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Abstract: Monitoring of canopy density with related metrics such as leaf area index (LAI) makes
a significant contribution to understanding and predicting processes in the soil-plant-atmosphere
system and to indicating crop health and potential yield for farm management. Remote sensing
methods using optical sensors that rely on spectral reflectance to calculate LAI have become more
mainstream due to easy entry and availability. Methods with vegetation indices (VI) based on multi-
spectral reflectance data essentially measure the green area index (GAI) or response to chlorophyll
content of the canopy surface and not the entire aboveground biomass that may be present from
non-green elements that are key to fully assessing the carbon budget. Methods with light detection
and ranging (LiDAR) have started to emerge using gap fraction (GF) to estimate the plant area
index (PAI) based on canopy density. These LIDAR methods have the main advantage of being
sensitive to both green and non-green plant elements. They have primarily been applied to forest
cover with manned airborne LiDAR systems (ALS) and have yet to be used extensively with crops
such as winter wheat using LiDAR on unmanned aircraft systems (UAS). This study contributes to a
better understanding of the potential of LIDAR as a tool to estimate canopy structure in precision
farming. The LiDAR method proved to have a high to moderate correlation in spatial variation to
the multispectral method. The LiDAR-derived PAI values closely resemble the SunScan Ceptometer
GAI ground measurements taken early in the growing season before major stages of senescence.
Later in the growing season, when the canopy density was at its highest, a possible overestimation
may have occurred. This was most likely due to the chosen flight parameters not providing the best
depictions of canopy density with consideration of the LIDAR'’s perspective, as the ground-based
destructive measurements provided lower values of PAI. Additionally, a distinction between total
LiDAR-derived PAI, multispectral-derived GAI, and brown area index (BAI) is made to show how the
active and passive optical sensor methods used in this study can complement each other throughout
the growing season.

Keywords: drone; unmanned aircraft system; light detection and ranging; leaf area index; green area
index; plant area index; multispectral; gap fraction; winter wheat

1. Introduction

Leaf area index (LAI) is a popular metric used to monitor crop biomass over the
growing season. It is a key biophysical parameter for modeling mass and energy exchange
between the biosphere and atmosphere [1]. LAl is intrinsically connected to biophysical
processes such as photosynthesis, evaporation and transpiration, rainfall interception, and
carbon flux [2]. LAl is widely used in crop simulation to assist in crop yield modeling and
irrigation management [3]. Improving upon LAI measurement is important, especially for
agricultural systems, as they are under strong pressure due to the changing climate.

LAl is the ratio of the total one-sided leaf area per unit of horizontal ground surface
area (dimensionless). It can be distinguished into two subcategories. These are green leaf
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area index (GLAI), consisting of the green photosynthetically active leaves, and brown leaf
area index (BLAI), which is those areas of brown, senescent leaves losing photosynthetic
function [1,4]. There are further, closely related terms that broaden the elements of con-
sideration beyond the plant leaf. Green area index (GAI) accounts for all green elements,
including not only leaves but also other photosynthetic organs that contain chloroplasts,
such as stems and reproductive organs [3]. It can be assumed that brown area index (BAI)
refers to those areas consisting of any non-green elements within the plant canopy. Plant
area index (PAI) is in reference to all plant elements, including green and non-green por-
tions [3]. The definitions of these LAl-related terms are important to this study as different
ones are mentioned based on the sensor and method used.

The majority of remote sensing methods use passive optical sensors with ratios of
different spectral reflectances to calculate LAI [1,3,5]. Classically, the calculations are based
on vegetation indices such as the normalized difference vegetation index (NDVI), which is
sensitive to chlorophyll absorption [6]. This often becomes a measurement of GAI which
relies on the plant pigment [5]. These techniques may be impacted by the illumination
conditions during collection [7] along with background elements [6,8]. Cereal crops, such as
winter wheat, begin browning with their spectral reflectance becoming similar to that of soil
as they approach senescence, where the greenness no longer reflects the whole surface area
of the aboveground biomass, i.e., PAI, and passive optical methods are challenged [5]. This
can occur early in the growing season for crops during warm dry summer periods, which
is a common case for rainfed agroecosystems in temperate or Mediterranean climates [5].
Some studies have indicated that hyperspectral data are no better than broadband multi-
spectral data in LAI estimations and that senescent brown vegetation is usually ignored
because optical methods are not calibrated for it [3,5,9]. Senescent leaves can constitute a
large portion of the aboveground biomass and are important in understanding the carbon
cycle [10]. It is also helpful for the farmers to know when, where, and how much of their
crop is affected by stress due to drought, pests, or other damages before harvesting [5].
However, it is suggested that GAI is the most crucial for crop yield prediction [3]. With this
in mind, being able to estimate both GAI and BAI could provide a more complete picture
for crop management.

Ground-based methods for the estimation of LAI include digital hemispherical photogra-
phy (DHP) from cameras with fisheye lenses [3,11,12], ceptometry [13,14], or devices such as
the LAI-2000/2200 plant canopy analyzer (LI-COR Biosciences, Lincoln, NE, USA) [3,15-17].
These non-destructive methods rely on the gap fraction (GF) theory and radiation transmis-
sion. GF is defined as the fraction of light passing through the canopy without encountering
foliage or other plant elements [2]. Inaccuracies are known to occur from circumstances
such as scattered radiation [18] and the lack of calibration for leaf clumping [19]. These
factors are not always considered or corrected. However, even when clumping corrections
are used, it comes from prior knowledge of the clumping parameter, which is not universally
applicable [19]. When using the LAI-2000, underestimations of 17% to over 40%, likely due to
woody elements, have been experienced in a past study [16] and have had underestimations
of 18% in another study after correction for wood area [17]. Errors between 10% and 20%
for forests and 10% and 15% for crops have been experienced when using LAI 2200 and
DHP [3,20-24]. Ceptometry methods, based on the measurement of average photosyntheti-
cally active radiation under a plant canopy using many individual light sensors, have shown
underestimations in maize with a low-medium range of LAI [13]. However, others have
demonstrated LAI estimates of sugarcane within 90% of what can be obtained with destruc-
tive measurements [25]. Ground-based methods are time-consuming, with little community
consensus on measurement methods, sampling scales, and frequencies [3]. For regional-scale
monitoring, aerial and space-borne remote sensing is preferred as it provides a more complete
picture of a study area’s LAI values and variation.

