SGAN; (k) Zoom for SMDRF-Net.
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Figure 7. The LM results for Dataset B: (a) CDMRF; (b) OMV; (c) SDRL; (d) SGAN; (e) SMDRF-Net; (f) Ground reference
data; (g) Zoom for CDMRF; (h) Zoom for OMV; (i) Zoom for SDRL; (j) Zoom for SGAN; (k) Zoom for SMDRF-Net.
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Figure 8. The LM results for Dataset C: (a) CDMRF; (b) OMV; (c) SDRL; (d) SGAN; (e) SMDRF-Net; (f) Ground reference
data; (g) Zoom for CDMRF; (h) Zoom for OMV; (i) Zoom for SDRL; (j) Zoom for SGAN; (k) Zoom for SMDRF-Net.
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Figure 9. The LM results for Dataset D: (a) CDMRF; (b) OMV; (c) SDRL; (d) SGAN; (e) SMDRF-Net; (f) Ground reference
data; (g) Zoom for CDMRF; (h) Zoom for OMV; (i) Zoom for SDRL; (j) Zoom for SGAN; (k) Zoom for SMDRF-Net.
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Table 2. Quantitative comparison between the methods used for comparison and the proposed
approach (numbers are bolded).

Dataset Method CP CR QA KC OA

A

CDMRF 0.48 0.78 0.42 0.57 95.03%
OMV 0.89 0.69 0.64 0.76 96.15%
SDRL 0.70 0.83 0.61 0.74 96.63%
SGAN 0.64 0.82 0.56 0.70 96.19%

SMDRF-Net 0.91 0.83 0.76 0.85 97.54%

B

CDMRF 0.74 0.84 0.65 0.79 99.17%
OMV 0.92 0.70 0.66 0.79 99.02%
SDRL 0.71 0.93 0.67 0.80 99.27%
SGAN 0.71 0.91 0.66 0.79 99.23%

SMDRF-Net 0.90 0.92 0.83 0.90 99.59%

C

CDMRF 0.60 0.85 0.55 0.69 97.54%
OMV 0.94 0.71 0.68 0.80 97.79%
SDRL 0.80 0.83 0.69 0.81 98.22%
SGAN 0.60 0.88 0.56 0.70 97.57%

SMDRF-Net 0.85 0.91 0.78 0.87 98.83%

D

CDMRF 0.81 0.83 0.70 0.81 98.29%
OMV 0.94 0.70 0.67 0.79 97.76%
SDRL 0.93 0.75 0.71 0.82 98.20%
SGAN 0.73 0.91 0.68 0.80 98.32%

SMDRF-Net 0.92 0.85 0.80 0.86 98.84%

The Scale parameter is the key control for the object-oriented analysis of RS images. It
is correlated with the average size, amount, and boundaries of image objects [30]. To test
the influence of the segmentation scale on the proposed approach, we set different Scale
parameters of FANE ranging from 20 to 60 with a step size of 2 to generate multi-scale
segmentation maps and obtain the corresponding LM results, as shown in Figure 10. It can
be found that the KC remains at a high level with lower scales. When the scale exceeds a
certain value, the segmented objects cannot remain accurate boundaries of objects, and the
accuracy performance begins to degrade.

Figure 10. Relationship between LM accuracy and segmentation scales.

Different LM maps achieved by different sample size values, i.e., M, ranging from
2000 to 20,000 with a step size of 1000 were used to analyze the effects of different sample
sizes on LM results. The relationships between the KC and different M values in the
proposed model are displayed in Figure 11. A small M value may result in poor prediction
performance of the model because of the poor representativeness of the samples. As M
increases, the overall accuracy also increases and becomes stable at a higher level.
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Figure 11. Relationship between LM accuracy and sample sizes.

The convolutional layers in the critic of the WGAN-GP model are used for deep
feature extraction and the quality of the learnt representations is significantly affected by
the depth of the DRL network and the level of abstraction. As shown in Figure 12, the
network with 1 Conv layer results in a lower accuracy because the critic is not well trained
during the training of the WGAN-GP. With the increasing of the number of the Conv layers,
the critic networks can learn more abstract deep representations with increased complexity
and training time.

