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Abstract: The World Health Organization has reported that the number of worldwide urban residents
is expected to reach 70% of the total world population by 2050. In the face of challenges brought
about by the demographic transition, there is an urgent need to improve the accuracy of urban
land-use mappings to more efficiently inform about urban planning processes. Decision-makers rely
on accurate urban mappings to properly assess current plans and to develop new ones. This study
investigates the effects of including conventional spectral signatures acquired by different sensors
on the classification of airborne LiDAR (Light Detection and Ranging) point clouds using multiple
feature spaces. The proposed method applied three machine learning algorithms—ML (Maximum
Likelihood), SVM (Support Vector Machines), and MLP (Multilayer Perceptron Neural Network)—to
classify LiDAR point clouds of a residential urban area after being geo-registered to aerial photos.
The overall classification accuracy passed 97%, with height as the only geometric feature in the
classifying space. Misclassifications occurred among different classes due to independent acquisition
of aerial and LiDAR data as well as shadow and orthorectification problems from aerial images.
Nevertheless, the outcomes are promising as they surpassed those achieved with large geometric
feature spaces and are encouraging since the approach is computationally reasonable and integrates
radiometric properties from affordable sensors.

Keywords: urban land-use; LiDAR-aerial integration; LiDAR-aerial geo-registration; LiDAR clas-
sification; supervised machine learning; maximum likelihood; support vector machines; neural
networks; bootstrap aggregation; k-fold cross-validation

1. Introduction

The world urban population began to increase significantly since the 1950s. In 1980,
around 40% of the total world population lived in cities. This percentage increased to
50% in 2010. In the near future, the growth rate of the urban population is expected to be
approximately 1.63% and 1.44% per year between 2020 and 2025 and between 2025 and
2030, respectively. Moreover, by 2050, the urban population is expected to almost double,
increasing from approximately 3.4 billion (American billion = 109) in 2009 to 6.4 billion [1].
This tangible demographic transition has environmental impacts, such as the loss of
agricultural lands, reduction in wildlife habitats, air pollution, and a worsening of water
quality and accessibility, leading to a deterioration of regional hydrology. Furthermore,
urbanization has a significant side effect of exacerbating the already uneven allocation of
resources in urban areas. Resource disparity is a well-known progenitor of a plethora of
societal issues, including scarcity of affordable housing, poverty, constrained social services,
and an increased crime rate [2,3]. To bridge the gap between the available resources and the
needs of an urban population, a thorough urban land-use classification becomes an urgent
necessity for further urban assessment, and future city planning and management [1].
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High-resolution optical images provide a high level of detail along object boundaries
with height variations. Therefore, they are a good source of high horizontal-accuracy
data and a rich inventory of spectral and textural information essential for segmentation
and classification [4]. However, these conventional sensors lack vertical accuracy due to
their inability to fully represent spatial patterns in 3D [5]. In some cases, they acquire
information from a relatively restricted number of bands, each with large spectral intervals.
Consequently, they are not suitable for detailed analysis of classes sharing similar charac-
teristics in contrast to the new generation of passive hyperspectral sensors [6]. On the other
hand, LiDAR (Light Detection and Ranging) systems acquire high-density 3D point clouds
about the shape of the Earth and its surface characteristics. The penetration capability
of the laser pulses reveals certain ground objects in a single pulse with multiple returns.
Hence, they can effectively cover large regions and can collect data in steep terrains with
no shadow effects or occlusion if sufficient swath overlap can be achieved. Moreover, all
obtained data are directly geo-referenced [7–9]. Nevertheless, since the discontinuous laser
pulses can hardly hit breaklines, LiDAR technologies show poor performance in revealing
surfaces with sudden elevation changes. Thus, they produce insufficient 3D point clouds
at these positions, weakening the horizontal accuracy of such locations [10].

Given the complementary properties of LiDAR and optical data imaging, integrating
the two modalities in the information extraction procedure becomes attractive as a means
to amplify their strengths and to overcome their respective weaknesses. Such a fusion
provides a practical alternative to the more expensive multispectral/hyperspectral LiDAR
systems. The case for integrating these two modalities is especially compelling in appli-
cations that require high-density acquisitions for large regions [11,12]. In particular, the
high cost associated with flights and radiometric corrections makes integrating LiDAR
and optical data an excellent candidate when dealing with data obtained from airborne
platforms [11].

This integration opens the door to mapping LULCs (Land Use Land Cover) other than
urban settings. For example, LULCs can be used in agricultural and forestry morphologies
to observe crop biomass and to estimate their production and environmental states. Such
applications have recently turned to relying on acquiring aerial images and LiDAR point
clouds using sensors mounted on UAVs (Unmanned Aerial Vehicle); therefore, combining
both data types reinforces the textual analysis of agricultural fields [13]. In addition, infras-
tructural inspection and structural health-monitoring applications depend on information
extracted from thermal images and LiDAR scans collected by UASs (Unmanned Aircraft
System) for precise close-range inspection and trajectory control [14]. These utilizations
are added to retrofitting applications that align 3D laser scans with camera videos for
complex industrial modeling such as those in pipeline plants [15]; aerial cinematography
that utilizes dynamic camera viewpoints for entertainment, sports, and security applica-
tions [16]; and synchronized human–robot interaction applications such as the prediction
of pedestrian attitude on roads for potential urban automated driving [17].

Classification is the process of partitioning data into a finite number of individual
categories based on the attributes stored in each data element. The purpose of classification
is to identify homogeneous groups representing various urban classes of interest [18].
The classification results are fundamental in further analysis for many environmental and
socioeconomic applications, such as in change detection and simulation/prediction models.
Therefore, a classification system should be informative, exhaustive, separable, and homo-
geneous with a range of variability of each respective class. The classification process itself
requires consideration of different factors. These factors include the needs of the end-user,
the scale of the area studied, the complexity of the landscape within it, and the nature of the
data being processed [19,20]. Machine learning is an AI (Artificial Intelligence) application
that enables computers to learn automatically with minimal human assistance. Machine
learning algorithms identify patterns in observations to make predictions or to improve
existing predictions when trained on similar data [21]. Machine learning approaches can
be grouped into different categories: supervised, unsupervised, semi-supervised, and
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reinforcement based on the learning type; parametric versus nonparametric based on
the assumption of the data distribution; hard versus soft/fuzzy based on the number
of outputs for each spatial unit; and finally, pixel-based, object-based, and point-based
classifications based on the nature of data at hand [19,21].

