
remote sensing  

Article

Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO
and Multidecadal Climatic Variables over the Nile River Basin

Zemede M. Nigatu 1,2 , Dongming Fan 1,3, Wei You 1,3,* and Assefa M. Melesse 4

����������
�������

Citation: Nigatu, Z.M.; Fan, D.; You,

W.; Melesse, A.M. Hydroclimatic

Extremes Evaluation Using

GRACE/GRACE-FO and

Multidecadal Climatic Variables over

the Nile River Basin. Remote Sens.

2021, 13, 651. https://doi.org/

10.3390/rs13040651

Academic Editor: Christian Massari

Received: 31 December 2020

Accepted: 8 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China; nigatu@my.swjtu.edu.cn (Z.M.N.); dmfan@swjtu.edu.cn (D.F.)

2 Geospatial Information Science (GIS) department, WGCFNR, Hawassa University,
Hawassa PO Box 5, Ethiopia

3 State-Province Joint Engineering Laboratory of Spatial Information,
Technology for High-Speed Railway Safety, Chengdu 610031, China

4 Department of Earth and Environment, Institute of Environment, Florida International University,
Miami, FL 33199, USA; melessea@fiu.edu

* Correspondence: youwei@swjtu.edu.cn

Abstract: Hydroclimatic extremes such as droughts and floods triggered by human-induced climate
change are causing severe damage in the Nile River Basin (NRB). These hydroclimatic extremes are
not well studied in a holistic approach in NRB. In this study, the Gravity Recovery and Climate
Experiment (GRACE) mission and its Follow on mission (GRACE-FO) derived indices and other
standardized hydroclimatic indices are computed for developing monitoring and evaluation methods
of flood and drought. We evaluated extreme hydroclimatic conditions by using GRACE/GRACE-
FO derived indices such as water storage deficits Index (WSDI); and standardized hydroclimatic
indices (i.e., Palmer Drought Severity Index (PDSI) and others). This study showed that during
1950–2019, eight major floods and ten droughts events were identified based on standardized-indices
and GRACE/GRACE-FO-derived indices. Standardized-indices mostly underestimated the drought
and flood severity level compared to GRACE/GRACE-FO derived indices. Among standardized
indices PDSI show highest correlation (r2 = 0.72) with WSDI. GRACE-/GRACE-FO-derived indices
can capture all major flood and drought events; hence, it may be an ideal substitute for data-scarce
hydro-meteorological sites. Therefore, the proposed framework can serve as a useful tool for flood
and drought monitoring and a better understanding of extreme hydroclimatic conditions in NRB
and other similar climatic regions.

Keywords: GRACE/GRACE-FO; hydroclimatic extremes; drought indices; GRACE derived in-
dices; flood

1. Introduction

The Nile is the world’s longest river with a drainage area of about 3.2 million km2,
which is nearly 10% of the African continent’s landmass. It flows across 11 countries from
South to North, which crosses highly diverse landscapes and climatic zones, and mostly,
the region depends hugely on rain-fed agriculture for its livelihood. Consequently, the
agricultural system [1,2], economic development [3,4], food security, and increasing popu-
lation [5] makes the basin extremely vulnerable. Furthermore, NRB is highly generalized
and seldom or relatively infrequent in scientific discussion, doubtless due to its large size,
poor hydrological records (i.e., spatial and temporal coverage) supplemented with limited
access owing to hydro-political [1] and development [5] interest among NRB countries.
Thus, the basin demands a suitable method to determine its spatiotemporal patterns of
floods and droughts.

A drought or flood is an event characterized by a land-water deficit or excess that
significantly affects agriculture, ecosystems, and socioeconomic development [6,7]. The
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frequency and intensity of floods/droughts are increasing in many parts of the world owing
to climate changes [8,9]. Traditional or remote sensing-based approaches can estimate
these hydroclimatic extremes. Traditional approaches depend on field observations (i.e.,
precipitation and evapotranspiration) with high spatial resolution and long-term time-
series data that are spatially sparse in NRB. Simultaneously, this approach has drawbacks.
It needs substantial operational and computational costs. Furthermore, it is also limited to
either groundwater zones (groundwater level) or near the surface (soil moisture probes) that
are incomplete and inaccessible in remote areas. Remote sensing-based flood and drought
evaluation techniques have proven to be ideal substitutes over traditional approaches.

Thus, recently remote sensing-based drought indices have been developed and most
sensitive to a specific part of the hydrological cycle [10]. The Standardized Precipitation
Index (SPI) estimated accumulated precipitation deficits over varying time scales [11]:
shorter, medium, and longer time scales are sensitive to soil moisture variability, stream-
flow, and groundwater variations, respectively. Though, this sensitivity pattern differs by
region and land cover, which might complicate the choice of SPI time scale in characterizing
drought duration, onset, and intensity [12]. The Standardized Precipitation Evapotran-
spiration Index (SPEI) is the SPI extension by incorporating potential evapotranspiration
(PET) in determining drought [13]. Furthermore, hydroclimatic extreme event indices such
as Palmer Drought Severity Index (PDSI) [14], Self-Calibrating Palmer Drought Severity
Index (scPDSI) [15], and Multivariate Standardized Drought Index (MSDI) [16] are widely
used indices.

The Gravity Recovery and Climate Experiment (GRACE) satellite mission offer a
unique opportunity to quantify flood and drought at regional and global scales. Since
April 2002, GRACE has successfully monitored changes in the mass on the Earth’s surface,
especially in Total Water Storage Anomalies (TWSA) research. The mission ended after
15 years in October 2017 and is replaced by the GRACE Follow-On (GRACE-FO) mission
launched in May 2018 and continues the record by extending the monthly time series [17].
GRACE-FO uses a laser ranging interferometer (LRI) to enhance low satellite-to-satellite
tracking measurement performance [18]. This enhancement is directly associated with the
accuracy of the derived gravity field models [18,19] and may have better precision and data
quality. GRACE and GRACE-FO products are named as GRACE/GRACE-FO solutions,
covering the time span from April 2002 to the present. GRACE spherical harmonics
(SH) products are also applicable to study terrestrial water storage (TWS) changes in
basin-scale [20] or at a global gridded product of SH introduced at 1-degree grid-scale
(i.e., ~100 km) [21] similar to mass concentrations (mascon). The difference between SH and
mascon is that the mascon approach applies time or spatial constraints during processing to
improve mass estimation [22,23]. Thus, the mascon products are an improved illustration
of recent SH releases that can provide accurate gridded TWS information and can be
directly employed without further post-processing like Gaussian filter [24].

Some studies integrated GRACE data with drought indices to quantify and understand
drought conditions. For example, the water storage deficit index (WSDI) [25], Combined
Climatological Deviation Index (CCDI) [26], and GRACE groundwater drought index
(GGDI) [23] are commonly used indices. Most of these indices are incorporated with stan-
dardized drought indices [9,25,27]. Similarly, Liu et al. [28] provided an overview of water
storage deficit (WSD) and recommended further investigation, including groundwater
drought, to get insight into detailed changes in each component of the TWS needs. Ground-
water drought is defined as below-normal groundwater storage [6], mainly determined by
long-term rainfall deficits [29]. These studies show that both hydrogeological and climate
conditions may influence the evolution of groundwater drought.

Several studies (e.g., [20,22,30]) have used GRACE to explore terrestrial water storage
(TWS) changes in the NRB. TWS integrates surface water storage, soil moisture storage,
groundwater storage, canopy water storage, and ice/snow water storage. Various re-
searchers have studied the hydrology of the Nile River by using scattered and limited
hydro-meteorological site data. These studies encompass various areas, including land-use
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dynamics [31], sediment dynamics [32,33], teleconnections and river flow [1,34–36], stream-
flow modeling [37], climate change impact [36,38–41], hydrodynamics of Lake Tana [42–44],
water allocation and demand analysis [45–48], and groundwater flow modeling [48]. In
these studies, data paucity issues preclude data-driven SPI, SPEI, PDSI, MSDI, etc., and
GRACE-/GRACE-FO TWS-derived indices that monitor changes in vertically integrated
water storage in all water-bearing layers.

