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Abstract: We evaluate the potential of using a process-based ecosystem model (BEPS) for crop
biomass mapping at 20 m resolution over the research site in Manitoba, western Canada driven by
spatially explicit leaf area index (LAI) retrieved from Sentinel-2 spectral reflectance throughout the
entire growing season. We find that overall, the BEPS-simulated crop gross primary production (GPP),
net primary production (NPP), and LAI time-series can explain 82%, 83%, and 85%, respectively, of
the variation in the above-ground biomass (AGB) for six selected annual crops, while an application of
individual crop LAI explains only 50% of the variation in AGB. The linear relationships between the
AGB and these three indicators (GPP, NPP and LAI time-series) are rather high for the six crops, while
the slopes of the regression models vary for individual crop type, indicating the need for calibration
of key photosynthetic parameters and carbon allocation coefficients. This study demonstrates that
accumulated GPP and NPP derived from an ecosystem model, driven by Sentinel-2 LAI data and
abiotic data, can be effectively used for crop AGB mapping; the temporal information from LAI is
also effective in AGB mapping for some crop types.

Keywords: Sentinel-2; crop; biomass; mapping; remote sensing; Manitoba; Canada

1. Introduction

Biomass is the organic matter produced by plants and animals with accumulated
energy directly or indirectly from photosynthesis. Within botanic biomass, agricultural
biomass is characterized by two major types, food-based crops and non-food-based crops,
albeit with no clear boundaries between these categories. In the following, we briefly review
the biomass mapping methods based on remote sensing data for two major grain-crops, oil
and starch crops, within the category of food-based crops.

The methodologies for biomass mapping of herbaceous grain crops are also applicable
to energy crops. Ahamed et al. [1] extensively reviewed remote sensing methods for
biomass mapping for feedstock production with a focus on using various vegetation
indices (VIs), biophysical and biochemical variables, such as leaf area index (LAI, or L) and
chlorophyll content. Recently, Chao et al. [2] categorized the methods for biomass mapping
of energy crops into five types: VI-based simple statistical analysis, Synthetic Aperture
Radar (SAR) backscatter-based analysis, Net Primary Productivity (NPP) models with
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remote sensing data as inputs, the crop height-based method, and crop growth models
with remote sensing inputs.

Here, we simplify these methods into two categories: plant trait-based methods
and photosynthesis-based methods. Plant trait-based methods relate crop biophysical
parameters such as LAI, height and/or canopy chlorophyll content, at a critical time (e.g.,
maximum values in the growing season), to plant biomass. Essentially, various VIs [3–6]
are often used to approximate the maximum photosynthetic capacity of a crop canopy in
the growing season in order to estimate the end-of-season biomass. The approach does not
consider the effect of abiotic factors, such as soil properties and meteorological variables, on
biomass accumulation. The capacity of these indices to track biomass changes is reduced
when crops begin to senesce as these VIs are not sensitive to non-green biomass. Unmanned
aerial vehicle (UAV) [7–9] or Lidar-derived crop height [10] relates to crop volume or
biomass during vegetative stages but this approach is unable to track increases in biomass
at reproductive stages when crop height is relatively stable. SAR-based methods relate the
crop volume-scattering with biomass [11], but they are affected by uncertainties related
to soil moisture and canopy water content contributions to scattering, especially before
harvest [12]. Therefore, plant trait-based methods can be more effective in tracking crop
biomass accumulation during vegetative growth stages. The use of multi-temporal data
can mitigate the above-mentioned limitations, as the envelope of LAI time series contains
information on crop growing season, e.g., the amount of accumulated heat units [13,14].

In contrast, photosynthesis-based methods track the accumulation of biomass beyond
vegetative accumulation and into reproductive stages [15]. These methods take into
consideration both biotic and abiotic impacts on crop growth and therefore, are less prone
to the saturation problems than plant trait-based methods. Both light use efficiency (LUE)
models [16–19] and mechanistic enzymatic ecosystem models (such as DSSAT [20] and
EPIC [21]) belong to this category. A crop growth model can be based on either LUE models
or enzymatic ecosystem process models, but with additional modules and parameters
describing the crop phenological developments and carbon allocations [22]. Photosynthetic
models are especially useful for tracking the accumulation of above-ground biomass (AGB)
of annual crops as the AGB is accumulated from crop emergence. The use of photosynthetic
models for crop biomass estimation also has a sound mechanism: Schlesinger [23] noted
that the carbon (C) content of biomass is almost always between 45 and 50% per unit
weight; therefore, the photosynthesis-based method relates C assimilation to the total
amount of crop biomass accumulation. Crop growth models rely on numerous inputs of
plant traits which are often unavailable for large-scale applications. Assimilation of satellite
spectral information [24] or satellite-derived plant biophysical parameters [25,26] into crop
growth models can help improve the accuracy of biomass mapping [27].

In addition to methodological advancements, research on crop biomass retrieval using
optical satellite images has evolved from low to high spatial resolutions, e.g., from 1 km
AVHRR [27], 250 m MODIS [28], 30 m Landsat [29], 10 m Sentinel-2 [30], 6.5 m Rapid-
Eye [31] and sub-meter UAV [7]. Particularly, the Sentinel-2 A and B missions operated by
the European Space Agency’s Copernicus Programme acquires data in 13 optical bands
at resolutions from 60 to 10 m, and with a 5-day revisit. This twin satellites constellation
offers nearly global coverage and the data are free and open. As such, Sentinel-2 is an im-
portant source of data for operational agricultural monitoring, as well as biomass and yield
mapping [32]. Although VI-based methods are used widely for biomass mapping [30,33–
35], integration of multi-temporal Sentinel-2 and abiotic information into photosynthetic
models can outperform these VI methods for crop biomass mapping [32,36].