In supervised learning, analysts must select representative samples for each category
for the classifier to determine the classes for each element of the entire dataset [22]. In con-
trast, unsupervised classification does not require any prior class knowledge of the study
region. Instead, concentrations of data with similar features (clusters) are detected within a
possibly heterogeneous dataset. Unsupervised learning could be advantageous to super-
vised learning in cases where prior class knowledge is incomplete. However, the resulting
data clusters from unsupervised learning do not necessarily align with the class classifi-
cation criteria as prescribed by the problem being investigated [23,24]. Semi-supervised
learning falls in between supervised and unsupervised learning since it uses both labeled
and unlabeled training data. It has become a hot topic in classifying remotely sensed data
that contain large sets of unlabeled examples with very few labeled ones. Its algorithms
are extensions of other approaches that make assumptions about modeling unlabeled
data [21,25]. Reinforcement learning follows a trial-and-error search for the ideal behavior
to boost its performance. The best action is detected by simple reward feedback known as
the reinforcement signal [21]. Parametric approaches assume the existence of an underlying
data probability distribution (usually the normal distribution). The parameters of this
underlying distribution (i.e., mean vector and covariance matrix) have to be estimated
from the training samples to trigger the classification process. Nonparametric algorithms
make no assumptions about the form of the data probability distribution. They have been
proven to perform efficiently with various class distributions as long as their signatures are
adequately distinct. Moreover, nonparametric methods allow for ancillary data incorpora-
tion into the classification procedure in contrast to parametric algorithms that are more
susceptible to noise while dealing with complex landscapes and often present challenges
in incorporating non-remote-sensing data within classification [22,24,26].

Each data element in hard thematic maps is assigned to a single class. Hard classifiers
sometimes cause misclassification errors, especially when using coarse spatial resolution
data with multi-class representation. In contrast, soft classifiers determine a range of
data similarity to all classes. Consequently, each data element is assigned to every class
with varying probabilities, resulting in a more informative and potentially more accurate
classification. However, soft classification lacks spatial information about each class within
each data element [26,27]. In pixel-based classification, the classifier gathers spectra of
every pixel used in the training samples to develop a signature of each class [26] while
simultaneously assigning a single predefined category to each pixel based on the brightness
value the pixel stores [23]. Meanwhile, object-based approaches generate fundamental
units of image classification from object segmentation at various scale levels based on
specific homogeneity criteria instead of raster data elements: a single pixel [23,28]. Pixel-
based techniques best fit coarse data, while object-based approaches perform well in
matching data acquired at fine spatial resolutions. Point-based classifiers are commonly
used to process LiDAR point clouds. These point-based classifiers are similar to pixel-based
techniques in terms of dealing with each single data element—a single point—individually
and assign a particular predefined class for each of those points [23].

Brownlee [25] added another classification of machine learning algorithms based on
similarity and functionality. Here is a summary of their taxonomy:

• Regression algorithms model the relationship between variables and refine it itera-
tively by adjusting prediction errors (i.e., linear and logistic regression).

• Instance-based algorithms use observations to construct a database, to which new
data are compared to find the best match for prediction using a similarity measure
(i.e., KNN (K-Nearest Neighbors) and SVM (Support Vector Machine)).

• Regularization algorithms extend regression methods to prioritize simple models over
complex ones for better generalization (i.e., ridge and least-angle regression).
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• Decision tree algorithms build a model of decisions based on the observations’ at-
tribute values. These decisions branch until a prediction is made for a certain record
(i.e., decision tump and conditional decision trees).

• Bayesian algorithms apply Bayes’ Theorem (i.e., naive Bayes and Gaussian naive
Bayes).

• Clustering algorithms use built-in data structures to produce groups of maximum
commonality (i.e., k-means and k-medians).

• Association rule learning algorithms derive formulas that best explain the relation-
ships between the variables of observations. These rules are generic enough to be
applied to large multidimensional datasets (i.e., apriori and eclat).

• Artificial neural network algorithms are pattern-matching-based methods inspired by
biological neural networks (i.e., perceptron and MLP (Multilayer Perceptron Neural
Network)).

• Deep learning algorithms are higher levels of artificial neural networks (i.e., convolu-
tional and recurrent neural networks).

• Dimensionality reduction algorithms reduce data dimensionality in an unsupervised
approach for better space visualization. Abstracted dimensions can be input into a
subsequent supervised algorithm (i.e., PCA (Principal Component Analysis) and PCR
(Principal Component Regression)).

• Ensemble algorithms are strong learners consisting of multiple weaker learners that
are independently trained in parallel and vote toward the final prediction of a record
(i.e., Bagging, AdaBoost, and RF (Random Forest)).

Most initial studies that addressed LiDAR data classification tended to convert point
clouds into 2D images [29] by applying interpolation techniques, which vary in complexity,
ease of use, and computational expense; and thus, no interpolation method is universally
superior [30]. Interpolation methods are either deterministic (i.e., IDW (Inverse Distance
Weighted) and spline), or probabilistic (i.e., Kriging). Deterministic algorithms calculate
the value of an unsampled point given the known data values of its immediate surround-
ing sampled points. A predetermined mathematical formula calculates the weight of
each surrounding point contributing to the interpolated result. The calculations end up
with a continuous spatial surface. Probabilistic algorithms utilize spatial autocorrelation
properties (i.e., distance and direction) of the surrounding values to determine their impor-
tance [30,31]. Cell size determination is the primary concern in generating LiDAR images
via interpolation techniques. Therefore, resolutions have to ensure the acquisition of suffi-
cient details but also with the least amount of point data that meets the minimum accuracy
assigned for the phenomenon being studied. Too fine-resolutions are overrepresentative
and computationally ineffective. Hence, an optimal grid size should consider data source
density, terrain complexity, and nature of the application [31]. For instance, DEM accuracy
is affected by spatial resolution along with interpolation error and algorithm, which have
to be taken into consideration, since low DEM accuracy accordingly impacts the accuracy
of its derived terrain attributes, such as slope [30,32].

The LiDAR capabilities of recording different point attributes (i.e., intensity, elevation,
range, and number of returns) have encouraged analysts to resample point clouds into 2D
grids based on a predefined resolution. In doing so, analysts gain performance advantages
in computations at the expense of sacrificing details representing data in 2D instead of
3D [23,29]. These missing details can be vital in some applications, mostly when oriented
toward objects that are not easily separable from other features. For example, in evaluating
the solar potential of roof planes, downsampling and interpolation adversely affect the
estimation of their aspect, inclination angles, and areas. These defects significantly impact
the assessment results [33]. Figure 1 graphically illustrates how certain information is lost
in resampling irregularly spaced classified points to a grid in order to produce a LULC
map [23]. The authors identified the extent of the study area (Figure 1a) and constructed a
grid, where each cell was assigned the same size as the laser beam footprint (Figure 1b).
Then, the resampled point of each cell had the most frequent class of classified points
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within the cell itself (Figure 1c). Empty cells were assigned an unclassified grid point and
were treated as gaps that were to be filled by NN (Nearest Neighbor) and IMMW (Iterative
Majority Moving Window). In NN, unclassified resampled points were assigned to the
class of the nearest original classified LiDAR point. In IMMW, a moving window was
centered at each of the unclassified resampled points. They were assigned to the most
frequent class of their neighbors iteratively until all gaps were filled. The study indicated
no difference between both filling approaches, as the overall classification accuracies using
ML (Maximum Likelihood) did not exceed 58% using the points’ elevation and intensity.
In another study, the same classification workflow was examined against the pixel-based
classification of LiDAR images of two different datasets [34]. It yielded overall map
accuracies of 44% and 50% with the pixel-based classification and of 53% and 65% with the
point-based approach, respectively, for each dataset. The higher achieved map accuracy
was highlighted with LiDAR raw data points classification, as it was carried out based on
the original data values.