Despite the efforts mentioned above, a comprehensive study of long-term flood and
drought over the whole NRB is missing. To our knowledge, this is the first study as
a framework that comprises multidecadal flood and drought event identifications over
the NRB. It is based on multidecadal standardized hydroclimatic extreme event and
GRACE/GRACE-FO derived indices. This frame comprises groundwater, meteorological,
and agricultural drought conditions. Thus, this study’s nobility or scientific contribution is
to use GRACE/GRACE-FO temporal (2002 to 2019) TWS data in line with the multidecadal
climatic variables to produce enhanced flood and drought estimates in the NRB. This
study has three specific objectives: (1) provide a framework about NRB flood and drought
event characteristics based on GRACE/GRACE-FO derived and standardized indices;
(2) assess NRB multidecadal hydroclimatic extreme event impacts during 1950–2019 and
their categorization; and (3) evaluate the feasibility of GRACE/GRACE-FO products based
on drought and flood capturing capacity over NRB.

2. Materials and Methods
2.1. Study Area

The NRB is the world’s longest river basin covering approximately 3,046,334 km2,
and comprises 11 countries (see Figure 1). By the year 2030, the population is projected to
rise to 700 million, and it raises concerns about sustainable/equitable management of the
basin’s resources [49]. Based on the hydroclimatic condition, we divided the NRB into four
critical areas of interest: (1) The Blue Nile Region (BNR), (2) Lake Victoria Region (LVR),
(3) The Bahr-el-Ghazal Region (BER), and (4) Main Nile Region (MNR). All NRB sub-basins
(regions) exhibit more considerable spatial coverage that enables us to detect changes in
TWS GRACE Satellite data. In this study, the term region is used to represents sub-basins
of NRB interchangeably.

Particularly, BNR mostly belongs to the Ethiopian Highlands, including both the
Upper and Lower Blue Nile basin that contains Lake Tana (Figure 1) and contributes about
76% [4] of the total flow of NRB. LVR comprises Lake Albert, Kyoga, Victoria, George,
and Semilik sub-basins that contribute 24% [4] flows of NRB and forms the White Nile
headwaters. BER is found in Congo-Nile River boundary tributaries and a large area of
Sudanese plain with a low slope and supplies the Sudd-wetlands (marshes) that are thought
to be where a substantial amount of the White Nile’s water is lost due to evaporation [20].
MNR is mainly located in the Egyptian desert region and the northern part of Sudan
consisting of Lake Nasser and High Aswan Dam and understood that intensive irrigation
is used and water lost through evaporation [3].

The NRB’s ecosystem is under severe stress [5] shared by more than 400 million people
who depend heavily on agriculture. Nearly half of the NRB countries are projected to
live below the water scarcity level (i.e., 1000 m3/person/year, by 2030) [5]. Furthermore,
groundwater shows depletion across four sub-regions [20], particularly MNR noted deple-
tion at a rate of −13.45 km3/year (i.e., 3/2006–3/2008) [3]. This depletion may significantly
impact people living within the basin, particularly during the drought period, and may
increase the already high water stress level.

In NRB satellite altimetry-derived [3] and in situ-measured data [5,34] shows the
highest sensitivity of the surface water fluctuations (lake level decreasing) and river flow
declining [5] during drought period that is triggered by natural and human-induced
climate change.
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2.2. Datasets
2.2.1. GRACE/GRACE-FO Data

GRACE and GRACE-FO are twin-satellite missions. The mass change product from
these two missions is temporal gravity field models. This study used GRACE/GRACE-FO
products to estimate WSDI, CCDI, and GGDI. We evaluated both products based on their
ability to reproduce the WSDI, CCDI, and GGDI indices. Both GRACE/GRACE-FO gridded
products are acquired from the Center for Space Research (CSR) [50] at the University
of Texas, German Research Center for Geoscience (GFZ) [51], and the Jet Propulsion
Laboratory (JPL). We filled missed data (i.e., caused by satellite batteries and instrument
failure) for all GRACE/GRACE-FO products using the cubic spline interpolation method.
In this study, the missing gap between GRACE and GRACE-FO (i.e., July 2017 to May 2018)
is not filled as presented in Section 3.3. This study used GFZ SH, JPL mascon, and CSR
mascon GRACE/GRACE-FO data.

Each GRACE product is expected to represent the true value plus a certain amount of
error. The arithmetic mean ensemble model was model was suggested by Sakumura et al. [52]
owing to a much higher level of reliability than a stand-alone model. In this study, the
ensemble model is produced by combining the arithmetic mean of three GRACE/GRACE-
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FO solutions and is used to calculate GRACE derived hydroclimatic extreme indices (see
Sections 2.3.3 and 2.3.4)

2.2.2. Rainfall and Temperature Data

Understanding precipitation is crucial for studying regional floods and droughts. We
used Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation V7 data (1998–2016)
to compare with GRACE derived indices. TRMM satellite precipitation data is available
at https://trmm.gsfc.nasa.gov/ (accessed on 31 December 2020) from the NASA website.
We used the TRMM-3B43 (see Table 1) Level 3 satellite-gauge (SG) combination data to
evaluate the GRACE-derived TWSA and characterize drought in the NRB. Furthermore,
long-term multidecadal rainfall and temperature data acquired from the University of
East Anglia gridded Climatic Research Unit (CRU) Time-series (TS) are available at
https://climatedataguide.ucar.edu/climate-data (accessed on 31 December 2020). In this
study, CRU data are used to understand the multidecadal (i.e., 120 years) pattern of
Rainfall and temperature (see Section 3.1), while TRMM is used to compute Standardized
Soil Moisture Index (SSI), SPI, and CCDI. We applied the areal mean estimation techniques
by averaging all grids within the basin owing to the equal spatial resolution of all grids in
the study area for further analysis at the sub-basin (regions) and basin levels.

Table 1. Summary of the dataset employed in this study.

Categories Data/Model Time Spatial
Resolutions Data Sources (Accessed on 31 December 2020)

GRACE/GRACE-
FO TWS

CSR (RL06) 2003–2019 0.5◦ × 0.5◦ http://www2.csr.utexas.edu/grace
JPL (RL06) 2003–2019 0.5◦ × 0.5◦ http://podaac.jpl.nasa.gov/grace
GFZ (RL06) 2003–2019 1◦ × 1◦ http://isdc.gfz-potsdam.de/grace

Soil moisture

GLDAS-NOAH
(M2.0 and 2.1)

MERRA-2
ERA5-Land

1950–2019
1980–2019
1981–2019

1◦ × 1◦

0.5◦ × 0.625◦

0.1◦ × 0.1◦

https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2
https://cds.climate.copernicus.eu/#!/search?ERA5-land

Rainfall
TRMM 2003–2014 0.25◦ × 0.25◦ https://pmm.nasa.gov/dataaccess/trmm

CRU TS4.00 1901–2019 0.5◦ × 0.5◦ https://climatedataguide.ucar.edu/climate-data/prec
Temperature CRU TS4.00 1901–2019 0.5◦ × 0.5◦ https://climatedataguide.ucar.edu/climate-data/temp

Drought data SPEI 1950–2019 0.5◦ × 0.5◦ https://spei.csic.es/map/maps.html
scPDSI 1901–2018 0.5◦ × 0.5◦ https://crudata.uea.ac.uk/cru/data/drought/

2.2.3. Soil Moisture Data

We used the soil moisture data from Global Land Data Assimilation System Version 2
and 2.1 (GLDAS-NOAH M2.0 and M2.1), Modern Era Retrospective-analysis for Research
and Applications (MERRA-2), and ERA5-Land models, as presented in Table 1 in more
detail about spatiotemporal resolution. Data from three different sources were merged
using Triple Collocation Analysis (TCA) for reliable estimates of soil moisture [53] changes
over the NRB, as shown in Section 2.3.1.