The objective of this study is to demonstrate capabilities and evaluate the performance
of an ecosystem model to simulate annual crop gross primary production (GPP) and NPP
for the purpose of crop AGB estimation at a regional scale using high-resolution Sentinel-2
data. To achieve this objective, Sentinel-2 reflectance data are used to derive time-series LAI
as an input to the ecosystem model. These LAI maps, along with other abiotic variables, are
integrated to simulate crop GPP and NPP (Section 2). The correlations between simulated
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GPP, NPP and measured AGB for several crops are examined in Section 3; the correlation
between AGB and individual LAI or LAI time-series is also examined. The uncertainties of
GPP and NPP simulations for crop biomass mapping are discussed in Section 3. Section 4
summarizes the key conclusions.

2. Materials and Methods
2.1. Ecosystem Model for Crop GPP and NPP Simulation

The Boreal Ecosystems Productivity Simulator (BEPS) is used to simulate crop GPP
and NPP in this study [37,38]. BEPS has been developed since 1997 and has evolved from
a daily version [38] to the current hourly version [39], with process-based modules to
simulate water, energy and carbon budgets [40,41]. Although BEPS was initially developed
for boreal ecosystems, it has been evolved and expanded to cover temperate and tropical
ecosystems at regional and global scales [42–46] and has been re-structured for parallel
computation and data assimilation [46–48]. BEPS has also been used for estimations of
winter wheat yield in China [49] and cotton yield in the US [50], as C3 plants share the
same enzymatic mechanism-based photosynthesis theory at the leaf-level, i.e., Farquhar’s
leaf-level biochemical model [51], and BEPS has a “two-leaf” approach [52] to upscale
the ecosystem GPP to canopy-level for various ecosystems including crops [38]. NPP is
then modeled as the difference between photosynthesis (GPP) and autotrophic respiration.
BEPS has the mechanism to simulate CO2 fertilization, using CO2 concentration data from
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed on 20 July 2019).

The maximum rate of Rubisco carboxylation (Vcmax) of crops varies with cultivars
and nutrition condition. Although BEPS has the model structure to assimilate a dynamic
variable Vcmax, the Vcmax values are fixed at 120 µmoL m−2 s−1 for different crops in this
study, to be consistent with our previous crop modeling work [48], since pixel-level Vcmax
measurements are currently unavailable at the spatial resolution of Sentinel-2.

The C4 plants have less photorespiration and are more efficient in photosynthesis
although their leaf Vcmax is low, e.g., at 40 ± 1 µmoL m−2 s−1 [53] for maize (corn). Since
BEPS has no C4 module, we test if the increase in Vcmax to 120 µmoL m−2 s−1 for C4 corn
using a C3 model could partially compensate the underestimation of GPP simulation due
to the lack of a photorespiration module for the purpose of corn biomass mapping.

2.2. The Link between Carbon Fluxes and Biomass

In this study, BEPS uses daily LAI and hourly meteorological data as inputs and out-
puts GPP and NPP for each hour (g C m−2 h−1); the hourly GPP and NPP are then binned
into daily scale in units of g C m−2 day−1. Using GPP as an example, the accumulative
GPP in unit of g C m−2 on a specific day is defined as the sum of daily GPP from day 1 to
day n:

GPPA =
n

∑
i=1

GPPi (1)

where GPPA is also referred to as GPP for simplicity, hereafter; GPPi is the daily total GPP
for day i; day 1 is defined as the first day when LAI is larger than 0.

As summarized in the Introduction, there is justification to link crop GPP to crop
biomass. Given an accumulated crop GPP (g C m−2) simulated by the BEPS over a given
period of time in the growing season, the accumulated crop biomass (B, in units of g m−2)
in the same period is estimated as:

B = GPP·c1·c2 (2)

where c1 is the carbon use efficiency (CUE, the ratio of NPP to GPP) and ranges from 0 to 1
for different species [54]; CUE is often set to 0.5 as an average for global ecosystems [55];
c2 is the biomass to carbon ratio. As summarized by Schlesinger [23], the C content of
biomass is almost always found to be between 45 and 50%; therefore, c2 is close to 2.0.

https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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As CUE increases with a decrease in temperature [56,57], CUE in high latitudes is
above 0.5. Since c2 is slightly larger than 2.0, the product of c1 and c2 is expected to be larger
than 1.0 in high latitudes. Given the small variations in c1 and c2 in a specific area, it is
desirable to directly link GPP to biomass by a single coefficient C for practical applications:

B = GPP·C (3)

Equation (3) assumes a linear relationship between GPP and biomass. The correlation
coefficient between GPP and AGB for a few crop types will be examined since only AGB
data are available in this study.

Based on Equations (2) and (3), crop yield (Y, in unit of Kg Ha−1) can also be estimated
from the end-of-season crop GPP, although it is not the focus of this study:

Y = GPP·c1·c2·c3·c4 (4)

where c3 is the harvest index (HI), the ratio of harvested grain mass to total aboveground
dry biomass; and c4 is 10, the factor to convert the unit from g m−2 to kg to Ha−1. As
reported by Lambert, Traoré, Blaes, Baret and Defourny [30], the AGB explains more
variations in crop yield than the peak LAI values.