(a) (b) (c)

Figure 1. Resampling of classified points: turquoise, black, and red represent points of three different classes, and grey
points represent unclassified resampled points. (a) Extent of study area. (b) Pixel-size identification. (c) Point resampling
into the grid.

Lodha et al. [35] resampled 3D LiDAR data into a regular 2D grid, which they geo-
registered to a grey-scale aerial image of the same grid size. After fusing the height and
intensity data, they generated a 5D feature space of height, height variation, normal vari-
ation, LiDAR intensity, and image intensity. The feature space was subsequently used
to classify an urban layout into roads, grass, buildings, and trees, using the AdaBoost
algorithm. Since AdaBoost was originally a binary classifier, the study applied the Ad-
aBoost.M2 extension for multiclass categorization and achieved an accuracy of around
92%. Gao and Li [36] applied the AdaBoost algorithm but followed a direct point-based
classification on 3D LiDAR clouds, with only height and intensity included in the feature
space. When tested on different LiDAR datasets, the highest accuracy of this scenario was
close to what was achieved in [35].

Wang et al. [37] also rasterized airborne LiDAR point clouds into grids for data
based on height information; however, they constructed the feature space differently.
They randomly selected two neighboring pixels of each pixel from a moving window
with a predefined size. Afterward, they calculated the height difference between the two
pixels. To enlarge the dimension of the feature space, they repeated the random selection.
With each new selection, a different feature was compared in addition to the height value.
Therefore, for each pixel, the total number of random selections of neighboring pixels was
the number of features used in the classification. The study applied RF to classify the urban
scene into ground, buildings, cars, and trees. It resulted in an overall map accuracy of 87%
after postprocessing using majority analysis and identified major problems distinguishing
cars and trees from the ground.

In an attempt to enrich the feature space for better point-based classification re-
sults, Zaboli et al. [38] considered eigenvalues, geometric, and spatial descriptors along
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with intensity records in the discrete point classification of mobile terrestrial LiDAR data.
These contextual features were computed for each point within a neighborhood to explore
further information about spatial dependency. The study compared the GNB (Gaussian
Naive Bayes), KNN, SVM, MLP, and RF’s potential capabilities to classify an urban scene
containing cars, trees, poles, powerlines, asphalt roads, sidewalks, buildings, and bill-
boards. The maximum overall accuracy was 90% by RF in contrast to an accuracy of 53%
achieved by GNB. Niemeyer et al. [39] also used waveform and geometry descriptors
but with a hierarchical classifier in the point-based classification of airborne LiDAR data
covering roads, soil, low vegetation, trees, buildings, and cars. The study implemented
a two-layer CRF (Conditional Random Field), where a point-based classification runs in
the first layer and a segment-based classification is performed in the second one. RF was
applied in both classifications. Each segment’s probability of belonging to a certain class
was generated in the second layer and delivered to the first layer at each iteration via a cost
term. In this way, regional context information between segments was transferred to the
point layer, where misclassification was eliminated. Although this approach increased the
overall accuracy by 2% on a point-based level, it still hovered around 80%.

Researchers have recently investigated multispectral LiDAR data as a promising
option towards widening the radiometric feature space. Huo et al. [40] constructed their
feature space by converting the three intensities of Optech Titan LiDAR point clouds
into images. Furthermore, they densified the space with some auxiliary features: NDSM
(Normalized Digital Surface Model), pseudo NDVI (Normalized Difference Vegetation
Index), MP (Morophological Profile), and HMP (Hierarchical Morophological Profile).
The study applied SVM to classify buildings, grass, roads, and trees. The authors tried
different combinations of feature sets and concluded that using only intensity features
resulted in the worst overall map accuracy, i.e., 75%, while the addition of the remaining
features was the best scenario, which achieved a 93% accuracy.

On the other hand, Morsy et al. [41] processed 3D point clouds acquired by a multi-
spectral LiDAR sensor, which covered an urban scene consisting of four classes: buildings,
trees, roads, and grass. The data were ground filtered. Jenks natural breaks optimization
method clustered the points into the four predefined classes based on three NDVIs calcu-
lated for each point using its intensity of the three channels: NIR (Near Infrared), MIR (Mid
Infrared), and Green. The clustering algorithm determined NDVI thresholds to segregate
buildings from trees and roads from grasses. It relies on the fact that vegetation has higher
reflectance in the abovementioned channels than built-up elements. A subset of the LiDAR
point clouds from each class was selected by a set of polygons, as reference points, and
together with a geo-referenced aerial image were used to assess the classification accu-
racy. The results showed that the NDVI produced from the NIR and Green channels had
the highest overall accuracy, i.e., 92.7%. Alternatively, the authors adopted the Gaussian
decomposition clustering approach for the determination of NDVI thresholds [42]. They
used the peak detection algorithm to find the highest two peaks of the NDVI histograms.
These peaks were considered the mean of each Gaussian component of the histogram,
which had two components, as the target was to divide each histogram into two clusters:
either buildings and trees or roads and grass. The component’s mean, standard deviation,
and relative weight were fitted on two steps: expectation and maximization. The first
determined the probability of each bin belonging to either Gaussian components, starting
with the assumption that both components have the same weight, and the latter computed
the ML estimates of the component’s statistics. Both steps were repeated until either a
convergence or a maximum number of trials was reached. The intersection of both fitted
components was considered a threshold. The algorithm resulted in an overall accuracy
of 95.1%, with the same NDVI as in the Jenks natural breaks optimization clustering
method. Despite the higher accuracy achieved without auxiliary data (i.e., NDSM), the
study reported overfitting problems, which forced the authors to apply different modeling
functions, sacrificing precise definition of the threshold value and consequently affecting
the accuracy of some classes.
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Imagery data represent a rich source of radiometric characteristics, other than multi-
spectral LiDAR sensors. Several studies have introduced aerial and high-resolution satellite
images as an ancillary data source in LiDAR point clouds classification. They were even a
substantial source of 3D point clouds utilized in some research materials. Baker et al. [43]
processed aerial photogrammetric images to obtain their respective dense point clouds,
which were classified using the RF and GBT (Gradient Boosted Trees) classifiers to detect
buildings, terrain, high vegetation, roads, cars, and other human-made objects. Pearson
product–moment correlation coefficient and the Fisher information were processed on
the training samples. Both metrics indicated that HSV (Hue Saturation Value) was the
most informative portion of the color space used in color feature extraction. Different
combinations of features and classifiers were run and evaluated, revealing a significant
increase in the overall classification accuracy when color features were combined and
in the GBT classifier’s superiority versus RF. Zhou et al. [44] considered DIM (Dense
Image Matching) point clouds as auxiliary data to classify airborne LiDAR clouds on a
point-based level within a novel framework. For DIM and LiDAR point clouds, they built
a 13D feature space that included purely geometric descriptors: height, eigenvalue, normal
vector, curvature, and roughness features. Then, they extracted useful samples from DIM
points as training data using the extended multi-class TrAdaboost and input the features
of all DIM and LiDAR point clouds to a weighted RF model. In the following iteration,
DIM misclassified samples were assigned lesser weights. Consequently, poor DIM sample
points were eliminated and useful ones were retained. The authors tested the method on
different urban scenes with buildings, ground, and vegetation. The best overall accuracy
they obtained was 87%. However, their approach saves computational time since it does
not require DIM-LiDAR registration. Moreover, DIM points can be acquired for different
scenes, as long as they capture similar classes.