In contrast to typical passive multispectral methods, light detection and ranging
(LiDAR) can retrieve signals from the canopy, the whole plant, and the ground. LiDAR’s
ability to penetrate through vegetation canopy tops is often used for height measurements,
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to map underlying terrain, or even to measure tree trunk diameters [26-28]. It is also
possible to relate the rate at which these signals pass through gaps in the canopy, essentially
applying GF principles to LiDAR, that is reflective of vegetation density that can be related
to LAL Studies have found that LIDAR-derived LAI has performed well by comparison
with ground collection methods such as LAI-2200 [3]. It is suggested to be a better indicator
of the three-dimensional plant structure as opposed to passive optical methods that mainly
obtain top surface information with two-dimensional data [2]. LIDAR has the potential
to estimate the complete aboveground biomass of the plant, regardless of its pigment or
photosynthetic state.

Several studies have shown how manned airborne LiDAR scanning (ALS) can be used
to estimate LAI in forestry [29-34]. Various attributes of LIDAR have been exploited to
examine the canopy structure and density. Distinctions between echoes, signal intensity,
and ground points have all been used within methods to derive LAI These methods have
proven to provide indications of suitably accurate LAI estimations. In one study [34],
ALS data were used to estimate LAI and gap fraction for a forest and compared against
estimations made from hyperspectral data, and R? > 0.77 was found. In [32], a performance
with a R? of 0.67 was exhibited using Beer-Lambert equations. However, LIDAR-derived
LAl is subject to inaccuracies depending on the vegetation cover and optimization of the
surrounding methods. There is a lack of investigations into optimizing collection and
processing parameters for LIDAR retrieval of LAI [32]. Overestimations are known to occur
when the vegetation density is too high for the LiDAR signal to reach the ground. In the
study of [30], overestimations of 3.1-4.6% were experienced, which increased considerably
with scan angles over 32 degrees. The higher the scan angle, the further the signal must
travel through the canopy before reaching the ground. Flight parameterization is important
in ensuring a complete picture of the canopy density with the most inclusive perspectives
that will result in the best ratio of gap probability to mitigate overestimation [32]. This can
be related to flight line directions and spacing, altitude, scan angles, and the particular
LiDAR sensor used during data acquisition [32]. There is a lack of understanding and
distinction between which parameters to use in collection and processing based on the
sensor used and vegetation being monitored [3,32]. There is a strong need for further
research that includes more vegetation types and the investigation and improvement of
various flight parameters and LiDAR features. Additionally, the methods are mainly
manned ALS, which can have large LiDAR signal footprints pertaining to the higher
flight altitudes and principles of beam divergence and can fail to capture the full gap-
size distribution due to not being able to take advantage of small gaps in the canopy [1].
Unmanned aircraft systems (UAS) present the possibility of flights with lower altitudes,
lower costs, higher flexibility, and smaller footprint sizes.

In the past few years, LIDAR technology has seen a major development in ultra-
light laser scanning systems, enabling them to be more commonly mounted on UAS plat-
forms [10]. Predominantly, UAS is used in combination with passive optical sensors because
this is more affordable, and with the increase in the quality and availability of surface
from motion (SfM) software, these sensors are able to create point clouds similar to those
produced with LiDAR [35]. However, unlike LiDAR, they are unable to sense shadowed
areas or through gaps and even suffer from over-smoothing of the data [35-37]. LIDAR sys-
tems for UAS are becoming increasingly more affordable with new user-friendly software,
making them a more competitive solution [38]. Ultimately, UAS provide more flexibility,
with compact sizes and accessibility that can provide increased temporal resolution. Being
independent of cloud cover, UAS is sometimes the only means of obtaining the appropriate
temporal resolution desired for a growing season [39].

Deery et al. (2021) [40] have shown the effectiveness of estimating crop metrics such
as LAI throughout time using LiDAR via a ground buggy. Additionally, UAS-mounted
LiDAR has been used to estimate crop density with a ratio of canopy signal returns to all
signal returns to improve their biomass model [41]. To the best of our knowledge, there
are no studies using a UAS-mounted LiDAR system to estimate crop PAI in relation to
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canopy density in a time-series throughout the growing season. This study uses the proven
method of GF for PAI, previously used with ALS in forestry [32], and tests its potential
with UAS and winter wheat throughout the growing season. Since the crop in this study
is winter wheat with the probability of reaching senescence heterogeneously early in the
growing season, the nature of multispectral data to calculate GAI is used to show the
differences and similarities in methods and to provide a new method when needing to
distinguish between PAI, GAI, and BAI. This shows that a combination of passive optical
and LiDAR can yield improved characterization of canopy structure, as demonstrated in
previous studies [42-45].