Similarly, we also compare crop biomass to accumulated LAI or NPP in a period in
order to test their correlations. Accumulated LAI is defined as the sum of daily LAI from
the date when LAI is larger than zero to a specific date in the growing season; the daily LAI
is interpolated from remote sensed derived LAI. Similar to GPP, NPP and accumulated
LAI also contain information from a time series rather than a single measurement.

To estimate AGB from NPP:

AGB = NPP·c2·c5 (5)

where c5 is ratio of AGB to total biomass. c5 may vary with different crops and can be
calibrated; in this study, c5 is set to as 80%.

A full diagram of the data processing flow is illustrated in Figure 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

where c1 is the carbon use efficiency (CUE, the ratio of NPP to GPP) and ranges from 0 to 

1 for different species [54]; CUE is often set to 0.5 as an average for global ecosystems [55]; 

c2 is the biomass to carbon ratio. As summarized by Schlesinger [23], the C content of 

biomass is almost always found to be between 45 and 50%; therefore, c2 is close to 2.0.  

As CUE increases with a decrease in temperature [56,57], CUE in high latitudes is 

above 0.5. Since c2 is slightly larger than 2.0, the product of c1 and c2 is expected to be larger 

than 1.0 in high latitudes. Given the small variations in c1 and c2 in a specific area, it is 

desirable to directly link GPP to biomass by a single coefficient C for practical applica-

tions:  

𝐵 = 𝐺𝑃𝑃 ⋅ 𝐶  (3) 

Equation (3) assumes a linear relationship between GPP and biomass. The correlation 

coefficient between GPP and AGB for a few crop types will be examined since only AGB 

data are available in this study.  

Based on Equations (2) and (3), crop yield (Y, in unit of Kg Ha−1) can also be estimated 

from the end-of-season crop GPP, although it is not the focus of this study:  

𝑌 = 𝐺𝑃𝑃 ⋅ 𝑐1 ⋅ 𝑐2 ⋅ 𝑐3 ⋅ 𝑐4  (4) 

where c3 is the harvest index (HI), the ratio of harvested grain mass to total aboveground 

dry biomass; and c4 is 10, the factor to convert the unit from g m−2 to kg to Ha−1. As reported 

by Lambert, Traoré, Blaes, Baret and Defourny [30], the AGB explains more variations in 

crop yield than the peak LAI values. 

Similarly, we also compare crop biomass to accumulated LAI or NPP in a period in 

order to test their correlations. Accumulated LAI is defined as the sum of daily LAI from 

the date when LAI is larger than zero to a specific date in the growing season; the daily 

LAI is interpolated from remote sensed derived LAI. Similar to GPP, NPP and accumu-

lated LAI also contain information from a time series rather than a single measurement.  

To estimate AGB from NPP:  

𝐴𝐺𝐵 = 𝑁𝑃𝑃 ⋅ 𝑐2 ⋅ 𝑐5 
 (5) 

where c5 is ratio of AGB to total biomass. c5 may vary with different crops and can be 

calibrated; in this study, c5 is set to as 80%. 

A full diagram of the data processing flow is illustrated in Figure 1.  

 

Figure 1. A diagram of the data processing flow for mapping crop biomass using Sentinel-2 data 

and the Boreal Ecosystems Productivity Simulator (BEPS). 

2.3. Crop LAI and Above-Ground Biomass Collection from the SMAPVEX16-MB Field 

Campaign 

Figure 1. A diagram of the data processing flow for mapping crop biomass using Sentinel-2 data and
the Boreal Ecosystems Productivity Simulator (BEPS).

2.3. Crop LAI and Above-Ground Biomass Collection from the SMAPVEX16-MB Field Campaign

In this study, ground measurements of AGB are from the SMAP Validation Experiment
2016 in the Carman/Elm Creek region of southern Manitoba, Canada (SMAPVEX16-
MB). This experiment was conducted to support NASA’s SMAP satellite post-launch
calibration/validation activities [58]. Figure 2 shows the location of the SMAPVEX16-MB
experiment and the distribution of the AGB sampling plots. A total of 50 fields were
selected for sampling in this campaign, with each field covering an area of 800 m × 800 m.
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These 50 fields represent the dominant crops within the study area. According to the AAFC
Annual Crop Inventory, soybeans, spring wheat and canola accounted for approximately
70% of crops grown in the study area, with corn, oats, and other field beans accounting
for approximately 17% of the study area in 2016. These sites are within a region of
approximately 26 km × 48 km.
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Figure 2. The geographical location of the SMAPVEX16-MB field campaign and distribution of
50 sampling fields overlaid on the crop type map. The study area is located in southern Manitoba,
Canada. (a) The location of SMAPVEX16-MB in Canada; (b) the distribution of sampling fields; and
(c) the regular location of 16 sampling sites within each field.