This literature review concludes that the classification of LiDAR data on a point-
based level is more accurate than pixel-based classification since spatial and spectral
information are partially lost in the latter. Moreover, it highlights the importance of
expanding the feature space dimensions to include more descriptors for better mapping
results. Most importantly, the referenced experimental work indicates the effectiveness
of considering a slim set of color features over a large number of geometric descriptors
in enhancing the classification results. The overall accuracy did not exceed 90% in the
vast majority of the mentioned studies, which focused on computing high-dimensional
geometric-oriented feature space. On the other hand, the mapping accuracy barley passed
95% in [42], only with the addition of the NDVI features derived from a multispectral
LiDAR sensor. Therefore, we focus in this paper on fusing spectral descriptors inherited
from more affordable sensors in the point-based classification of airborne LiDAR clouds.
In particular, we explore the effect of the gradual inclusion of the red, green, blue, NIR, and
NDVI features integrated from corresponding aerial photos, on the accuracy results using
the ML, SVM, MLP, and Bagging supervised classifiers. The presented work gives thorough
insights on each scenario in terms of training and validation data size and distribution,
learning behavior, processing time, and per-class accuracy for each classifier.

The remaining body of the paper presents the following sections: Methods, Experi-
mental Work, Results, Discussion, and Conclusions.

2. Methods

The proposed workflow is illustrated in Figure 2. LiDAR point clouds were first
geo-registered to an aerial photo of the same scene so that each point inherited its cor-
responding spectral properties. In addition, spectral indices could also be derived (i.e.,
NDVI). The point clouds were then filtered to separate those belonging to the ground from
non-ground points. Afterward, training samples were acquired to serve three classifiers:
ML, SVM, and MLP with multiple feature combinations (scenarios). The classification
results were assessed to target the most accurate and precise scenario for a subsequent
classification using the Bagging and Voting ensemble algorithms, respectively. The final



Remote Sens. 2021, 13, 814 8 of 36

land-use map was evaluated to ensure its quality in general and in comparison with the
maps derived from the same feature combination by each of the three classifiers.

LiDAR 

Points: XYZI
LiDAR-Image 

Registration
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RGB, NIR
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SVM: Support Vector Machine

MLP: Multilayer Perceptron Neural Network

Bagging: ML, SVM, MLP

Figure 2. Conceptual overview of the proposed methodology.

2.1. LiDAR-Image Geo-Registration

The LiDAR point clouds were geo-registered to an aerial image of the same study
region in [45] to inherit additional spectral properties. The geo-registration approach was
applied the PC (Phase Congruency) model and a scene abstraction approach to detect
edge points in both aerial and LiDAR images. These edge points act as candidate control
points, which were matched as final control points using the shape context descriptor.
The registration parameters of the polynomial models were estimated using a least-squares
optimization method. The semi-automatic approach was found to overcome the issue
of identifying interrelated control points between LiDAR and imagery data that were
obtained at different times. This coping came from clustering both images based on their
edge potentiality and the target points on mutual outlines as control points. In this way,
registration primitives are no longer limited to traditional linear urban elements. Moreover,
the phase congruency model runs on lower spatial-resolution versions of the images, which
speeds up the processing and contributes more to figuring out common control points in
both images. A detailed description of the geo-registration process can be found in [46].

2.2. LiDAR Ground Filtering

Discriminating terrain points from non-terrain points is a fundamental step in LiDAR
classification applications, where ground objects share characteristics with non-ground
features. In this case, ground filtering helps minimize misclassification errors. Zhang
and Lin [47] grouped ground filtering techniques into four main categories according
to directional scanning, ground definition, filtering concept, and means of creating the
surface (Figure 3). Directional scanning techniques are sub-grouped into directional-
based and neighborhood-based approaches. Directional-based approaches separate terrain
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from non-terrain points by calculating elevation or slope differences along a 1D scan line
in a certain direction [48]. Neighborhood-based algorithms consider the values of the
surrounding points within a predefined neighborhood [49]. According to the ground
definition, a ground filtering technique can be either a labeling or an adjustment approach.
An adjustment approach applies a mathematical function to LiDAR point clouds, where
points within a threshold of vertical distances from the Earth’s surface are considered
ground points. A least-squares adjustment detects non-ground points as blunders and
reduces their weights in each iteration. Labeling approaches are different, as they use
certain operators (i.e., morphology and slope) to distinguish ground points from non-
ground points [50]. These operators were addressed in the filtering categories below.

Directional 

Scanning

Directional Filtering 

Approaches

Neighborhood-based 

Approaches

Ground 

Definition

Adjustment 

Approach

Labeling 

Approach

Means of surface 

Creation

Interpolation-based filters

Morphology-based filters

Progressive-based filters

Filtering 

Concept

Block-minimum 

algorithm

Slop-based algorithm

Clustering/Segmentation 

algorithm

Surface-based algorithm

LiDAR Ground Filter Approaches According to:

4

1 2

3

Figure 3. LiDAR (Light Detection and Ranging) ground filtering different approaches.

Based on the filtering concept taxonomy, ground filters were grouped into slope-based,
block-minimum, surface-based, and clustering/segmentation algorithms. The slope-based
operator relied on comparing the slope of a LiDAR data point with its neighbors within
a moving window. If the value exceeded a threshold range, the point was classified
as a non-ground point [31]. Block-minimum filters detected the lowest point in height
within a moving window and built a horizontal plane from this point. A height buffer
from this plane was assumed so that local points were targeted as ground points if their
height was within the identified buffer zone. Otherwise, the points were considered
non-ground [51,52].