2.2.4. Drought Indices Data

This study used SPEI monthly gridded data at 0.5◦ spatial resolution retrieved from
https://spei.csic.es/map/maps.html (accessed on 31 December 2020) for January 1950 to
December 2019 to evaluate GRACE derived indices. Similarly, the self-calibrated monthly
Palmer Drought Severity Index (sc-PDSI) had a spatial resolution of 0.5 × 0.5◦ and accessed
from https://crudata.uea.ac.uk/cru/data/drought/ (accessed on 31 December 2020) from
January 1950 to December 2018.

2.3. Methods

The methodological flow and data processing techniques used in this study are
presented in (Figure 2). The GRACE derived WSDI, CCDI, and GGDI computations
based on severity and respective standardized indices are described in Sections 2.3.3–2.3.6.

https://trmm.gsfc.nasa.gov/
https://climatedataguide.ucar.edu/climate-data
https://climatedataguide.ucar.edu/climate-data
http://www2.csr.utexas.edu/grace
http://podaac.jpl.nasa.gov/grace
http://isdc.gfz-potsdam.de/grace
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2
https://cds.climate.copernicus.eu/#!/search?ERA5-land
https://pmm.nasa.gov/dataaccess/trmm
https://climatedataguide.ucar.edu/climate-data/prec
https://climatedataguide.ucar.edu/climate-data/temp
https://spei.csic.es/map/maps.html
https://crudata.uea.ac.uk/cru/data/drought/
https://spei.csic.es/map/maps.html
https://spei.csic.es/map/maps.html
https://crudata.uea.ac.uk/cru/data/drought/


Remote Sens. 2021, 13, 651 6 of 24

We also decomposed all seasonal data with Seasonal and Trend decomposition using Loess
(STL; see Section 2.3.2).
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2.3.1. Soil Moisture Changes

Soil moisture data from GLDAS [54], MERRA-2 [55], and ERA5-Land [56] models are
merged using the Triple Collocation Analysis (TCA) over the NRB (see Figure 2). TCA
reliably estimates soil moisture changes and offers an alternative method for estimating
random error variances [57,58] in the absence of ground reference data. TCA analysis was
conducted in four steps: (1) scaling each soil moisture data to the main reference set; (2) es-
timating the error variance via pair-wise multiplication; (3) determine the corresponding
weights, and (4) merging datasets. TCA is applied here to merge soil moisture (SMTCA)
estimated as presented in Equation (1), where w1, w2, and w3 are the relative weights of
soil moisture S1, S2, and S3, respectively. TCA has limitations caused by soil moisture
datasets seasonality [59]. To overcome this limitation, time series of mean-zero anomalies
computed by first subtracting off long-term seasonal soil moisture climatology per the
recommendation of Yilmaz et al. [59].

SMTCA = w1S1 + w2S2 + w3S3 (1)

Detailed TCA description and technical approaches are shown in Nigatu et al. [20]
and Yilmaz et al. [59]. Soil moisture data computed by the TCA method is used to estimate
the Standardized Soil Moisture Index, as presented in Section 2.3.6.

2.3.2. Time Series Decomposition and Trend Analysis

This study decomposed the GRACE-TWSA monthly time series data into three com-
ponents [60,61] by applying the seasonal trend decomposition using Loess (STL) that
exhibited similar results with harmonic analysis [22]. We used the STLplus approach
of LOESS (LOcal regrESSion) smoothing that is modified by Hafen [61] after [62] that is
adaptable and robust to decompose time series. STLplus provides enhancements (i.e.,
handling missing values, higher-order loess smoothing with automated parameter choices,
and frequency component smoothing)) over the STL method [61].

Stotal = Slong term + Sseasonal + Sresidual (2)
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where the original signal (Stotal) is represented as the sum of a long-term part (Slong term),
a seasonal cycle (Sseasonal), and the remaining sub-seasonal residuals (Sresidual). The long-
term component (Slong term) further could be divided into long-term linear trends and
long-term nonlinear (inter-annual) variability. The residuals reflect both sub-seasonal
signal and noise [63]; these high-frequency residuals are anticipated to be a combination of
both the noise and a real signal that represents sub-seasonal water storage variability that
is presented in the GRACE data. Details of the STL decomposition approach are presented
in Lu et al. [64]. Time series decomposed data is used to compute GRACE/GRACE-FO
indices, as presented in Sections 2.3.3–2.3.5.

2.3.3. GRACE/GRACE-FO Derived Water Storage Deficit (WSD)

WSD is the difference between the GRACE TWSA time series and the monthly mean
of TWSA values adopted from Thomas et al. [25], as follows:

WSDi,j = TWSAi, j − TWSAj (3)

where TWSAi, j is the GRACE-inferred TWSA time series for the jth month and respective
year i; TWSAj is the long-term mean (i.e., January 2003 to December 2019) of TWSA for
the same jth month. The positive value represents surplus water storage, while a negative
value implies deficits in land water storage compared to its monthly mean values. Thomas
et al. [25] designated drought events as WSDs lasting for three or more consecutive months.
We normalized this parameter using the zero mean normalization method into the WSDI
to characterize better droughts based on WSD and to compare WSD with other drought
indices, as follows:

WSDI =
WSD − µ

σ
(4)

where µ is the mean and σ is the standard deviation of the WSD time series. The WSDI
time series represents the average seasonal deviation from the average conditions, and its
magnitude indicates the drought intensity. Furthermore, Thomas et al. [25] introduced
another method to assess drought severity, which the following formula can describe:

Se(t) = M(t)× D(t) (5)

where Se is the event severity; t denotes drought number events (i.e., vary from 1 to n
number of drought events in the study area); M is the average deficit since the onset of the
deficit period, and D is the duration of a drought event. Se combines WSDs with event
duration and indicates the TWS deficit (TWSD) of a definite drought. Simultaneously, the
WSDI reveals the relative monthly deficits of water storage during the study period. TWSD
is a relevant indicator only for a particular drought event confirmed by the WSDI, and the
value of the previous month represents the severity of the drought event.

2.3.4. Combined Climatologic Deviation Index (CCDI)

Drought conditions of NRB was characterized using a combination of terrestrial and
atmospheric water data to attain a comprehensive understanding of the hydrosphere. The
drought conditions were defined by defined by Sinha et al. [26] based on the Z-score of the
sum of TWSA outliers and the monthly Precipitation Anomaly (PA):

PAi,j = Pi,j − P (6)

where PAi,j is the precipitation anomaly (PA) in year i and month j; Pi,j represents the
amount of precipitation in year i (i = 2003, 2004, . . . , 2019) and month j (j = 1, 2, 3, . . . , 12),
P is the monthly average precipitation.

PAR
i,j = PAi,j − PAj (7)
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where PAR
i,j is the PA residual in year i and month j, and PAj is the average PA in month j.

TWSAR
i,j = TWSAi,j − TWSAj (8)

where TWSAR
i,j indicates the TWSA residual in year i and month j, TWSAi,j is the TWSA in

year i and month j, and TWSAj is the monthly average TWSA anomaly in the month j.

CDi,j = PAR
i,j + TWSAR

i,j (9)

where CDi,j denotes the combined precipitation and TWSA deviations in year i and month j.

CCDIi,j =
(CDi,j − CD)

std(CD)
(10)

where CCDIi,j indicates the Combined Climatologic Deviation Index (CCDI) in year i and
month j, CD is the monthly average CD, and std(CD) is the standard deviation of CD. CCDI
values less than −0.28 for three consecutive months showed the occurrence of drought
events; henceforth, we used Equation (11) to calculate droughty severity.