Field sampling was conducted on 13 different dates, 13, 15, 18, 20, 27, and 28 June
and 5, 6, 11, 12, 17, 20, and 21 July. Each field had 16 sampling locations for soil moisture,
although data on crop vegetation were collected from only 6 of these sites (Locations
2, 3, 10, 11, 13 and 14). The objective during SMAPVEX16-MB was to collect crop data
approximately once per week during the experiment. Given this goal, each field was
sampled 5 times for the purpose of characterizing crop growth. This strategy resulted in
380 data points to be compared with GPP simulated at 20 m resolution from Sentinel-2 data.
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During sampling, all above-ground crop biomass was cut at the soil surface, placed
in plastic bags to prevent water loss, and immediately transported to a portable field lab
for weighing. For crops with wide row spacing (corn and beans), 5 plants were harvested
in each of two rows. Biomass (g) per unit area (m2) was determined using wet and dry
weights and plant density. For narrowly placed crops (canola, oats and wheat), all biomass
was collected within a 0.5 x 0.5 m square. After wet weights were determined, plants were
transported to a drying room. Here plants were left for approximately one week, until
stable dry weights determined that plants had completely dried. The weights of these
samples were further calibrated using samples dried by an oven (60 ◦C for 48 h). This
dataset includes samples for six crop types, i.e., oat, soybean, wheat, corn, canola and
black bean. A complete description of biomass collection is detailed at https://nsidc.org/
data/SV16M_V/versions/1 (accessed on 30 July 2019) and by Bhuiyan, McNairn, Powers,
Friesen, Pacheco, Jackson, Cosh, Colliander, Berg, Rowlandson, Bullock and Magagi [58].

The water content of plant organs varies with specific crop type and seasons; after the
gross biomass is dried, the dry matter can be directly compared to the BEPS simulation of
the net carbon assimilation.

Along with biomass measurements, LAI was measured with hemispherical digital
photos [59]. In this technique, a camera with a fish-eye lens captured photos of the crop
canopy with the camera positioned at least 50 cm above or below the canopy. The camera
was mounted on a pole if the picture was taken above the canopy. Seven photos were
taken along two transects (14 photos in total) at three sampling sites for each of the fields.
Crews were instructed to take one photo then move approximately 5 m to take the next
photos. Field crews positioned themselves relative to the sun to minimize shadowing in
the photos. These photos were post-processed to estimate LAI using the CanEye software.
All 14 photos were averaged to provide one estimate of LAI per sample site. Prior to
the use of CanEye, the photos were enhanced to increase the quality through the use of
ViewNX-2 (Nikon) software. Once enhancements were implemented, the images were then
imported in the CanEye software for classification and LAI calculation. The parameters
of the software were configured in accordance with the photos, i.e., number of lines and
columns, julian date and latitude. Masking for any non-soil or data acquisition anomalies
were applied where necessary in addition to any removal of photos that were problematic.

In the data processing, all green leave, stems, and spikelets are included. Since
the measurements were taken in summer, the plants did not senescence at the time of
measurements. Therefore, the ground LAI measurements include total green elements.
This corresponds well to Sentinel-2-derived LAI as the simple ratio index is sensitive to all
elements with chlorophyll pigments.

2.4. Key Input Data for BEPS Simulation

Sentinel-2 Level-1C top-of-atmosphere (TOA) reflectance products are used to derive
LAI. These products are organized into tiles of 100 by 100 km2 in UTM projection and
WGS84 ellipsoid and are available from the Copernicus Open Access Hub (https://scihub.
copernicus.eu/dhus/#/home (accessed on 1 June 2019)). Two tiles (14UNA and 14UNV)
covering the SMAPVEX16-MB region were selected and mosaicked. For BEPS simulation,
a region of approximately 40 km × 60 km is subset to match the region shown in Figure 2.

The Sen2Cor atmospheric correction processor [60] is used to convert the TOA re-
flectance to top-of-canopy (TOC) reflectance, i.e., Sentinel-2 Level-2A product. A Simple
Ratio index (SR), defined as a ratio of near-infrared band to red band reflectances (or band
8A to band 4 reflectances from Sentinel-2) was used to derive LAI at 20 m resolution, while
taking into account the effect of bidirectional reflectance distribution [61]. We chose band
8A in 20 m resolution rather than band 8 in 10 m resolution because band 8A is more
sensitive to LAI.

In [61], the LAI is modeled as

L = f (SR ∗ f BRDF (θs, θv, ϕ)) (6)

https://nsidc.org/data/SV16M_V/versions/1
https://nsidc.org/data/SV16M_V/versions/1
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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where θs is the solar zenith angle, θv is the view zenith angle, and ϕ is the relative azimuth
angle between the sun and the viewer. The bidirectional reflectance distribution function
(BRDF) kernel f BRDF is simulated using a physically based geometrical optical model [62].
In this way, the effect of angular changes to SR is minimized. Although we used the
terminology “LAI” in this study, our retrieved LAI from Sentinel-2 includes the area of all
green elements.

Although Sentinel-2 has a high revisit frequency, the availability of cloud-free and
cloud shadow-free images is limited (Table 1). A locally adjusted cubic-spline capping
(LACC) method is used to smooth the time-series of LAI and discretize the smoothed LAI
curve into daily values for BEPS modeling [63]. In LACC, a variable local smoothing param-
eter, which controls the local smoothness of the fitted curve, is automatically determined
according to the local curvature of the original seasonal variation pattern. An iteration
procedure is designed to produce a seasonal capping curve by progressively replacing
abnormally low values with fitted values. Normally, less than 5 iterations are required to
produce a smoothed capping curve.