Surface-based algorithms were subdivided into morphology-based, interpolation-
based, and progressive-based filters. Since these three types of filters apply different
techniques to surfaces, they also fall under the fourth filtering category, with means of
surface creation being the taxonomic criterion. A morphological filter detected the low-
est elevation point within a window. Window points that fell within a band above this
lowest point were grouped as ground points. Whereas interpolation-based approaches
rely on producing an estimated terrain surface from LiDAR elevation points using an
interpolation function and comparing the row points to the estimated surface for valida-
tion [31], progressive-based filters determine an initial subset of ground points as seed
points, which are iteratively densified by merging neighbor points based on their mathe-
matical relationship with original seed points in terms of elevation and slope [53]. Finally,
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clustering/segmentation algorithms embedded segmentation after the selection of seed
points and before the iterative densification to expand the set of ground seed points to as
many as possible for the filter to fit steep and mixed landscapes [47].

This study used the progressive TIN (Triangulated Inverse Network) densification
approach, which was first introduced by Axelsson [53] for bare-earth extraction. The al-
gorithm divides LiDAR point clouds into tiles and detects the lowest elevated point in
each tile. These points are considered seed points, which contribute to creating a TIN as
an initial terrain reference system. Potential points included within a triangle are added
to seed points if the potential point’s distance to the TIN facet, in addition to the angle
between the line connecting it to the nearest TIN’s vertex and the TIN facet itself, do
not exceed predefined thresholds. This process is iterated until none of the remaining
points meets these criteria. The remaining points after the final iteration are grouped as
non-ground points.

2.3. Training Data Collection

In supervised classification, training data are labeled with classes of interest. The clas-
sifier’s effectiveness is intimately related to how well the training samples carry the class
information [54]. Hence, training data should be representative and sufficient in quantity
[19]. When considering the quantity of training samples, the spatial resolution of the
data and the complexity of the landscape should be taken into account. This is especially
the case when dealing with heterogeneous datasets acquired at fine spatial resolutions
such as airborne LiDAR point clouds to ensure satisfactory classification results [20,55].
The training samples are usually collected from fieldwork or fine spatial resolution aerial
photographs and satellite images [19]. However, analysts have abandoned in-situ training
data collection, since it has been proven to be time consuming and laborious. Moreover, it
does not always guarantee superior classification results. Thus, it is rather common and
reasonable to derive training samples directly from the remotely sensed data using a priori
knowledge of the scene [55,56].

In our case, either of the three sampling objects could be applied: single point, poly-
gons of points, or seeding block training. In the single-point strategy, the training data for
each class were collected as individual points, whereas in the second approach, they were
selected by visually identifying and digitizing polygons of points, which may vary in size.
The third approach relied on locating contiguous points with similar characteristics to the
original seed point to ensure homogeneity of the collected training datasets [57]. The effect
of the three strategies was more pronounced at fine spatial resolutions, and this impact
was highlighted among classification accuracies of individual classes more than the overall
accuracy. Small polygons of points were found to perform better in the case dealing with
spatially heterogeneous classes, as they can easily capture information, therefore saving
analysts’ time and effort [55]. In this paper, we applied an on-screen collection of training
points using polygon objects.

2.4. Supervised Machine Learning Point-Based Classification
2.4.1. Maximum Likelihood (ML) Classifier

ML estimation is a probabilistic framework for solving the problem of density estima-
tion by finding the probability density distribution function and its parameters that best
describe the joint probability distribution of a set of observed data. It does so by defining
multiple alternatives of distribution functions and their corresponding parameters and by
maximizing the conditional probability (likelihood) of observing the data from the joint
distribution at a certain density function and its parameters. This is a problem of fitting a
machine learning model, where the selection of a distribution and its parameters that best
describe a set of data represents the modeling hypothesis [58].

ML classifier is a parametric classifier since it uses a predefined probability distribution
function (Gaussian) to describe data for each class. The parameters’ values (mean vector
and covariance matrix) of each class’s underlying probability distribution are learned from
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the data using ML estimation [58]. Once trained, a ML classifier calculates the probability
of a data point belonging to each class and subsequently assigns it the class with the
highest probability. The simplicity of class assignment makes ML classification intuitively
appealing [58,59]. ML was used in this study as a reference for classifier comparison, as
it guarantees an optimal performance given the validity of the mutinormality assump-
tion [59,60]. It also takes into account the mean vector and variance-covariance matrices
within the class distribution of the training samples to define the multivariate normal prob-
ability model parameters, which are mathematically tractable and statistically desirable in a
normal probability distribution [61,62]. ML often does not require large-sized training data
even though the quality of estimation improves with the increased size of training sam-
ples [58]. Furthermore, ML simplifies the learning process into a linear machine learning
algorithm due to being parametric [63].

2.4.2. Support Vector Machine (SVM) Classifier

SVM is a nonparametric classifier that approximates the probability distribution of
the training samples without applying a predefined function. In most cases, kernel density
estimation is used to approximate the probability density function of a continuous random
variable. In kernel density estimation, a basis function (kernel) is used to interpolate a
random variable’s probabilities and to control the sample records’ contribution in the
probability estimation of each of them by weighting each based on its distance to a given
query sample. On the other hand, the bandwidth controls the window of data records that
participate in the probability estimation of each sample [58].

Brownlee [63] fully described the SVM algorithm as originally a maximal-margin
classifier that looks for the most separable hyperplane to split point data into a set of
desired classes based on their feature space. In the case of a 2D space, the hyperplane is
visualized as a line for which the perpendicular distance to the closest data points represents
a margin. These points are known as support vectors since they define the hyperplane
and form the classifier accordingly. The larger the margin, the more discriminative the
classifier becomes. Because remote sensing data are hard for perfect separation by nature,
a soft-margin SVM is applied in this study to provide a certain degree of flexibility to the
margin maximization constraint. The flexibility allows for some samples of the training
data to break the separating line. In this way, a tuning parameter is introduced to determine
the amount of tolerance allowed for the margin to violate the hyperplane. In other words,
the tuning parameter represents the number of support vectors that are permitted to exist
within the margin. A small parameter value indicates a lower violation of the hyperplane,
a more sensitive algorithm to the training data, and a lower bias model.

SVM classifier implements kernels as transformation functions of the input space
into higher dimensions for better class separation, which is recommended when dealing
with a large feature space and/or heterogeneous landscapes. These kernels can be linear,
polynomial, or radial. The last two are preferred for more accurate models, as they allow
for maneuverability in separating curved or more complex classes. However, the poly-
nomial degree and the gamma parameter that ranges from zero to one in the polynomial
and radial kernels, respectively, should be maintained as minimally as possible to avoid
overfitting problems.