Drought severity =
m

∑
n

CCDI(m − n + 1 ≥ 3, when CCDI ≤ −0.28) (11)

The indices were consistently classified to confirm a reliable definition and classifica-
tion of drought levels (Table 2) regardless of different drought indices based on the United
States Drought Monitor recommendations.

Table 2. Grouping scales of hydroclimatic extreme event severity using selected indices.

Severity
Level

Drought Severity
Category SSI/SPI/SPEI PDSI WSDI CCDI GGDI

W4 Extreme wet (∞, 2.5] (∞, 4] (∞, 2.0] (∞, 1.45] (∞, 2]
W3 Severe wet [2.5, 2] [3.99, 3] [1.5, 2.0] [1.44, 0.94] [2, 1.5]
W2 Moderate wet [2, 1.5] [2.99, 2] [1.0, 1.5] [0.93, 0.46] [1.5, 1]
W1 Mild wet [1.5, 1] [1.99, 1] [0.5, 1.0] [0.45, 0.28] [1, 0.5]
No Normal [1, −1] [1, −1] [1.0, −1.0] [0.28, −0.44] [0.5, −0.5]
D1 Mild drought [−1, −0.5] [−1.99,−1] [−1, 0] [−0.45,−0.28] [−1, −0.5]
D2 Moderate drought [−1, −1.5] [−2.99,−2] [−2, −1] [−0.93, −0.46] [−1.5, −1]
D3 Severe drought [−1.5, −2] [−3.99,−3] [−3, −2] [−1.44, −0.94] [−2, −1.5]
D4 Extreme drought [−2, −∞) (−∞,−4] [−3, −∞) [−1.45, −∞) [−2, −∞)

2.3.5. GRACE Groundwater Drought Index (GGDI)

We computed groundwater storage changes (∆GWSt) by using terrestrial water stor-
age anomalies (∆TWSt) from GRACE/GRACE-FO products and soil moisture change
(∆SMSt) and surface water storage (∆SWSt) change from GLDAS, as indicated in
Equation (12) [3,23]. In NRB, ice/snow and canopy water storage contribution are as-
sumed to be negligible [3,60] and not considered in groundwater storage computation.

∆GWSt = ∆TWSt − (∆SMSt + ∆SWSt) (12)

To compute ∆GWSt from ∆TWSt and ∆SMSt, surface runoff is used as a proxy for
∆SWSt [20,60] from GLDAS to isolate the GWS component from GRACE. Detail of soil
moisture change estimation approach is presented in Section 2.3.1.

In this study, we adopted the GRACE groundwater drought index (GGDI) from
Wang et al. [23] to investigate the characteristics of groundwater drought based on a
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monthly climatology (GWi) calculated as follows (Equation (13)) to capture seasonality in
the groundwater records.

GWi =
1
ni

ni

∑
1

GWSAi (13)

where i = 1, 2, 3, . . . , 12; GWSAi represents the groundwater storage anomaly for month i;
ni is the number of the month.

Then, computed monthly climatology (GWi) is subtracted from the basin mean ground-
water storage anomaly to obtain a groundwater storage deviation (GSD based on Thomas
et al. [65] recommendation, indicating groundwater storage’s net deviation. Lastly, the
GSD normalized by removing the mean (GSD) and dividing by the standard deviation
(std(GSD)):

GGDIi,j =
(GSDi,j − GSD)

std(GSD)
(14)

where GGDIi,j is the groundwater drought index used to reflect the drought situation
derived based on normalized net deviation in groundwater storage volumes.

2.3.6. Multivariate Standardized Drought Index (MSDI)

The precipitation and soil moisture are integrated to provide a composite agricul-
tural and meteorological drought conditions computed based on MSDI [66]. The MSDI
computed as MSD = ϕ−1(P), where ϕ is the standard function of normal distribution
that uses joint probability of precipitation and soil moisture to compute either a para-
metric (MSDIP) [67] or an empirical (MSDIe) [16] method. Finally, MSDI (Equation (15))
is computed based on the accumulated precipitation (AP) and soil moisture (AS) from
long-term records:

MSDI(1) = P
(

AP ≤ AP(1)
n+1,m, AS ≤ AS(1)

n+1,m

)
(15)

The n-ensemble member of predicted MSDI (i.e., MSDI(1), MSDI(2), MSDI(n)) ob-
tained from the observed soil moisture and precipitation in historical records n-years and
n-months [66]. Detailed procedures and explanations about both MSDIP and MSDIe are
presented in Hao and AghaKouchak [16,67].

Similarly, the Standardized Soil Moisture Index (SSI) [67] highlights soil moisture’s
nature that mainly leads to agricultural drought. The SSI is a drought index computed
from a lognormal distribution function using the Standardized Drought Analysis Toolbox
(SDAT). SDAT is a nonparametric framework that can be applied to different hydrolog-
ical variables (i.e., soil moisture, precipitation, and relative humidity [68]. It designates
droughts at diverse temporal scales that are SSI-3 (3-month SSI), SSI-6(6-month SSI), and
SSI-12 (12-month SSI) in the same way as the SPI and SPEI.

2.3.7. Hydroclimatic Extreme Event Indices Severity Categorization

The standardized drought indices used in this study are SSI, SPI, SPEI, MSDIP and
MSDIe and GRACE derived indices are WSDI, CCDI, and GGDI. These standardized
indices are selected based on robustness to detect drought conditions in arid dominated
regions such as NRB. The drought severity status evaluated using scales (see Table 2)
based on previous studies WSDI [9], SPI [11], SPEI [13], (PDSI) [14] GGDI [23], CCDI [26],
and SSI [67].

Four wetness and drought levels [6] indicate different drought magnitude categories
ranging from mild to regions with extreme wetness or drought. The severity level marked
“No” category designates those areas experiencing no wetness/ drought condition [69]. In
this study, the wetness (W3-W4) category indicates flood conditions due to flood situations
mostly preceded by high soil moisture content, peaking floodplains inundation [70].
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3. Results
3.1. Hydroclimatic Extreme Analysis Based on Standardized Indices

The framework proposed in this study allows combining multiple data sets for joint
(multivariate) evaluation of drought and flood based on multiple input variables for a
more extended period. The SDAT technique adopts different drought-related parameters
to calculate the MSDI. The MSDI nonparametric and parametric 12-month outputs of the
SDAT that is derived from soil moisture and rainfall data. SDAT is a flexible tool used to
estimate 3-, 6-, 12-, 24-, and 48-month runs. The MSDI combines information and provides
composite information on SPI (meteorological drought) and SSI (agricultural drought).

The moving average [71,72] method is mainly used with time-series data to exclude
the short-term fluctuations and focus on longer trends. We used a 5-year moving average
window (Figure 3) that shows a steady rise up to 1940 and declined up to 1963 for both
temperature and rainfall. After 1965, temperature shows a strictly increasing pattern
while rainfall shows a slight decreasing pattern (i.e., rainfall show dips in 1983–1984, then
increased slightly) with fluctuations due to inter-annual variability. Thus, strictly increasing
temperature and slight decreasing rainfall pattern likely caused droughts as indicated in
Section 3. Furthermore, it may worsen future droughts of NRB owing higher rate of
evapotranspiration that will result from NRB warming associated with global warming.
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In the NRB flood and drought history, numerous drought events were recorded,
particularly after the 1980s (Figure 4). For illustration, the years 1984/1985, 2005/2006,
2010/2011, and 2014/2015 are extreme drought years in most parts of NRB. In 1985 drought
affected the whole parts of NRB, except the northern part of BNR (i.e., autumn and summer)
and the southwestern part of LVR (i.e., winter and autumn). The BNR areas receive rainfall
during June–September, while LVR areas receive rainfall in March–May and September–
December. Similarly, in 2005/2006, drought is affected the central parts of NRB, particularly
during the spring and autumn seasons. The severe drought in 2010/2011 affected the NRB
countries, including Kenya, Ethiopia, and some parts of Uganda, owing to the decline
of the long rains in spring (i.e., March–May). Similarly, eight flood events ranging from
moderate to extreme flood recorded in NRB. Notably, in 1964, 1978/1979, 1988, 1998/1999,
2006/2007, 2012/2013, 2015/2016, and 2019, the 1988’s flood was the most severe flood
in NRB history (1950–2019). The impact of the respective year flood event on livelihoods
is outlined in Section 3.6, and the spatial coverage with severity level is presented in
Section 3.6 and Figure 4.