Table 1. Dates of 2016 Sentinel-2 images used in this study for tiles 14UNA and 14UNV. “X” indicates
a Sentinel-2 image that covers the entire study area. Field sampling was conducted on 13 different
dates, 13, 15, 18, 20, 27, and 28 June, and 5, 6, 11, 12, 17, 20, and 21 July.

Date Tile 14UNA Tile 14UNV Field Sampling

1 May X X
26 May X X
10 June X X

13, 15, 18, 20 June X X X
23 June X X

27, 28 June X
5–6, 11–12, 17, 20–21 July X

02 August X Partially covered
22 August X Partially covered

28 September X X

The lower-right corner in our study area is excluded from GPP simulation owing to
too few Sentinel-2 images available for LACC inputs.

Six meteorological variables including air temperature, relative humidity, wind speed,
and atmosphere pressure at 2 m above the surface, and incoming solar shortwave flux
and total precipitation at the surface level are used to drive BEPS. These variables are
acquired from a global reanalysis dataset, Modern-Era Retrospective Analysis for research
and Applications, Version 2 (MERRA-2) [64].

In BEPS, the soil up to a 2 m depth is stratified into five layers for the simulation of soil
water and heat fluxes. Four soil attributes including texture, bulk density, organic content
and reference depth are extracted from the Soil Grids (https://soilgrids.org (accessed
on 15 June 2019)) that provide global soil attributes at 250 m resolution [65]. Clay and
fine loamy soils dominate in the eastern and southern parts of the study area and coarse
loamy and sandy soils are prominent in the western part (Figure S1). To match the pixel
resolution of Sentinel-2 data, the meteorological variables are resampled to 20 m resolution
using a bilinear method, and the soil attributes are resampled to 20 m using the nearest
neighbor method.

To map crop biomass in the study area, the annual crop inventory map products (in
30 m resolution) from Agriculture and Agri-Food Canada (AAFC) are used [66].

https://soilgrids.org
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3. Results and Discussion
3.1. Correlation between BEPS-Simulated Crop GPP and Ground Measurements

The uncertainty of Sentinel-2-derived LAI time-series after smoothing by LACC from
our study has a Root Mean Square Error (RMSE) of 1.1 m2 m−2 (R2 = 0.83) compared with
the ground-measured plant area index (including crop stems and heads) collected during
the SMAPVEX16-MB campaign [67]. A previous validation for the same LAI algorithm
reported an RMSE of 0.81 m2 m−2 [68]. Knowledge of the starting and ending dates of the
growing season, for each field, is important when simulating crop GPP; this information is
clear from the LAI time series. Since the crops in different fields were sowed or planted
on different dates, we simply run BEPS from the beginning of 2016. To avoid a numerical
problem in the modeling, we have set the minimum LAI to 0.01; these two settings result
in an intercept in the GPP–biomass relationships as shown in Figure 3 for all the crop types
and in Figure 4, by crop type.
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Figure 4. The relationship between BEPS-simulated crop GPP and ground-measured above-ground biomass for each crop
type for SMAPVEX16-MB.

The quality of the LAI time series is important for accurate estimation of AGB. As
shown in Figure S2 and Table 1, two Sentinel-2 images are missing in August during key
growth periods. This gap leads to inadequate inputs to the LACC method and subsequently,
the failure of LAI time-series smoothing, i.e., extreme values in the peak growing season,
as observed for the fields in the lower-right corner of our study area. The errors in LAI can
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propagate into the biomass estimation as indicated by the red circle in Figure S3 and have
led to some overestimations in biomass estimation. Although an overall strong correlation
between simulated GPP and AGB is observed, these errors highlight the limitation of using
Sentinel-2 data alone for biomass mapping. Fusion of Sentinel-2 data with other optical
and/or SAR images is one strategy to improve the success of biomass mapping [69].

After excluding the sites with large biases in LAI, Figure 3 shows that the correlation
between BEPS-simulated GPP and ground-measured AGB is stronger with R2 of 0.82. As
the comparison is conducted at a pixel size of 20 m while the AGB is sampled in a lesser
area, the AGB samples may not capture all the variations in crop growth present within a
20 m pixel.

Although the Vcmax is likely to vary within the study area, it is set as a constant
value. Figure 3 indicates that a unique GPP–biomass relationship is still practical for
regional applications.

The slope of 1.03 for the linear relationship between BEPS-simulated GPP and ground-
measured AGB, as shown in Figure 3, is reasonable. The slope between GPP and total
biomass in high latitudes should be larger than 1.0; however, GPP and only AGB are
compared here. The fraction of AGB to total biomass is less than 1, e.g., 78% for maize [70].
Therefore, the CUE (larger than 1) compensates the AGB-to-total-biomass ratio (less than
1), leading to the slope between GPP and AGB close to 1.

The coefficient of determination (R2) between the simulated GPP and AGB ranges
from 0.65 to 0.96 for the six crop types (Figure 4). It is worth noting that the two legume
crops, black bean and soybean, are characterized with smaller slopes of 0.71 and 0.4,
respectively. Legume-cereals have a strong N rhizodeposition and are often cultivated in
rotation cropping to enhance crop yield [71]. The N rhizodeposition is associated with
large amounts of C rhizodeposition accompanying the senescence of roots and nodules
which are made of C [72]. Therefore, a significant amount of biomass is allocated to the
below-ground biomass for these crops, leading to a smaller ratio of AGB to total GPP. Qiao
et al. [73] found that soybean has greater C rhizodeposition than maize, and the amount of
C rhizodeposition varies greatly with soil fertility and organic amendment, presenting a
challenge in using GPP for biomass mapping by BEPS or other crop growth models.