2. Materials and Methods
2.1. Study Area

The study was conducted at the Integrated Carbon Observation System (ICOS) Class
1 ecosystem site DE-RuS (https:/ /www.icos-cp.eu) in Selhausen, Germany (50°51'56"'N
6°27'03"E) with a winter wheat (Triticum aestivum) field of approximately ten hectares.
It is part of the Terrestrial Environmental Observatories (TERENO) network [46] and has
been selected as a Supersite by the Committee on Earth Observation Satellites (CEOS) Land
Product Validation subgroup. The growing period of the winter wheat, from emergence
to harvest, was approximately from October to the end of July. The field ranges from
101 m in the west to 103 m above mean sea level (MSL) in the east, with an average annual
precipitation of 715 mm and average temperature of 10.2 °C. The soil is composed of
Pleistocene loess and translocated loess from the Holocene, along with sand and gravels
at the lower depths, which were discovered at this site through previous geophysical
studies [47]. The west side of the field has increased sand and gravel amounts that are at
shallower depths, which has been shown to cause heterogeneity among the crops during
periods of water scarcity [47]. Likewise, the same field was previously observed using
a terrestrial laser scanner (TLS) in a study for crop height estimations [48]. This study’s
resulting maps show crop height patterns that appear to be in agreement with the soil
properties and can be used to form prior knowledge and assumptions about the patterns
in crop structure at this particular field.

2.2. Data Acquisition
2.2.1. UAS and Sensors

Two sensors were used in this study, a YellowScan Surveyor LiDAR and a Micas-
ense RedEdge-M multispectral sensor, each mounted on a DJI Matrice 600, as seen in
Figure 1. The LiDAR unit is composed of a Velodyne LiDAR puck, onboard computer,
Inertial Measuring Units (IMU), and Global Navigation Satellite System (GNSS) receiver.
The GNSS-Inertial solution is from Applanix APX-15. Ranging data were provided by
the LiDAR puck/scanner. The variations in attitude were measured by the IMU, and
positioning was provided by the GNSS, which also provided time synchronization for all
the sensors. This multi-sensor system provides precision capable of direct georeferenc-
ing [38]. Point density of the scanned surface depends on the flight altitude, speed, and
flight line spacing of the aircraft. The RedEdge-M is a five narrowband multispectral
camera. The spectrum is mapped in blue (465-485 nm), green (550-570 nm), red (663—
673 nm), red-edge (712-722 nm), and near infrared (NIR) (820-86 nm) bands. Each has a
focus length of 5.4 mm, with a 46-degree field of view (FOV). Aside from the sensors,
the setup consists of a GNSS and Downwelling Light Sensor (DLS) for georeferencing
and sun/cloud corrections.
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Figure 1. (A) The DJI Matrice 600 used in the study with (B) the YellowScan Surveyor LiDAR
mounted below. In addition, the (C) Micasense RedEdge-M multispectral sensor that was used on a
separate DJI Matrice 600.

The DJI Matrice 600 is a hexacopter of 17 x 15 x 7 cm in dimensions and a weight of
10 kilograms (kg). The payload capacity is 5.5-6 kg, making it possible to easily carry the
1.6-kg LiDAR system in addition to an RGB camera, which could be replaced with another
sensor such as the 0.17-kg Micasense Rededge-M in future use.

2.2.2. Data Acquisition and Initial Processing

Data acquisition took place from April 1 through July 21 of 2020 and consisted of
eight flight campaigns, once every two weeks. All LIDAR flights were performed at 50-m
height above ground level (AGL) and at a ground speed of 5 m/s, which was balanced
between coverage, overlaps, and scan angles. The approximate point density with these
parameters is 85 pts/sqm, with an accuracy of 5 cm, as specified in the YelllowScan user
manual. The flight speed on the second campaign (14.04.2020) was 7 m/s and had to
be disregarded due to lack of resulting point density. Flight parameters varied earlier in
the growing season as canopy density estimations were not the focus and they depended
on the project scope at the time. Scan angles of 35 degrees on both sides, for a FOV of
70 degrees, were used to be similar to parameters used in a past ALS study for LAI [33]
and proved to result in favorable values when compared to GAI earlier in the growing
season before senescence. This FOV gave an approximate overlap of 60%. The first flight
campaigns (01.04.2020-12.05.2020) were performed at larger flight line distances and a
60-degree scan angle had to be used to achieve similar overlaps and point density. There
was a low amount of signal returns from the vegetation when lower scan angles were used
for these earlier campaigns.

The LiDAR data were processed using YellowScan’s CloudStation software to process
the point cloud data (LASer files) for each flight strip for alignment and georeferencing by
applying corrections through GNSS offset (lever-arms), sensor angle (boresight), and GNSS
post-processing with precise position techniques [10]. The post-processing solution for
direct georeferencing was established using a smoothed best estimated trajectory (SBET)
file from Applanix’s PosPac software with the use of a Virtual Reference Station (VRS)
triangulated from Trimble’s network of reference stations.

The multispectral data were collected on the same day and directly after the LIDAR
flights. However, these flights were conducted at an altitude of 100 m AGL and at a flight
speed of 6 m/s. Parameters for an image forward and side overlap of approximately
90% were used. Before and after each flight, spectral calibration was performed with a
reflectance panel. Ground control points were used for georeferencing. The Micasense
multispectral imagery was stitched into orthomosaics for each band of the camera using
photogrammetry and computer vision methods in Pix4D (Pix4D, Lausanne, Switzerland).
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The orthomosaics were further manually aligned and resampled to 16 cm in post-processing
to be consistent with the lowest-resolution multispectral data as the first two flights in the
growing season were flown at higher altitudes.