Figure 12. Relationship between LM accuracy and network structures of the critic in the Wasserstein generative adversarial
network with gradient penalty (WGAN-GP): (a) Overall Accuracy (OA) and (b) Kappa coefficient (KC).

4. Discussion

The experimental results on four multi-temporal VHR datasets indicate that the
proposed SMDRF-Net is superior to the test LM methods through the quantitative and
qualitative analysis. Specifically, the SMDRF-Net obtains the highest accuracy among
all methods in the experiment, as shown in Table 2. In comparison with other deep
learning-based LM methods, the SMDRF-Net has some distinct properties:

The SMDRF-Net performs unsupervised DRL based on WGAN-GP to exploit discrim-
inative deep representations and the critic of WGAN-GP with multiple Conv blocks can be
used as the unsupervised feature exactor, as shown in Figure 12.

Deep learning can transform original images into abstract high-level representations
and as the network becomes deeper, it is difficult to retain accurate outlines of targets. In
order to solve this problem, the proposed approach incorporates the object-level spectral
features to exploit deep representations of objects. As a result, it can retain accurate
boundaries of landslide objects while reducing noises, as displayed in the zoomed areas
of Figures 6–9. In addition, we test the effect of the Scale parameters on LM accuracies by
generating multi-scale segmentation maps and the results have shown that LM accuracies
can remain stable within a certain interval of Scale values, as illustrated in Figure 10. It is
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indicated that the proposed approach is robust to object segmentation scales.
In other LM models, the multi-temporal deep features are usually concatenated and

fused by the convolutional functions. With respect to the proposed approach, the spatio-
temporal attention is incorporated into the DRF module, which can enhance landslide-
relevant features and recalibrate the importance of each pixel location during the network
training. Therefore, it enables the SMDRF-Net to capture the spatio-temporal relationships
of multi-temporal deep features more accurately. From the evaluations of CR, CP, and
QA in Table 2, it can be found that the generated LM maps can restrict false alarms and
omissions while maintaining complete landslide areas.

As the proposed approach adopts unsupervised DRL, only the DRF module requires
training samples. We use a sample-selection strategy based on unsupervised object-level
CD and uncertainty analysis to choose reliable pseudo-labels for the DRF training. As a
result, the SMDRF-Net can get well-fitted with a relatively small number of pseudo-labels,
as shown in Figure 11, contrary to other models that rely on enormous manually labeled
samples for network training.

The primary limitation of the proposed approach is that the SMDRF-Net relies on
object-oriented segmentations and object spectral features as the prior information for the
network training, and this could increase the algorithm complexity. As the object-level
deep representations are exploited in the network, the dimension of features is increased,
and hence more computational resources are necessary.

5. Conclusions

In this study, a novel LM approach has been developed based on the semi-supervised
multi-temporal deep representation fusion network (SMDRF-Net). The SMDRF-Net is
capable of learning discriminative representations from pre- and post-event images and
generating LM results in an end-to-end training fashion. After training the WGAN-GP
with unlabeled image data, a critic network is applied as a deep feature extractor on the
multi-temporal imagery to obtain discriminative deep representations. By integrating the
pixel- and object-level DRL, the class separability can be improved and outlines of landslide
objects can be well-retained in the high-level feature space. Furthermore, the DRF module
based on the attention mechanism is employed to learn the spatio-temporal relationships
of deep representations by exploiting the non-linear interdependencies of multi-temporal
deep feature maps and the inter-spatial relationships of the combined representations.
Limited samples with pseudo-labels generated automatically are used for optimizing the
network to produce the pixel-wise LM result. Our experimental results on VHR aerial
orthophotos have shown that the proposed approach performs competitively with other
state-of-the-art LM approaches. Notably, the proposed approach can significantly improve
the reliability of the LM results with minimum manual annotation efforts. Furthermore,
the LM results produced by this approach are robust against the object segmentation scale
and the training sample size. Future improvements will focus on LM using multi-temporal
data from different sensors based on semi-supervised deep representation fusion and
transfer learning.
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