Although non-linearity is shown between GPP and AGB of corn, correlation is still
high (R2 = 0.76) (Figure 4). This suggests that C3 models may be used to simulate GPP of
C4 plants if some parameters are adjusted accordingly, although this is subject to further
investigation. The correlations between LAI and crop AGB are shown in Figures S4 and S5.
For all crop types, crop LAI explains only 50% of variation in crop AGB, significantly lower
than that explained by crop GPP (Figure S4); this is because LAI only explains mostly the
top part of total AGB; as crop structure varies, the non-leaf part the AGB has a significant
difference; for example, corn has far more non-green AGB than the soybean does. This
suggests that the cumulative GPP correlates better to AGB which is also a cumulative
variable, than it does to the green LAI, which indicates the status of the crop. By crop type,
the LAI variations of canola, oat, and wheat explain only 61%, 59%, and 0% of variations
in their corresponding AGB, respectively. The LAI variations of black bean, corn, and
soybean explain 94%, 81%, and 62% of the variations in their AGB, respectively, higher
than that of canola, oat and wheat. This difference can be explained by the growing stages:
unlike canola, oat, and wheat, the AGB of black bean, corn and soybean cover only the
vegetative growth stage of crop phenology. This is evidenced by the stronger correlation
between leaf biomass and LAI (R2 = 0.55) than between AGB and LAI (R2 = 0.32%) as
shown in Figures S6 and S7. Ideally, the LAI should be highly correlated with leaf biomass.
However, LAI values derived from Sentinel-2 are equivalent “green” LAIs, resulting from
the accumulation leaf pigments and leaf senescence [74]. Therefore, satellite-derived LAI
correlates more with green biomass including green stems and fruits [75] and the R2 of 0.55
is still considered to be high.
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3.2. Correlation between BEPS-Simulated Crop NPP and Ground Measurements

The R2 between the simulated NPP and AGB for all the plots is 0.83 (Figure 5);
individual R2 ranges from 0.56 to 0.95 for the six crop types (Figure 6). There are minor
improvements in R2 compared to GPP-derived AGB, except for black bean for which the
R2 is already very high, and for soybean. Similar to GPP-derived AGB, a non-linearity
between simulation and measurements is still observed for corn. Since we used the same
biomass respiration rates for different crops in BEPS simulations, the minor differences
between GPP-derived and NPP-derived AGB are expected. Overall, the RMSE and mean
absolute error (MAE) for AGB estimation from NPP are 115.7 and 85.8 g m−2, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 24 
 

 

shown in Figures S6 and S7. Ideally, the LAI should be highly correlated with leaf bio-

mass. However, LAI values derived from Sentinel-2 are equivalent “green” LAIs, result-

ing from the accumulation leaf pigments and leaf senescence [74]. Therefore, satellite-de-

rived LAI correlates more with green biomass including green stems and fruits [75] and 

the R2 of 0.55 is still considered to be high.  

3.2. Correlation between BEPS-simulated Crop NPP and Ground Measurements 

The R2 between the simulated NPP and AGB for all the plots is 0.83 (Figure 5); indi-

vidual R2 ranges from 0.56 to 0.95 for the six crop types (Figure 6). There are minor im-

provements in R2 compared to GPP-derived AGB, except for black bean for which the R2 

is already very high, and for soybean. Similar to GPP-derived AGB, a non-linearity be-

tween simulation and measurements is still observed for corn. Since we used the same 

biomass respiration rates for different crops in BEPS simulations, the minor differences 

between GPP-derived and NPP-derived AGB are expected. Overall, the RMSE and mean 

absolute error (MAE) for AGB estimation from NPP are 115.7 and 85.8 g m−2, respectively.  

 

Figure 5. The correlation between BEPS-simulated crop net primary production (NPP) and ground-

measured above-ground biomass for six crop types (oat, soybean, wheat, corn, canola and black 

bean) for SMAPVEX16-MB. 

Figure 5. The correlation between BEPS-simulated crop net primary production (NPP) and ground-
measured above-ground biomass for six crop types (oat, soybean, wheat, corn, canola and black
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3.3. Correlation between Accumulated LAI and Ground Measurements

The R2 between the accumulated S2 LAI and AGB for all the plots is 0.85, which is
similar to GPP (R2 = 0.82) and NPP (R2 = 0.83) (Figure 7); individual R2 ranges from 0.59
to 0.97 for the six crop types (Figure 8) with decreased R2 for soybean, oat and canola.
Notably, the nonlinearity between corn GPP or NPP and AGB is not observed in Figure 8
but the opposite is observed for oat.