2.2.3. Ground Sampling

For comparison to the LiDAR-derived PAI, ground measurements from the ICOS
site were used. All aboveground biomass measurements at the site were carried out in
accordance with the ICOS protocol [49]. Measurements based on two different methods
and several plot locations were performed. Repeated non-destructive GAI measurements
were carried out with a linear ceptometer (SS1 SunScan Canopy Analysis System, Delta-T
Devices Ltd, Campbridge, UK) throughout the growing season (08.04.2020, 06.05.2020,
28.05.2020, 22.06.2020, 02.07.2020) at four plot locations in the center of the field, deemed
the Continuous Measurement Plots (CPs, see Figure 2). On each of the measurement
days mentioned above, a total of 36 ceptometer measurements distributed over three
sublocations were carried out for each plot and subsequently averaged to a single GAI
value representative of the respective plot (CP 02-05). Destructive measurements were
conducted on a single day near the end of the growing season (07.07.2020) at four locations,
deemed the Destructive Measurement Plots (DPs, see Figure 2), in the eastern part of the
field. Here, all biomass in each of the four plots with a size of 5.4 m?, respectively, was
harvested and analyzed in the lab. Metrics on green and non-green leaf, stem, and ear
samples were derived using an area meter (LI-3100, LI-COR Biosciences, Lincoln, NE, USA)
for subsamples of 10% of the fresh weight of the full sample from the respective plot. The
flat surfaces, such as leaves, were determined directly by the LI-3100 area meter and the
non-flat was determined by calculating the hemi-surface area with basic dimensions of the
structure to approximate its geometric volume. The combination of these measurements
was used to represent PAI and GAIL These ground measurements are used in comparison
to the UAS data (Sections 3.1 and 3.2) for validation and in the discussion (Section 4.3) to
inversely parameterize the LIDAR and multispectral methodologies to further understand
the data’s behavior.

2.3. LAI, GAI, BAI Estimation

Even if several studies assume that the LIDAR method provides an estimation of
LAI [29-33], LiDAR cannot distinguish between leaf and other plant elements, therefore
providing an estimation of PAI One reason for assuming that the results estimate LAI
is that the PAI values are similar depending on the period in the growing season, or if
a certain vegetation is mainly composed of leaves. Additionally, clumping effects may
lead to an underestimation of LiDAR retrievals of PAIL thus providing estimates closer
to LAI [3]. Studies using the same LiDAR GF methodology as proposed here indicate
this as an estimation of effective LAI or effective PAI when considering non-randomly
distributed leaves in clumped canopies such as forests or row crops [1,32]. If it is desired
to calculate true LAI or PAIL then corrections can be applied, as discussed in previous
literature [11,32,50]. To maintain consistency between the measured quantities and the
actual definitions of the different vegetation indices, we will use PAl;par to describe the
LiDAR estimations. The multispectral estimations will be represented as GAluitispectral a8
it represents the response to plant chlorophyll pigments. It is assumed that the PAljjpar
represents the total aboveground biomass while GAlnultispectral Fepresents the green tissues.
Therefore, as shown in Equation (1), the brown area index (BAlpyprig can be obtained from
a hybrid comparison of LiDAR and multispectral estimates.

PAILipAR = GAlnutispectral + BAlnyprid 1
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Figure 2. Natural color composite of the field taken on 09.07.2020 with locations of the ground sampling. (A) shows the

CP locations of the non-destructive measurements that were taken throughout the growing season with the ceptometer

instrument and (B) shows the DP locations of the destructive measurements that were taken on 07.07.20. Note that the

imagery was from later in the growing season and the brown coloring indicates those areas experiencing senescence.

2.3.1. Deriving PAl1;pAr

To calculate GF from LiDAR, the points are separated and defined as ground and
non-ground points using the Cloth Simulation Filtering (CSF) algorithm within CloudCom-
pare [51]. CSF avoids complex computations as seen in common slope-based, mathematical
morphology and surface-based models, enabling it to be applied to numerous types of
landscapes with far fewer parameters [51]. The process inverts the point cloud and uses
the interaction between cloth nodes and the corresponding LiDAR points to make the
separation. The International Society for Photogrammetry and Remote Sensing (ISPRS)
provided a benchmark dataset where a total error of 4.52% was demonstrated, which is
comparable to most methods [51]. The main parameter used in this algorithm, at least
in this crop study, appears to depend on the point density or average point spacing. As
the crop’s height increases, the points become less dense and are spread out across the
vertical dimensions of the canopy. A grid resolution parameter (GR) represents the hori-
zontal distance between two neighboring particles and is used to determine the number of
cloth particles created for a specific dataset [51]. With the canopy becoming denser and
higher as the growing season progresses, fewer points reach the ground and the point
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spacing of those that reach the ground increases vertically and horizontally. As this spacing
becomes larger, a larger GR seems to be required to increase cloth rigidness in the y axis
and accurately separate ground from non-ground points. An example of how well the
LiDAR signal penetrates the canopy and the associated distribution of points can be seen in
Figure 3. This cross-section of the point cloud provides a small 2-m example located in the
center of the field. As can be seen, the point spacing may be smaller at the top than below,
depending on the density of the canopy. When smaller GR is used at the densest periods
of the growing season, the simulation cloth would shape to points above the ground and
would lead to large portions of crop points being classified with ground points, as can be
seen in Figure A1 in the Appendix A. As seen in Figure 3, GR values ranging from 0.1 to
6 m were used, with 0.1 m being the first collection in the growing season and 6 m being
when the crop height and the canopy density were at their highest. GR parameterization
could change depending on flight line distance and scan angle (see Figure 4), which would
in turn change the point density and the way in which the signal penetrates through the
canopy. For the distance to the simulated cloth or threshold parameter, we selected 0.1 m
for each date. All other parameters were left at their defaults.