Remote Sens. 2021, 13, 651 11 of 24

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 26 
 

 

ranging from moderate to extreme flood recorded in NRB. Notably, in 1964, 1978/1979, 
1988, 1998/1999, 2006/2007, 2012/2013, 2015/2016, and 2019, the 1988's flood was the most 
severe flood in NRB history (1950–2019). The impact of the respective year flood event on 
livelihoods is outlined in Section 3.6, and the spatial coverage with severity level is pre-
sented in Section 3.6 and Figure 4. 

 

Figure 4. NRB major drought periods in 1985/1996, 2005/2006, 2010/2011, and 2014/2015 during the four seasons of the 
respective year and flood years based on Palmer Drought Severity Index (PDSI). The blue color represents water bodies; 

Figure 4. NRB major drought periods in 1985/1996, 2005/2006, 2010/2011, and 2014/2015 during the four seasons of the
respective year and flood years based on Palmer Drought Severity Index (PDSI). The blue color represents water bodies; the
grey one is a desert area, and grey lines denote NRB countries. The four severity levels are denoted by different degrees: red
for drought and green for wetness.

From 1983 to 2008, NRB noted a weak trend toward increasing soil moisture (Figure 5c).
Since 2008, the soil moisture shows a strictly decreasing trend, while precipitation shows an
increasing trend. The decreasing soil moisture trend highlights the potential for increasing
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evapotranspiration (ET) and thereby indirectly escalating the regional hydrologic cycle.
The impact of soil moisture on climate warming may not be monotonic [73]. Relatively,
it is likely that in some regions, soil moisture might first increase in response to cumu-
lative precipitation but then decrease because ET may rise quicker than precipitation as
temperature increases.
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The SSI and MSD disagree with SPI drought conditions after 2011; SPI shows more
wet conditions while others show more drought conditions. Accordingly, precipitation
increases are assumed to have been more than compensated for increased losses due to
increases in ET, as indicated in terms of SPEI (Figure 5a). This ET increase is due to an
increasing temperature pattern (Figure 3) as expected to decrease soil moisture.
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Figure 5 shows the SPI, MSDIp, MSDIe, and SPEI time series over NRB and sub-
basins. All indices show agreement from1950 to 1998, and then after that, they differ
in both magnitude and pattern direction until the study period ends. The SPI shows a
decreasing droughts pattern due to the increased precipitation, while the MSDIp, MSDIe,
and SPEI were increasing due to the temperature effect. This discrepancy highlights that
the SPI shows a decrease in drought severity. In contrast, the SPEI increases droughts
severity attributed to a strict and higher increasing temperature pattern than fluctuating
precipitation (Figure 3).

3.2. Evaluation of TWS Deficits and Surplus

In drought and wetness characterization, the terrestrial water storage deficit and the
surplus are crucial due to groundwater, surface water, and soil moisture water storage of
GRACE TWS integration. GRACE/GRACE-FO captured hydroclimatic extreme events
accurately (Figure 6a) and similarly except for severity level minor variations among the
different GRACE/GRACE-FO derived indices from 2003 to 2019. The WSDI time series
based on GRACE show a similar fluctuations pattern between 2004 and 2012. The variation
increases contrarily after 2013; it may distort the severity level of drought and flood
events. For example, as shown in Figure 6a,b, the drought events reported in Section 3.5
(2014–2015, 2017–2018) are not represented by GRACE/GRACE-FO. The NRB experienced
two prolonged and severe drought events during periods 2003–2006 and 2009–2010. The
NRB water storage was lost at a rate of −1.56 and −1.32 cm/yr from 2003 to 2006 and 2008
to 2010, respectively. Generally, standardized indices mostly underestimated the drought
and flood severity level compared to GRACE/GRACE-FO derived solutions.

Substantial water storage deficits (Figure 6a) occurred in 2003, 2005–2006, 2009–2010,
2011–2012 at high deficits values of −1.2, −2.8, −2.3, and −2.1 cm in the form of the
equivalent water height, respectively. As indicated in Figure 6c, the turning point from
deficit to surplus (i.e., WSD) was approximately in 2011/2012, which can be observed
clearly representing a continuous deficit in water storage changes. A falling pattern denotes
a permanent WSD, whereas a rising trend represents a water storage surplus (WSS). The
rising pattern in WSD was observed in 2012, following a prolonged decline. The declining
pattern continued until 2011, and the rising pattern was observed in a long period from
2012 to 2019 that characterized by increasing wetness.

Based on the drought and wetness event definition, Thomas et al. [25] distinguished
four droughts based on WSD during the 2003–2019 period in the NRB (see Section 3.6).
The periods from 01/2004 to 05/2007 and 11/2008 to 06/2011 were the two most extensive
drought periods in the region, with durations of 29 and 31 months, respectively, except the
three months (March, May, and September) with no drought in 2005. The most significant
deficits recorded in May 2005 and February 2006 labeled as the most severe drought events.

Commonly, a larger water deficit shows a greater intensity of a drought event, while a
more massive water surplus shows flood events. More negative WSD before 2012/2013
and more positive WSD after 2012/2013 (Figure 6c) possibly indicate a reduction after
2012 in the droughts frequency, intensity, and duration except for the 2014 and 2016/17
(Figure 6c,d) drought event. The cumulative WSDs exhibited more clearly that the turning
point at which the water storage changed from deficit to surplus occurred in 2003 or
2019. The gradients of close-fitting lines were approximately zero in these two years
(Figure 6c). In 2006/2007, the TWS deficit was restored from the previous deficit then after
two years in 01/2009–06/2011 (24 months) and 11/2011–05/2012 (6 months), drought
caused these decline and afterward there no substantial drought event except 2014 and
2016/17 moderate drought events (Figure 6c,d).
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Figure 6. Time series of GRACE derived indices (a) water storage deficit (WSD), (b) Combined Climate drought index,
(c) cumulative WSD for the NRB, and (d) Groundwater drought index (GGDI) from 2003 to 2019. “CSR, JPL, and GFZ”
represents GRACE/GRACE-FO products, while “Ens” represents the arithmetic mean of the three GRACE/GRACE-FO
products. The gray shaded period shows missing data between the GRACE and GRACE-FO mission (i.e., July 2017 to
May 2018).

The WSD (Table 2) identified individual drought events observed on the cumulative
WSD profile displaying a marked reduction during drought events. Even though 2012 to
2019 showed an overall advance in the cumulative WSD, this period similarly encompassed
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flood and drought events leveled (event numbers 2–4 and 9–11). Generally, most extreme
event epochs reported in this study (Table 2: WSDI and GGDI) corresponded with the
results described by the drought records from respective NRB countries’ government-
issued bulletins of flood and drought data (see Section 3.6). Therefore, quantitative WSD
and GGDI are more useful for characterizing flood and drought events. In contrast, CCD is
not suitable for the NRB case due to overestimation (Table 2) and low correlation (Table
3). Furthermore, CCDI shows extreme event occurrence time mismatch with other indices
(Figure 6a,b) and historical records (see Section 3.6) of extreme events that may be associated
with a time lag effect of precipitation incorporated during estimation.

Table 3. Correlation coefficient among indices (2003–2018).