2.4.3. Multilayer Perceptron (MLP) Artificial Neural Network Classifier

Brownlee [64] gave a broad picture of the nonparametric classifier as the most useful
type of neural network in predictive machine learning modeling. A MLP neural network
relies on artificial neurons as the network building block, where each neuron is a com-
putational unit that uses an activation function to weight its inputs and bias. The whole
structure of the neuron including its weighted inputs, bias, and outputs represents a percep-
tron. Optimization algorithms initially assign random weights to the neuron’s inputs, for
which the summation determines the neuron’s output signal strength. Activation functions
are responsible for the mathematical mapping between the input feeding a neuron and
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its output going to the next layer. An activation function can be a binary step, linear, or
nonlinear; however, the latter is preferable to learn complex data sets [65].

A row of neurons represents a layer, and a network that consists of more than one
layer is by definition a multilayer network, which has input (visible), hidden, and output
layers. Each layer is defined by a number of neurons (nodes) and their activation functions.
The input layer is the exposed portion of the network since it directly imports training data
as numerical inputs. The feature space is a mandatory part of its definition. The hidden
layers receive their input from the output signals of the visible layer. A network has at
least a single hidden layer acting as its output layer, and it has several hidden layers in
deep learning applications. The output layer is the last hidden layer in a network, where
it produces the final prediction values of the problem being investigated. In a multiclass
classification application, the number of neurons in the output layer must equal the number
of land-use classes noticed in the scene [64]. Figure 4 shows a schematic of the structure of
a MLP network.

Input Layer

(3 inputs)

Hidden Layer

(2 neurons)

Output Layer

(1 output)

Neuron

Weighted Inputs 

+ Weighted Bias

Output

Neuron’s 

Corresponding 

Perceptron 

Activation 

Function

Raw Inputs

Figure 4. Schematic structure of a simple MLP (Multilayer Perceptron Neural Network).

Prior to modeling, training data have to be numerical and scaled. Integer encoding
and one-hot encoding were applied to represent ordinal and nominal data in a numerical
format, respectively [66]. Data scaling could be achieved by either normalizing training
samples to range from zero to one or by standardizing each feature so that it follows a
standard normal distribution that has a mean of zero and a standard deviation of one [64].

The stochastic gradient descent optimization algorithm was used to train the model. It
exposed each record in the training data to the network one at a time and applied forward
processing by upward activation of the neurons until the final output. The model predicted
the class of a training sample, compared it to the expected value, and calculated the error,
which was backpropagated one layer at a time through the network to accordingly update
the weights based on their contribution to the error. Loss and optimization functions were
used to evaluate the model weights and alter their values, respectively. The backpropa-
gation algorithm was repeated iteratively until it reached a set of weights that minimized
the amount of prediction error [64,67]. A single round of network update in which the
whole training instances participated is called an epoch, and in batch learning, a batch size
demonstrated the number of observations to work through before updating the internal
model weights. For example, a MLP model trained with 2000 samples for 1000 epochs and
a batch size of 50 indicates that an individual epoch includes 40 model updates (2000/50),
each occurring at every 50 records, and this process iterates for 1000 times [68]. A forward
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pass was eventually applied to the network after training to make predictions on unseen
datasets to assess the model skill [64].

2.4.4. Bootstrap Aggregation (Bagging) Classifier

Combining predictions from multiple machine learning models into ensemble predic-
tions improves their accuracies. Voting, Boosting, and Bagging are the most well-known
combination methods. Voting algorithms apply several standalone submodels for classifi-
cation (i.e., ML and SVM), whereas Boosting ensemble methods (i.e., AdaBoost) construct
a series of submodels, each of which contributes corrections to its subsequent one. Mean-
while, Bagging divides training data into many groups of subsamples, with each subsam-
ple training the model separately. In a multiclass classification task, Voting, Boosting, or
Bagging classifiers make predictions on unseen data by picking the most frequent class
produced by the submodels. Stacked aggregation even enables weighting the submodels’
predictions based on their demonstrated accuracy and combines the results to build a
single final output class [69].

Training subsamples generated in Bagging are called bootstraps and are created
randomly with replacement. Therefore, a data element may be present more than once in
the same bootstrap. This is beneficial when dealing with training data of limited size or
sensitive classifiers with a high-variance performance for which the results are altered with
the change in training samples (i.e., decision trees). In this way, Bagging ensures robust
predictions and mitigates overfitting problems. The size of each bootstrap can be fixed to a
certain number of observations. It can also be a fraction of the size of the original training
dataset. However, the default for a subsample is to have the same size as the original
training data. Each bootstrap trained a separate model, and the most frequent output class
was eventually assigned to the point [67]. We also applied the Voting algorithm for more
robust predictions, where the three classifiers (ML, SVM, and MLP) were the standalone
submodels.

2.5. Model Validation

Predictions from datasets used to train machine learning models cannot be employed
for evaluation to avoid overfitting problems. They may be biased, yielding pseud-optimistic
results, and such a performance is never desired when testing the models with unseen
data. The optimal method of assessment is to estimate the models’ performance on new
data for which the classes are known in advance using statistical techniques [69]. Figure 5
summarizes the methods commonly used to evaluate the classification accuracy of machine
learning algorithms. They all help to further adjust the models in case they show poor
performance by altering data transformations, models, and configurations [67].

Empirical evaluation implies copying the configuration of models used in similar
prediction problems, trained with more or less the same data size and already proved to
produce satisfying results. It is commonly applied to construct and assess deep learning
networks [64]. Baseline models are naive algorithms that serve as a point of comparison
with more advanced machine learning models so that there is a means to determine
whether these advanced models are genuinely superior. For example, baseline models are
used as reference models in non-traditional classification problems, where the Random
Prediction and Zero Rule algorithms are the most popular models to establish baseline
performance [67].

Data splitting accommodates complex models that are slow to train [64]. Dividing the
data into training and testing portions is the simplest form of data splitting; however, it does
not take into consideration the variance expected when altering training and validation
datasets presents tangible differences in the estimated model accuracy [69]. That is why
k-fold cross-validation is the gold standard evaluation for machine learning approaches.
It gained this reputation by splitting the data into a k number of folds, by holding out one
subset for validation, and by using the rest to train the model. The algorithm terminates
when all folds take turns as the held-out testing set. It produces a k number of different
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models where the entire data contributed to the fitting and evaluation processes, averaged
the scores, and calculated their standard deviation assuming that they follow a Gaussian
distribution. In this way, k-fold validation provides robust accuracy estimation on unseen
data, with less bias than an individual train-test set. However, it is computationally
expensive, and the choice of k may be tricky to secure a validation set and repetitions
adequate for a reasonable evaluation. Hence, it is preferred in modest-sized prediction
problems with sufficient computational hardware resources [64,69]. The leave-one-out
approach is a special case of the k-fold cross-validation, where k is set to the number of
records in the dataset, meaning that each fold contains a single sample. Although it creates
the best possible learned models, it obviously takes longer processing time than the k-fold
algorithm. Thus, it is the choice in small datasets or when the model’s skill estimation is
critical [69]. The repeated random test splits method is similar to the k-fold approach since
it randomly replicates the data division and assessment multiple times. It combines the
benefits of the decline in running time and variance in the estimated model performance
from the train-test splitting and k-fold cross-validation algorithms. It strikes a good balance
when processing large and slow-trained datasets with a reduced bias at the same time [69].