01/04 12/05
10350 10275
10325 10250
N 103.00 N 10225
10275 102,00
10250 101.75
3203000 3203005 3203010 3203015 3203020
X
09/06
10325 1026
103.00 1034
1032
~ 10275 N
1030
10250
1028
10225 W PWT o, .
0z ol 3 1026
3203000 3203005 3203010 3203015 3203020 3203000 3203005 3203010 3203015 3203020
X X
23/06 09/07
1036 10325
1034 103.00
1032
N 10275
1030 &
1028 10250
1026 10225
3203000 3203005 3203010 3203015 3203020 3203000 3203005 3203010 3203015 3203020
X 3 3 5 3 3015 3
21/07
10375 GR(m)
4
10350 & I
125 |
N 10325 2 265 | 3
<
Q 9 [ 4 ]
10275 9.7 [ s ]
3203000 3203005 3203010 3203015 3203020 217 —
X
» Above Ground
o Ground

Figure 3. Cross-sections (2 m) of the LiDAR point clouds of each UAS acquisition date with the resulting segmentations
visualized and the grid resolution (GR) values used.
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Figure 4. Sketch of the methodological approach used to calculate PAI from UAS-mounted LiDAR. The flight line distance
(fly) is the distance between each parallel flight path and can determine the number of times and at what angles a particular
area is viewed while also being related to point density in relation to the chosen scan angle. The point density (Py) of the
ground points is inversely related to the crop height as LIDAR signals are intercepted along the vertical axis of the crop
canopy, ultimately affecting the Cloth Simulation Filtering (CSF) parameters used for segmentation.

The accuracy of the segmentation was verified with visual inspection, ensuring that
the classified ground points were at the same relative elevation as nearby tractor paths
and that proper classification was made with obvious elements such as nearby roads.
Additional checks were made by using a range of GR values for each date and testing
which values resulted in field averages of PAI that resembled the ground measurements.
To be consistent with the multispectral data, a grid of 16-cm cells was generated and both
the ground point population and total point population within the cells were enumerated.
The scan angle of the individual points was averaged into the same 16-cm cells. These data
were then used to calculate the PAI with a modified Beer-Lambert light extinction model.

A modified Beer-Lambert light extinction model is often used to calculate PAI or
LAI by analyzing the light-intercepting effect of a canopy, relating to the amount and
distribution of openings in the canopy, with the simplified assumption that all parts within
the canopy are randomly distributed [2]. The Beer-Lambert equation is used to define the
light extinction coefficient k as follows:

I= Ioefk LAI (2)

where k is the extinction coefficient, I is the below-canopy light intensity, and Ij is the above-
canopy light intensity. The amount of radiation that penetrates the canopy is dependent on
the canopy structure and gaps and hence on GF.

This method can be adapted as proposed in the study by Richardson et al. (2009) [32]
to consider LiDAR attributes. Instead of solar radiation with (I/1p), GF is calculated using
the amount of laser signal returns that penetrate through gaps in the canopy to the ground
in relation to those returns on top and within the canopy. The following equation represents

this relationship:
Nground

GF = 3)

With ng oung being the number of points reaching the ground within a predefined area or
grid and 7 being the total number of points above that same predefined area.

GF is usually obtained using optical radiation measurement instruments such as
hemispherical photographs, or LAI-2000 (LI-COR Biosciences, Lincoln, NE, USA; [2]).
Hemispherical photography characterizes the canopy by using vertically oriented images
taken by a camera with a fisheye lens and parameterizations that denote GF at the zenith
angle 0 of incoming direct sunlight [2,33]. Simply, these methods are based on the trans-
mission of solar radiation through the vegetation. It could be assumed that the same rules
would apply to LiDAR signals and their penetration through the vegetation canopy [33].
However, unlike the other methods, LiDAR is an active sensor and consideration of the

n
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solar zenith angle is not needed but rather the scan angle from the LIDAR. The scan angle
of the signals is meant to replicate the considerations of solar zenith angle that is similar to
passive optical methods with the following;:

Lig angle;
n

0= 4)
where 0 represents the average scan angle from all points within the study area. These
variables are then combined to imitate Equation (2) to calculate PAI:

cos(0) In(GF

PAILipAR = —% ®)
with In(GF) being the natural logarithm of GF to imitate In(I/Ij) and k(6) for the extinction
coefficient when Equation (2) is rearranged to solve for LAI or PAIL It should be noted that
we treated k(0) as a constant over space and time.

2.3.2. Deriving GAlnytispectral

The approach used in this study to calculate the GAI using passive spectral means
is derived from the method developed in the study by Ali et al. (2015) [52] based on the
NDVI. A similar method is used in the study by Thorp et al. (2010) [53] but differentiates
the results as green LAI (GLAI) [53]. These formulas were based on estimations from
satellite remote sensing. The differences in spectral characteristics between satellites and
UASs will often provide different scales in NDVI while maintaining a similar variation and
distribution of the values [54,55]. The variability of values will still be reliable to compare
and assess LIDAR’s ability to produce a representation of the canopy structure. The initial
step of the method is the calculation of NDVI:

NIR — RED
NDVI= QIR T RED ©)
Next, fractional vegetation cover (FVC) is calculated using the NDVI values. For each
of the resulting NDVIs, for each date, histograms within QGIS were used to determine the
bare soil reflectance (NDVIs) and the full vegetation reflectance (NDV1,). Bare soil was
determined to be 0.22 and full vegetation at 0.99 at the highest point in the growing season.
These values were then used to determine the FVC:

NDVI — NDVI,

= 7
FVe NDVI, — NDVI; @
The GAI was then computed from FVC according to:
—log(1 —FVC
GAImultispectral = g§<(e)) 8

where k(0) is the light extinction coefficient for a given solar zenith angle. The k(6) is
generally obtained using the literature as ground observations are often not available and
k(0) is difficult to measure in the field [47]. Moreover, many studies use constant k(6) over
the growing period to simplify calculations [56]. A study calculating LAI for winter wheat
using RapidEye multispectral satellite imagery was performed at the same study area in
Selhausan, Germany [47]. In that study, k(0) was derived by inverse parameterization with
comparison to ground measurements. It was found that the most accurate results were
achieved when k(0) = 0.60 till the end of April and k(0) = 0.35 after April. The same k(0)
parameterization was used for both LiDAR and multispectral calculations here. This helps
to provide an example when determining how well a k(6) from other literature with a
particular crop can be used with UAS LiDAR estimations. Additionally, using only two
k(0) will test the LIDAR's stability in creating accurate estimations throughout the growing
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season. A k(0) calibration for the UAS data is performed in the discussion (Section 4.3)
to further examine the general characteristics of k() to create a more accurate result and
examine it behaves temporally between the collection dates.