NRB CCDI GGDI WSDI SPI SSI MSDIe MSDIp SPEI PDSI

CCDI 1
GGDI - 1
WSDI 0.53 0.56 1

SPI 0.50 0.70 0.67 1
SSI - 0.74 0.66 0.81 1

MSDIe - 0.73 0.69 0.92 0.97 1
MSDIp - 0.73 0.69 0.94 0.96 0.99 1
SPEI 0.50 0.72 0.51 0.91 0.72 0.82 0.83 1
PDSI 0.51 0.54 0.71 0.84 0.74 0.81 0.84 0.67 1

“-” denotes the 95% non-significant level between the CCDI and GGDI, SSI, MSDIe, and MSDIp.

3.3. Evaluation of Groundwater Drought and Surplus

Hydroclimatic extreme event evaluation using GRACE/GRACE-FO and GLDAS data
is ultra-efficient compared to traditional drought and flood monitoring indices. Figure 6d
illustrates the temporal pattern of GGDI characteristics in the NRB. The GGDI showed a
downward pattern with different change characteristics in NRB and each subzone, demon-
strating that the GGDI-identified drought was increasing in the NRB during 2003–2019.
GGDI time series demonstrates that droughts have become more frequent in recent five
years, with the most severe drought episode during June/2017 and August/2018. Over
the entire NRB, the extreme drought (i.e., the lowest GGDI) stretched –2.89 during the
9/2016–05/2017 drought event. Extreme groundwater drought occurred in November
2017 with a minimum GGDI value of –2.9. In the meantime, in the later and previous
periods of this drought event, the average GGDI reached –0.82 to 0.31, then after GGDI
became more positive in 2019.

As shown in Figure 6d, the most significant increasing pattern of drought in each
region occurred in NRB. During 01/2003–05/2003, the lowest GGDI values in BNR, LVR,
BER, and MNR were –1.39, –2.98, –1.03, and –0.97, respectively. Then, GGDI abruptly
becomes more positive in 09/2007, causing flood in flood plains of NRB. During the long
span drought period 2004/02 to 2007/03, LVR shows more extreme groundwater depletion
than other sub-regions. In the rest of the drought period, BER and BNR show lower GGDI
values than other sub-regions. This groundwater depletion (2004–2006) can be about
half attributed to a drought in the Lake Victoria Basin and about half to an enhanced
outflow [74,75], underlining the sensitivity of the LVR to human-induced activity (i.e.,
controlled by dam operations). Similarly, over BER, drought frequency and intensity are
increasing that might be associated with Sudd-wetland (i.e., a place where White Nile’s
waters are lost). The wetland area is diminishing [76] due to groundwater depletion.

The most severe drought in BNR, LVR, BER, and MNR occurred in February 2003,
February 2006, and August 2018, with GGDI values ranging from −2.98 to −1.09. Thus,
these results indicate that GGDI is efficient in identifying drought events as it reflects direct
evidence of a deficit in groundwater storage. NRB is sensitive to climate variability and
human-induced drought event [77]. However, in LVR, surface water storage is abundant;
it is sensitive to the drought associated with climate change and human-induced effect.
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Furthermore, human water consumption intensifies hydrological drought, groundwater,
and surface-water interactions [74,78].

3.4. GRACE Derived Drought Indices Feasibility for NRB Drought Identification

We evaluated GRACE-derived CCDI, GGDI, and WSDI feasibility by comparing with
other standardized hydroclimatic extreme event indicator indices (Table 3; Figure 6). The
correlation coefficient (R2) between the GRACEs derived GGDI, WSDI, and CCDI with
the other indices presented in Table 3 at a significant probability level (p ≤ 0.05). The
processes used to calculate each hydroclimatic extreme event (i.e., drought and flood)
index affect their relationships [26]. For example, the close associations of SPEI and
SPI with the amount of evapotranspiration and precipitation can clarify the high spatio-
temporal fluxes of these indices along with the close relationship between the SPI and
CCDI (and the nonexistence of a clear association with the SPEI). The strong correlation
between GGDI and SSI and weak correlation between the SSI and CCDI indicates that
the higher dependence of groundwater on soil moisture showing consistency with arid
regions’ hydrological processes. Similarly, the SPEI and GGDI show a high correlation
highlighting the important effect of precipitation and evapotranspiration on soil moisture
and groundwater extreme events.

Similarly, Figures 5 and 6a illustrated the comparison between WSDI and commonly
used indices (PDSI, SPI, SPEI, SSI, and MSDI) over the NRB from 2003 to 2019 (Table 4).
The characteristics detected for the WSDI and its response to the hydroclimatic indices
agreed well. It showed a higher correlation with PDSI, SPI, and SSI and MSPI than SPEI,
with similar peaks and troughs. Nevertheless, among indices, specific differences are
observed owing to differences in formulation methodologies and variables. For instance,
as noted in Figure 6a,b and Table 4, the GRACE/GRACE-FO based indices (i.e., WSDI,
CCDI) are higher than standardized drought indices during the 12/2019 wet event and
12/2005 drought event. Generally, in agreement with them in other years that possibly as-
sociated with human-induced effect [74,79] as explained in Section 3.3. In 2005/2006, 2007,
and 2010/2011, all of the standardized drought and wetness indices exhibited enormous
troughs when the WSDs were the most substantial, which might be associated with the
anthropogenic effect. Some studies [80,81] show that 2010–2011 drought events in NRB
countries are likely due to anthropogenic influences. These human-induced droughts could
emerge due to urbanization, deforestation, reservoir construction [82], water withdrawals
for domestic use, irrigation, manufacturing, and mining [83].

Table 4. Flood and Drought severity category based on extreme event indices.

Event # Time
Period/Category CCDI WSDI GGDI SPEI SSI SPI MSDI

(e and p) PDSI Range

1 11/2006–02/2007 +1.76
(W4)

+1.20
(W2)

+2.79
(W4)

+0.91
(W1)

+2.25
(W3)

+2.25
(W3)

+2.25
(W3)

+1.90
(W1) W2/W4

2 09/2012–01/2013 +1.72
(W4)

+1.27
(W2)

+0.15
(No)

+0.35
(No)

+0.27
(No)

+1.30
(W1)

+0.27
(No)

+0.85
(No) No/W4

3 11/2015–06/2015 +1.72
(W4)

+0.71
(W1)

+0.82
(W1)

+0.96
(W1)

+0.45
(No)

+0.82
(W1)

+0.49
(No)

+1.86
(W1) No/W4

4 09/2019–12/2019 +1.92
(W4)

+2.79
(W4)

+0.94
(W1)

+1.68
(W2)

−2.15
(D4)

+2.15
(W4)

−2.12
(D4)

+2.65
(W2) W2/W4

5 01/2003–05/2003 −0.85
(D2)

−1.17
(D1)

−1.92
(D3)

−1.16
(D2)

−0.22
(No)

−0.51
(D1)

−0.95
(D1)

−1.75
(D1) No/D3

6 02/2004–03/2007 −2.54
(D4)

−2.89
(D3)

−0.94
(D1)

−1.25
(D2)

−0.51
(D1)

−0.85
(D1)

−1.45
(D2)

−1.15
(D1) D1/D4

7 07/2009–12/2009 −0.89
(D2)

−0.63
(D2)

−0.82
(D1)

−1.61
(D3)

−1.12
(D2)

−1.32
(D2)

−2.12
(D4)

−2.52
(D2) D1/D4

8 04/2010–09/2011 −1.76
(D4)

−1.61
(D2)

−1.08
(D2)

−1.67
(D3)

−1.10
(D2)

−1.02
(D2)

−1.53
(D3)

−2.56
(D2) D2/D4

9 12/2014–11/2015 −1.13
(D3)

−1.43
(D2)

−1.05
(D2)

−1.23
(D2)

−2.25
(D4)

−0.75
(D1)

−2.25
(D4)

−3.25
(D3) D1/D4
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Table 4. Cont.