Empirical
Comparison to 

Baseline Models

Resampling

K-fold Cross 

Validation

Train/Test

Leave-one-out 

Cross Validation

Classification 

Metrics

Confusion 

Matrix

Classification 

Accuracy

Area Under 

ROC Curve

Logistic Loss

3

1 2

4

Classification 

Report

Repeated Random 

Test/Train Splits

Figure 5. Methods of assessment of machine learning classification algorithms (ROC: Receiver
Operating Characteristic).

On the other hand, evaluation metrics impact how the model performance is inter-
preted and compared [69]. Classification accuracy is the ratio of correct predictions to
the whole ones made by the model. In spite of its simplicity, it is an unrepresentative
measure for multiclass predictions since neither samples-per-class are usually constant
nor all errors are equally important [67,69]. Therefore, it is usually accompanied by a
confusion matrix. The latter is a square matrix where rows and columns represent pre-
dicted and actual classes, respectively, and each cell stores the number of predictions for
each class. Ideally, it should be a diagonal matrix, as diagonal values (from top left to
bottom right) are the correctly predicted samples whilst off-diagonal values represent the
misclassified records. Consequently, it clearly reveals predictions and prediction errors for
each class [67]. The logistic loss assigns scores to the predictions in proportional to their
membership probability to a certain class. The area under the ROC (Receiver Operating
Characteristics) curve measures the distinguishability of a model in a binary classification
problem. A model has discrimination capabilities if the measure ranges from 0.5 to 1,
indicating random and perfect predictions, respectively. Some modeling software and
programming functions automatically generate classification reports that even include
extra measures such as precision and recall [69]. We applied the train-test data splitting
and k-fold cross-validation methods with the classification accuracy and confusion matrix
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metrics to evaluate the performance of the model developed in this study. They are the
most suitable approaches concerning data size and the nature of the prediction problem
addressed.

3. Experimental Work

All computations were processed by Python programming language v 3.7.4, on Spyder
IDE (Integrated Development Environment) v 3.3.6, embedded in Anaconda Enterprise
v 3.0. ERDAS IMAGINE v 2018 was used to visualize the 3D LiDAR point clouds. Addi-
tionally, LAStools were applied for LiDAR data conversion and metadata extraction. Data
analysis was carried out on a workstation with the following specifications: Windows 10
Pro for workstations OS 64-bit, 3.2 GHz processor (16 CPUs), and memory of 131072MB
RAM.

3.1. Study Area and Datasets

The LiDAR data covered a residential urban area of 33,000 m2 located in Rouge, a
community neighborhood within the former suburb of Scarborough, east of Toronto city
(Figure 6) (Screenshots were obtained from Google Maps in November 2020, and the neigh-
borhoods shapefile was downloaded from the University of Toronto Libraries, Map and
Data Library, Toronto Neighbourhoods (available from: https://mdl.library.utoronto.ca/
collections/geospatial-data/toronto-neighbourhoods (accessed on 12 November 2020))).
The point cloud (Figure 7) contained 1,976,164 points that were acquired at a 0.13 m
spacing in 2015 by the multispectral Titan sensor, with three laser wavelengths: 532, 1064,
and 1550 nm. The data were generated by the OptechLMS software that projected the
3D coordinates to the NAD (North American Datum) 1983 UTM (Universal Transverse
Mercator) zone 17N coordinate system. We selected this study region because it contains
different urban elements (i.e., asphalt, buildings, grass, and sidewalks) that commonly
exist in residential urban morphologies and have been targeted for classification in similar
studies for fair result comparison. We decided to limit the zone’s area to accommodate ex-
cessive processing time observed previously in the geo-registration process. Nevertheless,
we managed this reduction in a way that still kept the region varied.

N

Rouge 
Toronto city neighbourhoods

Lake Ontario

Study area

(a) (b)

Figure 6. Study region. (a) Location of the study zone in Toronto. (b) Study area zoomed-in.

https://mdl.library.utoronto.ca/collections/geospatial-data/toronto-neighbourhoods
https://mdl.library.utoronto.ca/collections/geospatial-data/toronto-neighbourhoods
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Figure 7. LiDAR (Light Detection and Ranging) data by height values.

3.2. Data Geo-Registration

Despite the apparent satisfactory qualitative and quantitative validation of the geo-
registration results conducted in [45], initial classification trials showed misalignment of
the LiDAR point clouds. The misalignment stemmed from the incorrect inheritance of
radiometric properties from the aerial photo to the point clouds. To solve this problem,
we switched to the affine registration model at a spatial resolution of 40 cm instead of the
third-order polynomial at a 200 cm spatial-resolution. For more robust results, we fused
the CED (Canny Edge Detector) algorithm with the geo-registration workflow for scene
abstraction instead of image clustering by running it on the PC filter output, as suggested
by Megahed et al. [46]. We used the scikit-image library [70] to read images and detect
edges, OpenCV [71] to save, and GDAL to georeference edges [72]. We converted the edges’
binary maps to zeros and ones instead of falses and trues, respectively, followed by another
conversion to 8-bit images before exporting the results. We set the Gaussian blur (sigma
parameter) to 2 and 0 for the LiDAR and aerial images, respectively. Whilst the double
threshold values were adjusted to 0.1 and 0.3 for the LiDAR image, for the aerial photos,
the values were 0 and 0.1.

3.3. Ground Filtering

The lasground-new tool [73] was used for bare-earth extraction out of the LiDAR point
clouds. It is under the collection of LAStools software package. It is a revamped version
of the original lasground tool that applies the progressive TIN densification approach.
The lasground-new handles complicated terrain better than the lasground by increasing the
default step size, which allows for removing most buildings in common cities. We applied
the default step size for towns or flats, which is 25 m, to match the terrain of the residential
study zone. It divided the data into 857,738 and 1,118,426 ground and non-ground points,
respectively (Figure 8).