3. Results
3.1. Comparison against Ground Measurements

The individual Sunscan SS1 ceptometer ground GAI measurements for each of the
designated plot areas (CPs, see Figure 2) were averaged together and compared against the
mean values of PAl ipar and GAlytispectral OVer the ground measurement plots for each
date, consisting of approximately 9600 pixels. The ceptometer collections took place on
different days to the aerial acquisitions but were grouped based on temporal proximity.
The results of this comparison are represented in Figure 5. All three methods show similar
results for the first two dates. The GAlytispectral Values continuously decrease after the
12th of May, while the PAI}jpaR estimates increase to reach a maximum on the 9th of July.
The ceptometer and LiDAR results remain close in April to early June, with a difference of
3-18%, but the differences in the estimations grow to approximately 50-58% after late June
for each date.

T 5 ¥ % &5 £ % g %2 % & % % 5 £ ¢ % %
¢ 8 5 ¢ 8 5 & &8 §5 £ 8 £ 4L g 5 2 § ¢
2+ % 2 52 3 2 < % OPEZOZOE < o3oZoZ
=

23 PS8 F T FgR A R
< < < < < < < < < < < <
J 3 S O S 3 S o S O S O

12/5/2020 26/5/2020 9/6/2020 23/6/2020 9/7/2020 21/7/2020

Figure 5. Comparison between the Sunscan SS1 ceptometer, the PAI jpaRr, and the GAlpytispectral €stimations at each
ground measurement plot location with a confidence interval of ~95%. The collection date is noted separately in the graph
for the SS1 ceptometer (GAICQPt) ground collections. Note that there is no ceptometer measurement for 21,/7/2020 as
02/07/2020 was the last date on which a ceptometer measurement was taken in any of the CPs.

The destructive PAI measurement plot (DP, see Figure 2) mean values were compared
to the mean PAIj;par values of adjacent plots of approximately 5.4 m? consisting of 200
pixels each. Values from the PAIjjpar data were taken from an adjacent area to the DPs
(see Figure 2) because the closest flight campaign was just after the DP collection. The next
closest date was two weeks prior. The results (see Figure 6) show that the values with the
LiDAR methods are 28% larger at this period in the growing season.
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Figure 6. Comparison of the destructive PAI measurements and the PAI}jpar averages taken with the same sample area

size adjacent to the destructive plots.

The GAI ceptomoter measurements were used to determine a R? = 0.45 and a RMSE =2.05
for the GAlnuispectral When using a k(0) from the literature. For PAlLipar, the first three
ceptometer measurements were used (08/04-28/05). This was the period in the growing
season when there was little to no senescence, especially near the center of the field. It was
assumed that PAI and GAI were the same during this period and at those CP locations. Then,
the PAI calculated for each DP area from destructive measurements was used for comparison
to the 09/07 data. A R? = 0.89 and a RMSE = 0.87 were determined for the PAI}jpar results
when also using a k() from the literature.

3.2. Spatial Variation in Values

In order to evaluate the relationships between the LIiDAR and multispectral methods,
spatial sampling was performed for each individual date using 82 evenly distributed points
with the same point locations across all dates and methods (see Figure 7). As the passive
optical methods using VIs derived from multispectral data are proven in past studies, they
are used here to assess the LIDAR'’s ability to detect the spatial variation in the canopy
structure. There is not a significant correlation between early and late stages in the growing
season, which can be attributed to optical NDVI’s dependence on plant pigment and the
soil contribution to the signal, whilst LIDAR depends more on the entire canopy and
its structure. The correlations are moderate to high (R = 0.39-0.66) mid-growing season.
Although the magnitude of the absolute values is different, explained by the different plant
elements sensed by the two methods, the relative spatial variation shows some consistency
between the methods.

3.3. PAI, GAI and BAI

The visualization of the results is presented in Figure 8, where the LiDAR and the
multispectral results can be compared against the RGB imagery. Spatial heterogeneity
among the crop is clearly visible in the RGB imagery, along with senescence starting on the
western side of the field as early as late May. It can be seen that the LIDAR methodology
used is able to capture these changes in crop structure within its PAl} jpar estimations. The
GAlnutispectral calculated using passive optical means with NDVI exhibits similar patterns
but the reflectance from the crop dissipates as the crop approaches the full senescence stage,
as confirmed in the RGB imagery.
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Figure 7. Spatial and temporal correlations between the LiDAR-derived PAI and the multispectral-
derived GAL Pearson correlation coefficients (R) are depicted for each measurement campaign
during the growing season. Note that 82 evenly distributed points across both methods were used

for each date.

The temporal evolution of the field average of PAl ipar and GAlnyitispectral 18 de-
picted in Figure 9, where it can be seen how these two types of metrics and methods can
complement one another when monitoring winter wheat. Both PAI and GAI are similar
until 12 May 2020, before the appearance of senescence. This allows for the LIiDAR and
multispectral methods to be compared during this period in the growing season. The
separation in values coincides with a dry period, as can be seen from the weather data
in Figure A2. GAlpuitispectral decreases after 12/5 and appears to level off towards the
end of May with increased precipitation while PAI} jpar continues to increase. This also
agrees with the results captured by the LiDAR crop height measurements seen in Figure 10.
PAILipaR decreases at the end of June but the GAlyitispectral decrease is more drastic when
the crop enters senescence stages for the entire field.



Remote Sens. 2021, 13, 710 14 of 21

PAIL:‘DAR GAImultispccrral

01.04

12.05

26.05

09.06

23.06

09.07
PATGAI

0

21.07 -
K
B ss
[ 3

Figure 8. Time-series of PAI and GAI obtained with LiDAR and multispectral methods, respectively,
and compared to RGB images.