Although AGB may be estimated at a similar accuracy by using accumulated S2 LAI
for a specific crop type, we believe that GPP- and/or NPP-based approaches produced
a reliable overall result for the whole study area. Here, BEPS performs on par with
accumulated LAI in biomass estimation because: (1) the accumulated LAI already contains
adequate seasonal information for biomass estimation; (2) the meteorological variables do
not change much since the study area is small; and (3) certain management information
(irrigation, fertilizer use, crop-specific parameters) is unavailable to BEPS. If the study
area is big enough to cover different climate zones, we could expect that the BEPS-based
estimates will explain more variation in AGB than the accumulated LAI.
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3.4. Spatial Distribution of BEPS-Simulated Crop GPP and AGB

BEPS-simulated GPP for the whole growing season is shown in Figure 9. The lower-
right corner is excluded from analysis due to biases in LAI retrievals. In the study area, the
crop’s total GPP in the whole growing season ranges from 600 to 2000 g C m−2 yr−1. Lower
GPP values in the upper-right corner are associated with a region of heavy clay soil; for this
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clay area, the matric water potential can be very low even when the soil water content is
relatively high, limiting available water to the crops (Figure S1). The area with center-pivot
irrigation (circles; potatoes according to Figure 1) is characterized with high GPP values
up to 2000 g C m−2 yr−1. The variation of GPP is generally small within each field, while
considerably larger among different fields, reflecting individual farmer’s management on
irrigation and fertilizer use.
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Figure 9. Annual crop GPP in 2016 for the SMAPVEX16-MB study area simulated by BEPS. The used
Sentinel-2 images are shown in Table 1. shows the averaged AGB by crop type in 2016 derived for
the SMAPVEX16-MB study area. It is found that the average AGB among crop-type is clear while
the one-standard deviation of AGB for each crop type is relatively small; we suggest that the small
deviation is due to the small study area with the similar climate condition. Two sample t-test results
suggest that the AGB average values among crop types are significantly different (p < 0.05) except for
Oats vs. Triticale, Triticale vs. Spring Wheat, and Winter Wheat vs. Hemp.

The regressions in Figures 3 and 4 are used to derive an AGB map for the study area
(Figure 10). For the six target crops, their explicit GPP–AGB relationships are applied; for
the rest of crop types, the regression coefficients averaged for all crop types in Figure 3
are applied. In Figure 10, distinct variations among fields are revealed. In the study, the
total AGB ranges from 200 to 2000 g m−2. The peas and beans are characterized with low
AGB values (blue area), e.g., 5.4 tons ha−1 for soybean (Figure 11 and Table S1), while
potato field has the largest AGB (16.6 tons ha−1). Compared to Figure 9, more variations
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among fields are observed since the crop-specific calibration from Figure 4 is applied. This
suggests that although the accumulative GPP correlates well to the observed AGB, early
crop identification/inventory within the crop growing season is critically important for
crop growth monitoring and yield prediction.
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Figure 10. Annual crop above-ground biomass (AGB) in 2016 derived from simulated crop GPP. For
the six target crops, their explicit GPP–AGB relationships are applied; for the other crop types, the
regression coefficients averaged for all crop types in Figure 3 are applied. The peas and beans are
characterized with low AGB values (blue); while potatoes within center-pivot irrigation have high
AGB values (red).
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3.5. Challenges in Using Sentinel-2 Data for Crop Biomass Mapping

Crop identification/classification, crop growth monitoring and crop yield estima-
tion/prediction are among the most important remote sensing applications in agriculture,
and they are tightly linked. Crop identification from satellite data provides the basis for
annual crop inventory; while crop inventory provides the first order information for yield
prediction; a crop classification map is also an important input to the ecosystem model,
where the crop-specific parameters can be assigned. Crop growth monitoring from remote
sensing involves mapping time-series of crop biophysical parameters (LAI, height, clump-
ing, etc.) and biochemical parameters (e.g., leaf chlorophyll content, Vcmax); a biophysical
parameter, AGB, can also be mapped from SAR images at a certain accuracy; the ecosys-
tem model (or some crop growth models) can integrate these remote sensed information,
meteorological data, and some available management information to produce reliable GPP,
NPP and biomass. Crop biomass, along with crop-specific HI, can then provide more
information for yield prediction/estimation than the crop inventory can. In this study, we
tested BEPS for biomass mapping using Sentinel-2-derived LAI time-series as main input
and with an existing archive of crop inventory map from AAFC.

Although crop AGB is robustly estimated for the majority of our study area, there are
a few challenges in applying the same methodology to larger regions at continental and
global scales. The same challenges may also apply to general crop growth models with
explicit modules of crop phenology development and carbon allocations.

The first challenge is to acquire consistent LAI time-series that are free of cloud
contamination. In our study area, there is a one-month gap in August without cloud-free
Sentinel-2 images. Although temporal smoothing can mitigate the impact of these gaps
to some extent, missing LAI estimates for cloud-contaminated pixels leads to incorrect
AGB estimation. It is also a challenge to produce smoothing of LAI time series for near
real-time AGB estimation, given the knowledge needed of crop growth stage. To track crop
phenology for reliable estimation of AGB, one solution would be to fuse multi-satellite data
at similar spatial resolutions, such as from Landsat 7 and 8 optical data and/or Synthetic
Aperture Radar data from Sentinel-1 [76].
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The second challenge is to perform rigorous model calibration for different crop types,
especially for carbon allocations of crops for different cultivars and species, as plants
develop different acclimation processes to maximize their photosynthetic capacity. For
example, the AGB to GPP ratios range from 0.4 to 1.02 for the six target crops. This is
especially true for legume crops with root rhizodeposition. Though not tested in our study,
tuber crops such as potatoes can account for a significant amount of underground carbon,
and their AGB might have been overestimated in our study. The accuracy of using C3
model to simulate AGB of C4 plant (corn in this study) is acceptable but not optimal.