Event # Time
Period/Category CCDI WSDI GGDI SPEI SSI SPI MSDI

(e and p) PDSI Range

10 09/2016–01/2017 −2.08
(D4)

−1.55
(D2)

−1.52
(D3)

−0.95
(D1)

−1.51
(D3)

−0.49
(No)

−1.75
(D3)

−2.35
(D2) No/D4

11 11/2018–03/2019 −0.68
(D2)

−0.53
(D1)

−1.69
(D3)

−1.07
(D2)

−2.15
(D4)

−0.28
(No)

−2.24
(D4)

−2.85
(D2) No/D4

“Event #” denotes event number, and “Range” is based on Table 2.

Table 3 presented the correlations among the hydroclimatic extreme event indices that
indicate a significant (p-value < 0.05) correlation among GRACE derived and standardized
indices. The correlation between PDSI and WSDI (r = 0.71) is higher than other standardized
indices, which is possibly due to a series of water balance parameters included in PDSI
computations. Furthermore, a strong correlation was exhibited between PDSI and the
other drought indices (Table 3), showing PDSI is a comprehensive drought index. PDSI
comprises water supply and demands deduced from meteorological and hydrological
parameters [84].

The lower correlation between SPEI and WSDI (0.51) than that between SPI and
WSDI (0.67) highlights that precipitation is more responsible for land WSD than the change
between evapotranspiration and precipitation in the NRB during 2003–2018. As indicated in
Figure 5a, after 2000/01, the SPEI drought shows an extraordinary increase in intensity and
frequency due to increasing temperature over NRB; meanwhile, the only difference between
SPEI and SPI is evapotranspiration [13]. The SPI is primarily a meteorological drought
index [11] based on long-term climatic records and fitted to a probability distribution
interpreted at various time scales in both short-term and long-term applications. For
example, soil moisture conditions react to precipitation anomalies on a moderately short
scale, and that is why SPI shows a high correlation (0.81–0.97) with SSI, MSDIe, and MSDIp.

The correlation coefficients of SSI and MSDI with WSDI (0.66 and 0.69) are higher than
SSI and MSDI with the SPEI index, which evinces that flood and droughts events are more
dependent on land moisture characteristics because of the NRB’s large arid area. Owing
to different principles and computation algorithms [9,13,23] of various drought indices,
differences in behavior among the indices are expected.

3.5. Analysis Hydroclimatic Extreme Event Severity Levels

The overall drought and flood severity level of NRB from 01/2003 to 12/2019 (i.e., within
the 204 months) presented in Figure 6 and Table 4. The higher GGDIs, CCDIs, and WSDIs
with longer durations represent the more severe event. Among the nine drought events
detected across the NRB during the study period, the drought events 01/2004–06/2005
and 1/2009–06/2011 were the most widespread deficit periods noticeably, lasting 18 and
24 months with the highest total hydrological severities. Moreover, several other slight
droughts are temporary episodes of dryness during the study period, namely the drought
events 1/2012–06/2011 and 09/2016–01/2017, characterized by more than 4-month pro-
longed deficits only slight to moderate severities.

Commonly, drought and flood intensity is characterized by using drought indices
divided into different drought severity levels, as displayed in Table 4, based on the criteria
defined in Table 2. In some flood and drought years (event # 2, 5, 7, 9, and 11), different
drought indices estimated different drought levels for the same drought events. Specifically,
flood and drought severity levels in events #4 and #6 are classed as severe (W4 and D3)
according to WSDI, whereas PDSI, SPEI, and other indices are estimated as mild drought
and flood. The drought severity levels of the two drought events for the rest of the indices
(i.e., MSDI, SSI, and SPI) were also different. SPI shows no drought condition in event #10,
while the rest of the indices are classified as mild to moderate (D1–D2) drought.

Similarly, in the event, #11 and11, SPI shows no drought while the rest indices show
mild to extreme (D1–D4) drought conditions. Overall, nevertheless, it is clear that the
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flood and drought severity levels of the eleven events identified by these indices conveyed
apparent inconsistencies. The inconsistencies and differences detected among indices are
possibly attributed to the principal differences in time scales employed, the type of the
method, and data used in the computation of the various indices.

The spatio-temporal variations of drought-affected areas (Figures 4–6) characterize the
regions suffering from droughts of different severities and drought development processes.
For example, in the 1984–1985 drought years, the severe drought conditions were recorded
in all seasons across the NRB, except no drought conditions in the southwestern part of
LVR (i.e., in winter) and northeast part of NBR during autumn. The four severity levels
(Figure 4) are denoted by different degrees: red for drought and green for wetness.

3.6. Hydroclimatic Extremes Impact on Livelihood

In NRB countries, the hydroclimatic extreme event affected people’s lives (Table 5),
mainly due to frequent drought and flood events [85,86]. In Sudan and Ethiopia (Figure 4),
during 1985–1986, severe drought caused around 450,000 people death [87,88]. Around
14 million people were affected by famine during 2002–2003 (i.e., in Ethiopia only), and
over 13 million people were affected in NRB countries during the 2008–2010 droughts
years. The most extreme drought event (2010–2011) led to severe food emergencies and
starvation, heartrending around 12 million people over NRB upstream countries [66],
and then 2016–2017 is categorized in a moderate drought year. Additionally, flooding
instantaneously tailed the drought (2007, 2013, 2017, and 2019) the abrupt conjunction of
these events impaired the losses (Figure 6).

Table 5. Summary of standardized indices (1950–2019) and GRACE/GRACE-FO (2003–2019) identified hydroclimatic
extreme events and impacts (verified with EMD-DAT database).

S.N Time Period NRB-Affected Countries Duration (No
of Months)

Deficit/Surplus Peak
(PDSI * and WSDI **

in Cm) and Date
Severity Level # Affected

People

Flood
1 1962 KEN 18 +4.1 (09/1964) Extreme 15,000
2 1978/1979 SDN, EGY, ETH 11 +3.6 (12/1978) Severe 167,000
3 1988 SDN, RWA, ETH 12 +2.2 (06/1988) Moderate 2,568,918
4 1998/1999 SDN, KEN, ETH 6 +2.4 (10/1999) Moderate 1,421,041
5 2007 SDN, ETH, KEN, RWA 6 +2.2 (04/2007) Severe 857,872
6 2012/2013 SSD, SDN, ETH, KEN, RWA 11 +1.1 (06/2012) Moderate 1,832,398
7 2015/2016 SSD, SDN, ETH, KEN, RWA 5 +1.7 (08/2015) Severe 974,814
8 2019 SSD, SDN, ETH, KEN, RWA 3 +2.2 (01/2019) Severe 1,726,595

Drought
9 1983–1984 TZA, RWA, ETH, KEN, SDN 8 −4.3 (05/1984) Extreme 19,070,000
10 1987/1988 TZA, UGA, ETH, RWA, SDN 11 −3.8 (04/1987) Severe 11,160,000
11 1997/1999 TZA, UGA, ETH, RWA, KEN 28 −2.9 (09/1998) Moderate 23,000,000
12 12/2002–5/2003 TZA, UGA, ETH, RWA 6 −1.2 (04/2005) Slight 12,600,000
13 01/2004–06/2005 SSD, KEN, ETH, UGA 18 −2.8 (02/2006) Severe 12,954,000
14 01/2007–05/2007 Widespread 5 −0.6 (02/2010) Moderate No data
15 1/2009–06/2011 SSD, KEN, ETH, UGA 24 −1.6 (02/2011) Moderate 20,274,679
16 11/2011–05/2012 SDN, KEN, ETH, TZA 6 −1.4 (04/2012) Moderate 8,950,000
17 2014–2015 SDN, KEN, ETH 7 −1.4 (10/2015) Moderate 12,600,000
18 2/2018–5/2018 Widespread 4 −1.1 (04/2018) Slight No data

“PDSI *” indicates deficit/surplus values during 1950–2002, while “WSDI **” for 2003–2019. (NRB affected countries: KEN = Kenya,
SSD = South Sudan, SDN = Sudan, ETH = Ethiopia, RWA = Rwanda, EGY = Egypt, UGA = Uganda, TZA = United Republic of Tanzania).