1/4 8/4 15/4 224 20/4 6/5 13/5 205 275 36 10/6 17/6 24/6 177 87 15
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Figure 9. Temporal evolution of field average LIiDAR-derived PAI and multispectral-derived GAI values. With the hybrid
comparison of these two types of methods and products, the Brown Are Index (BAI) is estimated.
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Figure 10. Temporal (top) and spatial (bottom) variation in the average winter wheat height at the
Selhausen ICOS field from UAS LiDAR. The heights were derived by subtracting the crop surface
model (CSM) created for each date (12/05, 26/05, 09/06, 23/06) and having it subtracted by a digital
terrain model (DTM) derived with the ground points from the UAS LiDAR data (01/04) at the
beginning of the growing season. Note that a high scanning angle was used on the first collection
(01/04) because of the large flight line spacing. The high scan angle decreased the point precision
and number at the edges of the scan swath, causing noticeable lines when subtracted from the other
data dates.

This highlights the potential to distinguish between the PAI with reference to the
complete aboveground biomass with LiDAR, the GAI for plant pigment with multispectral
methods, and the non-green biomass with BAI as a byproduct of the combination of
both methods.

4. Discussion and Future Directions for Improvement
4.1. Time-Series Trend

The results of this study show that estimating canopy structure with LiDAR for crops
such as winter wheat is feasible and may indeed have potential benefits. The differences
in temporal evolutions of LIDAR and multispectral data are in agreement with expected
values as they measure different parts of the vegetation. The PAI}jpar and GAlultispectral
are similar at the start of the growing season (1.4.2020-12.5.2020) as most plant elements
are green at this time. The field GAlyitispectral decreases on 26.5.2020, which is due to an
increase in plant stress and visible browning that begins to occur on the western part of the
field. The precipitation and soil moisture data seen in Figure A2 show that precipitation
had decreased in May, which possibly explains this sudden drop in GAIL PAI increase
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also slows down in this temporal window. The structures appearing on the western side
are consistent with those soil areas with increased sand and gravel fractions closer to the
surface, which are known to be more affected by water scarcity [47]. These patterns are also
similar to those experienced with the previous TLS study for crop height at the same field
during the 2008 and 2009 growing seasons [48]. Once prominent precipitation amounts
appeared at the end of May and beginning of June, GAI decline slowed and PAl increase
became steeper. The PAl};par field averages increased along with the increase in crop
height (see Figure 10) during the growing season, as expected [29]. Values of PAI and GAI
continued to separate throughout the growing season as winter wheat approached full
senescence, with lower greenness in plant tissue and lower GAI values. However, PAI
remained high, with LiDAR still being able to sense the variations in canopy density.

The PAIipar and the ground-ceptometer-derived GAI values are similar as there
is little difference between GAI and PAI when the plant structure is mostly green [3].
Differences begin to occur as the field approaches senescence. The differences in values
may be further exaggerated as effects such as clumping can cause underestimations in
ground measurements and LiDAR-derived values are known to be overestimated when
canopy density is at its highest. As seen in Figure 3, at the peak of crop growth, the
point cloud consists mostly within the top portion of the crop with few signals passing
through. This leads to a lack of differentiation throughout the crop and to less information
about its structure. This low gap probability and loss of information could be linked to
an overestimation of PAl} jpaR in parts of the field. This possible overestimation may be
suggested from the comparison made with the destructive PAI measurements. Inadequate
collection parameters (i.e., flight profile, overlap, scan angle) could be the cause, failing to
fully exploit the canopy gaps so that an appropriate characterization of the canopy density
could be obtained.

4.2. PAl;jpaRr Spatial Variation

The spatial variation in PAIjpar correlates well with the GAlyytispectral €stimates
obtained from an already established method with passive optical sensors. The lack of
correlations in the beginning and end of the growing season is likely due to the fact that the
two methods sense different plant parts. The multispectral method is based on differences
in spectral reflectance and therefore sensitive to plant pigments, while the LIDAR method
is based on the sensor’s laser penetration through the whole canopy and thus affected
by canopy density and gap probability. For example, when the crop reached complete
senescence before harvest, the reflectance was essentially uniform at approximately the
same values of bare soil, as all of the crop consisted of non-green senescent vegetation.
However, unlike the multispectral approach, the LIDAR was able to detect the senescent
vegetation. Although their spatial variation did not correlate on the first two dates and the
last date, they provided similar spatial patterns in the mid-growing season.

4.3. Impacts of the Extinction Coefficient k(6)

PAILipAR benefited more than the GAlyyitispectral from the k(6) value selection based

on the literature and was able to deliver estimations with a respectable R> and RMSE. The
k(0) for LiDAR may not always agree well with those derived from other sensors. For
example, in the study by Solberg et al. (2006) [57], an approximate k(6) value of 0.7 was
derived using ALS while the ground-based measurements were 0.51 and 0.44. The k(0)
could be a contributing factor to the PAI}jpaR results overestimating at the height of the
growing season. LiDAR resembles beam radiation that is more concentrated while the
k(0) was derived from direct and diffuse radiation as used in passive optical methods [32].
This can be better understood and improved by further analysis with various LiDAR
collection parameters in comparison with k(6) values derived from other sensors and with
different crops.

Instead of using literature values, we evaluated the potential of a k() calibration
to characterize its general nature during changing crop conditions. The PAI};par and
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GAlnuitispectral K(B) were inversely calibrated using the ground measurements. The re-
sulting PAl}jpar obtained a R? = 091 and a RMSE = 0.43, whereas the GAlutispectral
obtained a R? = 0.96 and a RMSE = 0.31. The retrieved k() values are listed in Table 1.
The GAlnutispectral k(0) values changed with time and progressively declined throughout
the growing season. The GAlytispectral Mmethod incorporated for UAS for this project may
benefit from a linearity adjustment factor in the equations for better results or studies
without in situ measurements. The PAljjpar appears to be more stable over time and
shows promise that fixing this parameter would introduce just minor uncertainty, so that it
could be incorporated using values from the literature [47,56]. It is worth noting that none
of the ground measurements were taken on the same day as flight campaigns, but within a
maximum time span of nine days. More specific reference measurements are needed for
better interpretation.