The third challenge is to acquire soil nutrition conditions of the field and relate this
information to photosynthetic capacity of crops. Although some crop growth models
have a mechanism to relate nitrogen pool of crop system to leaf Vcmax, such nitrogen
management information is unavailable at the regional and national scales. Although
Sentinel-2 has the red-edge bands for retrieval of leaf chlorophyll content [77–80], how
leaf chlorophyll content correlates with leaf Vcmax among species, crop growth stages and
radiation conditions are not completely understood.

The fourth challenge is to acquire pixel-level irrigation information for crop growth
models. Without correct irrigation information as an input, crop GPP and NPP may be
underestimated by the models [46]. Sentinel-1 C-band SAR may be used for soil moisture
mapping but only when the canopy is sparse [81]. The SMAP L-band radiometer has
superior sensitivity to surface soil moisture even at moderate canopy water content, but its
spatial resolution is low (40 km) [82]. Although some studies have integrated SAR data
at high resolution and with SMAP radiometer data to produce soil moisture at a 1 km
resolution [83], it is still impractical to do this at the 20 m resolution.

The last challenge for crop biomass mapping using models is the limitation of com-
putation resources. For example, it takes half a day to simulate crop GPP at a 20 m
resolution using a 54-core computer (2.5 Ghz) for our study area. This means that, for these
process-based deterministic models, the computation of GPP mapping for a county at 20 m
resolution is comparable to the GPP simulation of a global ecosystem at the 0.1◦ resolution.
If a data assimilation approach, such as the ensemble Kalman filter (EnKF) is used to
assimilate any crop biophysical parameter into a crop growth model, the computation will
be increased by an order of 1 to 2, suggesting that it is almost impossible to make use of
EnKF for data assimilation at the current cost of computation.

These challenges, although not limited to Sentinel-2 data applications, suggest that
although BEPS (hourly version) has an advanced model structure to simulate canopy-
scale photosynthesis [52], this requires significant computation effort. In contrast, some
crop growth models are executed at a daily step and/or LUE-based photosynthesis
model [15,20,21], but with the strength of crop traits modeling and handling of soil nutri-
tion and water management. However, such an approach necessitates availability of these
crop traits at large scales. Operational crop biomass (and yield) mapping may require a
compromise between large scale and high spatial, and simplicity of the model structure.
Mapping biomass at field scales (segmentation from crop identification map) might be a
good alternative approach to address current big-data challenges.

Similar to this work, two recent studies have used Sentinel-2-derived LAI for biomass
and yield mapping. Punalekar et al. [84] reported that the R2 between pasture biomass
and LAI ranges from 0.16–0.73 to 0.22–0.76, for the NDVI-derived LAI and radiative
transfer model-based LAI, respectively. Lambert, Traoré, Blaes, Baret and Defourny [30]
demonstrated that the R2 values between LAI and yield are 0.68, 0.62, 0.8 and 0.48 for
cotton, maize, millet and sorghum, respectively. Here, we show that the R2 values between
GPP and AGB range from 0.65 to 0.96 for six annual crops which dominate Manitoba’s
agro-ecosystem. Despite these aforementioned challenges, our study demonstrates the
advantage of using LAI time-series and integrating both biotic and abiotic factors for
biomass mapping at very high spatial resolutions.
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4. Conclusions

This research explores the potential of integrating high spatio-temporal leaf area index
(LAI) estimates derived from Sentinel-2 spectral reflectance data with an ecosystem model
for crop above-ground biomass (AGB) mapping at the regional scale. The accuracy of this
approach is evaluated using crop AGB field data collected during the SMAPVEX16-MB
experiment conducted in western Canada, in 2016. Considering abiotic factors derived
from meteorological data and soils data and LAI from Sentinel-2, we find that the model-
simulated crop gross primary production (GPP) at a 20 m resolution explains 82% of the
variation in the annual crop AGB for six annual crop types. The results outperform the
biomass mapping using LAI alone. The correlation between the model-simulated GPP and
ground measured AGB for each of the six crop types is also strong, suggesting that our
approach is reliable for AGB mapping at a high spatial resolution. Similarly, crop NPP and
accumulative LAI explain 83% and 85% of the variation in the crop AGB, suggesting the
importance of using temporal information from remote sensing.

The challenges for crop AGB mapping at high resolution are also discussed. These
include difficulty in acquiring temporally consistent LAI time series due to cloud con-
tamination, the lack of soil nutrition and water management information, the need for
model calibration at the regional and national scales, and the high cost of computation. A
practical approach for crop biomass mapping should include a compromise among data
accessibility, model complexity, and computational resource availability.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/806/s1, Figure S1: Soil texture at the SMAPVEX16 field campaign. Figure S2: (a) Successful
smoothing of LAI time-series derived from Sentinel-2; (b) Unsuccessful LAI smoothing due to
missing of LAI data in the growing season (August) in 2016. Figure S3: BEPS-simulated crop GPP vs.
above-ground biomass for all crop types in the study area including these fields with wrong LAIs
as shown in the red circle. Figure S4: The correlation between crop above ground biomass (AGB)
and Sentinel-2 derived LAI for all crops in the study area. Figure S5: The correlation between crop
above ground biomass (AGB) and Sentinel-2 derived LAI for each of the crop types in the study area.
Figure S6: The correlation between crop leaf dry biomass and Sentinel-2 derived LAI for all crop
types in the study area. Figure S7: The correlation between crop leaf biomass and Sentinel-2 derived
green LAI for each crop types in the study area. Table S1: Statistics of above-ground biomass for each
crop type in the study area.
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