In NRB, extreme flood events recorded (Table 5 and Figure 5) in 1978/9, 1988, 1998,
2007, 2008, 2012/13, 2015/16, and 2019 [87]. The BER (South Sudan and Sudan), MNR
(Egypt), BNR (western part of Ethiopia), LVR (equatorial lakes) regions are prone to
floods due to highly variable river flows and extensive river floodplains area. It causes
overwhelming effects on the property (i.e., infrastructure destruction) and lives (i.e., killing,
poverty, and food insecurity). For example, the annual average damage from flooding is
over US$25 million [89] in the riparian of the BNR and the MNR. The floods spreading in
BNR (western part of Ethiopia) and BER (Sudan) displaced 242,000 people and resulted
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in 700 deaths in 2006/2007. During the high rainfall period, the river flows from BNR
cause devastation in the floodplains of Sudan and Ethiopia that comes from BNR that is a
contributor of 85% of the total NRB.

4. Discussion

Climate studies [90] showed an increase in temperature by more than 1 ◦C and 1.5 ◦C
in NRB countries that leads to 1.5 ◦C and 2 ◦C warming levels, respectively. Likewise,
according to Touma et al. [91], due to the more significant influence of temperature changes,
the changes in drought characteristics using the SPEI index are substantial than the SPI
changes. Osima et al. [90] also specified that NRB countries faster warming than the global
mean, which further reinforces the role of temperature in the study area. Thus, a strict
increase of SPEI droughts severity is the global warming context that has enhanced NRB
and drought severity in the sub-basins.

GRACE/GRACE-FO TWS derived indices are more powerful than standardized
indices to detect drought events attributed to natural and human-induced drought events.
This strength is due to the GRACE/GRACE-FO capacity to integrate surface to deep aquifer
water storage change vertically. Similarly, studies presented by Wang et al. [23] in Northern
China plain and Thomas et al. [65] in northern California central valley reported declining
groundwater storages due to droughts exacerbation, and GGDI is capable of capturing
these phenomena. GRACE/GRACE-FO data convey spatially distributed information
about flood and drought-related parameters promptly and efficiently as a unique source
of information in ungauged basins, where reliable historical records of precipitation and
discharge are missing.

Outstandingly, GRACE satellites are exceptional in their ability to monitor changes in
TWS that encompasses the land surface to the deepest aquifers that vertically integrate [22]
water storage changes. TWSA comprises groundwater storage, soil moisture storage, and
surface water storage [92]; therefore, GRACE TWS gives an alternative method to monitor
drought from an integrated approach [28]. Thus, the GRACE satellite can detect the loss
or gain of deep soil water as well as groundwater [93]; it effectively characterizes surface
to underground water surplus and deficit with practical understanding into integrated
hydroclimatic extreme event indices.

These standardized drought indices are generally dependent on hydrologic fluxes
and meteorological variables that only consider a limited centimeter on the top surface.
Simultaneously, subsurface WSDs changes might also play a critical role in the hydrocli-
matic extreme formation. These conditions apply mainly to extreme-severity and long-term
(flood and drought) events. On the contrary, GRACE/GRACE-FO based indices can quan-
tify the actual amount of water deficit or surplus from the storage [22] because it assimilates
the effects of various subsurface and surface hydrologic processes. Therefore, particular
region actual hydrological conditions and the associated hydroclimatic extreme events are
better explained by GRACE/GRACE-FO derived indices.

Furthermore, ground-based point measurements acquired from hydro-meteorological
stations may not accurately describe the regions of interest’s spatiotemporal characteristics,
particularly large-extent areas like NRB. WSDI is integrated land water storage variations
observed from space, less complicated in terms of numerical and statistical computations
than the standardized drought indices. Generally, GRACE/GRACE-FO derived hydrocli-
matic extreme indices have a substantial application potential, specifically for large-scale
and scarce hydro-meteorological recording regions.

GRACE/GRACE-FO derived indices are associated with certain limitations owing
to the entire dependence on GRACE-observed TWSA that imbue the WSDI infers. For
instance, GRACE/GRACE-FO by itself cannot decouple different hydrologic store con-
tributions [94] from monthly estimates of TWSA. Moreover, WSDI is more effective over
large spatial scales inheriting the GRACE/GRACE-FO accuracy challenge [21]. The new
GRACE-FO and GRACE mascon solutions’ spatial resolution is higher than that of the
previous solution. Besides, as Thomas et al. [25] reported, time series of at least 30 years
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in length is preferable while GRACE-TWSA has 18 years of monthly TWSA, making the
GRACE/GRACE-FO derived indices hydroclimatic extreme evaluation and estimation
challenging. However, to overcome spatiotemporal resolution, we recommend reconstruct-
ing more than 30 years of TWSA from in situ/remote sensing data and downscaling the
GRACE/GRACE-FO data by integrating with high-resolution remote sensing data. As the
GRACE-FO observations updated by increasing the new observations, GRACE-FO derived
indices method can be updated continuously.

GRACE/GRACE-FO TWSA data are typically less useful for some mild droughts and
flood events caused by a precipitation deficit/surplus; subsequently, the surface water
storage ruins within normal conditions. Even though GRACE/GRACE-FO resolution is
improved, solo GRACE-FO data is still not sufficiently accurate to characterize hydrocli-
matic events in smaller basins (i.e.,≤ 200,000 km2) owing to the GRACE footprint limit
of nearly 200,000 km2 [95]. Thus, we recommend station-derived observation supple-
mentary methods with GRACE/GRACE-FO to characterize small-extent for less extreme
hydroclimatic events.

5. Conclusions

This study proposed a framework that comprises hydroclimatic extreme indices using
GRACE/GRACE-FO time series and standardized indices over NRB during 1950–2019.
This framework incorporates groundwater, agricultural, and meteorological droughts and
flood severity based on respective indices. Our results indicate that the GRACE/GRACE-
FO derived indices can adequately capture the drought and flood events that agree reason-
ably well with PDSI, SPI, SPEI, SSI, MSDIp, MSDIe, and, though differences occur owing
to inherent differences among indices.

The results of this study showed that the NRB drought and flood event severity
and frequency increased after 1988. From 1950 to 2019, eight floods and ten droughts
were identified based on the standardized indices (1950–2019) and GRACE/GRACE-FO
derived (i.e., 2003–2019), mostly in agreement with those reported by different institutions.
Out of these, four were severe flood events (1988, 2007, 2016, and 2019), and five severe
drought events (1984, 2005/6, 2009/10, 2011/12, 2014/15). Some of the flood and drought
events (e.g., event # 2, 5, 10, and 11) are categorized in different severity levels by different
drought indices; they may be endorsed to differences in the data, category standards,
time scales, and the computation technique of indices. The correlation between PDSI and
WSDI (r2 = 0.72) is higher than other standardized indices, which is undoubtedly due to a
series of water balance parameters included in PDSI computations. Furthermore, a strong
correlation exhibits between WSD and PDSI, showing PDSI as a comprehensive drought
index (i.e., deduced from meteorological and hydrological variables).

GRACE/GRACE-FO captured hydroclimatic extreme events accurately except for
severity level variations among the solutions; the time series of WSDI show a similar fluctu-
ations pattern between 2004 and 2012. Contrarily, the variation increases after 2013, likely
misrepresent drought and flood events severity level. Overall, the GRACE/GRACE-FO
based indices captured all major flood and drought events and agreed with standardized
indices; hence, it may be an ideal substitute for scarce hydro-meteorological sites. Stan-
dardized indices rely on vast site observations awkward to implement. The proposed
framework can serve as a useful tool for integrated flood and drought situation monitor-
ing and better understand extreme hydroclimatic conditions in NRB and other similar
climatic regions.
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