Table 1. k(0) values used for each date and method.

Date GAImultispectral k(0) PAILipar k(©)
1/4 0.47 0.37
12/5 0.34 0.37
26/5 0.22 0.35
9/6 0.19 0.4
23/6 0.17 0.4
9/7 0.09 0.45
21/7 0.09 0.45

4.4. Future Insights

There are several possible improvements that can be made to increase the accuracy
and detail of results for future studies. Changes and balances between flight direction, scan
angle, and overlap during data acquisition can be made to change the perspectives to create
better information about the plant structure while increasing the chances of the LIDAR
signal detecting gaps in the canopy [32]. The closer the flight lines are to one another,
the higher the number of perspectives will be from the LiDAR with respect to the chosen
scan angle. Implementing crosshatch flight paths could also increase accuracy by not
only increasing overlap, but by increasing oblique perspectives from additional directions.
These methods must be investigated and balanced with flight time and battery efficiency,
for at a certain point, the improvements in accuracy may not be worth the prolonged
acquisition duration. Off-nadir scan angles also help in finding gaps and understanding
the canopy structure but have to be limited at an optimal point considering signal travel
and strength. In the study by Morsdorf et al. (2006) [31], it is suggested that parameters
such as laser wavelength and flying altitude affect LIDAR footprint size and point spacing,
which influences accuracy and should be investigated further. Aside from flight parameters
during the acquisition of the data, improvements can be made during the processing and
calculation stages of the data. Studies have used other methods of analysis, including
laser penetration index (LPI) and signal intensity, to characterize canopy structure [33].
Additionally, advancements in hardware provide further potential, such as with multi-
frequency and multi-channel LiDAR systems. In future studies, combining additional
variables or considerations within the analysis and flight parameterization has promise for
improved estimations.

Considering that LiDAR provides a better characterization of the crop canopy struc-
ture, combining the LiDAR height and PAl}jpar values may give better estimates of
biomass than previously seen with multispectral and photogrammetry methods [2]. GAI
of winter wheat could also be calculated using the intensity of the LiDAR returns since
the signal is emitted close to NIR [6]. The more products that this sensor can calculate
without supporting data from other sensors and as a standalone sensor, the more efficient
it becomes. For further consideration in its future potential, LIDAR is less affected by its
environment, such as with solar zenith angles and cloudiness, as compared to UAS with
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passive sensors. LIDAR systems have already made huge leaps in size and as the market
competition increases, the pricing will decline and the data processing will become more
user-friendly, making these systems and potential methods more accessible for use in farm
management [10].

5. Conclusions

A method to differentiate PAI, GAI, and BAI by UAS-mounted active (LiDAR) and
passive (multispectral) sensors has been developed for a winter wheat case. Having the
ability to differentiate between these products can improve the understanding of crop
performance and carbon budget, which can increase the precision of farming practices.
Additionally, proof of concept has been applied when calculating metrics for crop structure,
such as PAL with UAS-mounted LiDAR. It shows promise as it can replicate the structural
patterns within the crop canopy, which is consistent with multispectral methods. The
PAlLipar and GAIpyltispectral €Stimations were comparable before the appearance of senes-
cence, providing further evidence in support of the methods tested. The LiDAR method is
in agreement with other accepted non-destructive and destructive methods. It has been
shown that this method may also be able to enhance or capture what might be missed with
GAlnultispectral €stimations, especially in the case of cereal crops. Without dependence on
spectral reflectance and solar radiation, the LiDAR methods provide improved options for
characterizing full crop canopy structure.

When LiDAR is used with a UAS, it provides further versatility in potential flight
collection parameters as traditional ALS methods may be more restricted when it comes
to lower flight altitudes and flight paths. There are still additional factors concerning
flight planning, processing, and variables within the analysis to explore in order to further
understand and increase the accuracy and feasibility of the methods presented. The flight
parameters chosen in this study may not have fully exploited the canopy gaps when
the crop was at its highest density, causing potential overestimation in values late in the
growing season. Although improvements are possible, this study succeeds in providing
evidence that UAS-mounted active and passive sensors can indeed be used to characterize
the full canopy of crops such as winter wheat and differentiate between PAI, GAI, and BAL

Author Contributions: Conceptualization, ].5.B., FJ. and C.M.; Methodology, ].S.B., CM. and EJ.;
Data Collection: ].S.B., and M.S.; Data Analysis, J.S.B., EJ. and C.M.; Writing—Review and Editing,
J.5.B., C.M. and EJ.; Supervision: EJ. and C.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 2070—390732324 and the Helmholtz Asso-
ciation Modular Observation solutions for Earth Systems (MOSES) Initiative.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank the field technicians Judith Mattes, Odilia Esser
and Sigrid Kummer for providing plant measurements from the test site.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2021, 13, 710 19 of 21

Appendix A
01/04 23/06
10350 1036
103.25 s
1032
N 103.00 N
103.0
5 . et . . . - o :
102.75 10238 1Y . ’ T
10250 10256
3203000 320300.5 320301.0 3203015 320302.0 3203000 3203005 3203010 3203015 3203020
X X
o Above Ground
o Ground

Figure A1. Examples of poor ground segmentation due to incorrect GR values relating to point spacing. In this example,
01/04 used a GR of 7 m and 23/06 used a GR of 0.1 m.
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Figure A2. Hydrological data from the climate station located in the middle of the study area with (top) soil moisture at
0.02-m depth and (bottom) precipitation.
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