It is worth mentioning that outliers were removed from the raw LiDAR point clouds
using the lasnoise tool [74] in a preprocessing step before the data geo-registration. The tool
identifies a point as an outlier if its surrounding number of points within a 3D window is
less than a predefined value. The window size and the minimum surroundings threshold
values were kept as the tool’s default settings.
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Figure 8. Ground filtering of LiDAR data. (a) Ground points. (b) Non-ground points.

3.4. Training Samples Acquisition

Eight classes were observed in the study region: four ground classes—ark asphalt,
light asphalt, sidewalks, and grass—and another four non-ground classes—buildings,
vehicles, high vegetation, and low vegetation. Representative and well-distributed training
data of 533,362 points were collected manually by digitizing polygons of points for each
class on ERDAS IMAGINE (Figure 9). The pie charts in Figure 10 show the numerical and
percentage breakdown of the acquired training samples.

Dark Asphalt Light Asphalt Sidewalk Grass Unclassified

(a)

Figure 9. Cont.
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Figure 9. Distribution of training data. (a) Ground samples. (b) Non-ground samples.
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Figure 10. Breakdown of training data. (a) Total samples. (b) Ground samples. (c) Non-ground samples.

3.5. Point-Based Classification

After data geo-registration and ground filtering, the LiDAR point clouds became
attributed by the H (Height), I (Intensity), RGB (Red Green Blue), and NIR features.
Additionally, NDVI was calculated as follows [75]:

NDVI =
NIR− R
NIR + R

(1)
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The ML, SVM, and MLP neural networks classified the data considering four different
scenarios for a thorough investigation of their effect on the classification accuracy:

1. H, I.
2. H, I, RGB.
3. H, I, RGB, NIR.
4. H, I, RGB, NIR, NDVI.

Once the best scenario was identified, the classification results were further improved
by the Bagging ensemble technique using the abovementioned three classifiers and majority
voting contributed to the production of the final map.

3.5.1. ML and SVM Classifications

Assuming a multivariate normal probability distribution in the ML classification, the
likelihood was expressed as below [76]:

P(X|C) = 1

(2π)
n
2 |V| 12

exp(−1
2
[X−M]TV−1[X−M]) (2)

where
P(X|C): probability of a LiDAR point X belonging to class C,
n: number of features in class C,
V: variance-covariance matrix of n features in class C, and
M: vector of feature mean for n features in class C.

In contrast, in the SVM classification, the “scikit-learn” Python module [77] was used.
The default SVM parameters were kept: the RBF kernel for its popularity and high mapping
capabilities of input spaces, the trade-off parameter C of 1, and the scale option to calculate
the kernel coefficient gamma as a scale measure using the feature dimension and values.

3.5.2. MLP Neural Network Classification

Keras Python library was used to create the MLP. It runs on top of the numerical
platform TensorFlow to provide an interface to numerical libraries at the backend instead
of direct execution of mathematical operations required for deep learning [64]. Neural
networks cannot perform directly on categorical data; hence, the classes had to be converted
to numerical values via the to_categorical function [78]. It involves label encoding, where
each class is assigned an integer value, followed by a one-hot encoding, where a binary
representation is added to avoid the assumption of having an ordinal relationship between
classes [79].

A classical feedforward MLP was created by identifying a sequential model and by
adding three fully connected layers using the Dense class. The input layer has 16 neurons,
and the input dimension was set to the feature space, which is two, five, six, and seven,
respectively, for each of the four scenarios. The hidden layer has 12 neurons, and both
layers were activated by the ReLU (Rectified Linear Unit) function. It is linear for inputs
larger than zero, which makes it easier to train and less likely to saturate. On the other hand,
it is nonlinear for negative values that are output as zero [80,81]. Therefore, it provides
a potential strategy to eliminate the vanishing gradients problem usually encountered
while training deep feedforward networks, where the backpropagated error exponentially
decreases at layers close to the input layer. Consequently, it results in a slow learning rate,
premature convergence, and an imbalanced network by having more learning at layers
close to the output layer [81]. The number of neurons in the output layer is equal to the
number of output classes, which is four in the ground and non-ground LiDAR datasets.
The layer was activated by the softmax nonlinear function, which is typically used in a
multiclass classification problem, as it normalizes the outputs by converting the weighted
sum values at each node into class membership probabilities that sum to one, following a
multinomial probability distribution [82].
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The model was compiled using the to_categorical logarithmic loss function [83] and
Adam gradient descent optimization algorithm [84] and was fitted by the training samples’
features and classes over 100 batches and 100 epochs. As a rule of thumb, we started
the training process with a few epochs (i.e., three epochs) and evaluated the predicted
classes of the training data against their real ones. If the model yielded promising results,
we optimized them by increasing the epochs; otherwise, we added more layers and/or
neurons per layer. The final assessment was carried out on the validation dataset.

3.5.3. Bagging Classification

Eleven bootstraps were generated to carry out the Bagging classification. It secures a
number of trained models adequate for robust classification results, and the odd number en-
sures a single most-frequent-class assignment to each point. The bootstraps were generated
randomly with replacement, each with the same number of observations in the original
training data. In other words, each of the 11 bootstraps randomly created for the dark
asphalt class, for example, has 94,541 points (Figure 10). The same bootstraps were used
for the three classifiers: ML, SVM, and MLP neural network for consistent comparison.

3.5.4. Accuracy Assessment

Since various machine learning classifiers were compared in this study, the same data
splits were used for the models’ training and validation to ensure a consistent and fair
comparison [67]. Two different validation and test sets were used to evaluate the models
and did not contribute to the training process. The test data represent 1% of the data
described in Figure 9 and provides an evaluation of the final model fit on the training
samples [85]. The remaining 99% was further divided, as 80% was used to train the models,
while 20% was used to denote the validation set used to assess a model fit on the training
dataset while tuning model hyperparameters [85]. It is worth mentioning that all splits are
stratified, meaning that the eight classes are represented proportionally to their original
size in the data acquired manually on ERDAS IMAGINE. This guarantees a balanced
representation of all classes, which is essential for good model learning as well as realistic
and unbiased assessment results. Additionally, k-fold validation technique, with k set to 10,
was applied to the MLP neural network model to accommodate its stochastic nature that
is more highlighted than other machine learning algorithms due to its abovementioned
mechanism of operation. Overall accuracy, per-class accuracy, and confusion matrices were
the measures used for comparison.

To guarantee a reliable classifiers’ comparison, the three classifiers (ML, SVM, and
MLP) used the same training, validation, and test data, on one hand. On the other hand,
the Bagging approach ensures different training sets for each classifier to eliminate variance
in the results.

4. Results

Early classification experiments revealed errors in the geo-registration performed
in [45] using the third-order polynomial model. Figure 11 illustrates some of these errors
featured by the displacement of sidewalks (Figure 11a) as well as misalignment of buildings
and grasses (Figure 11c). The switch to the affine registration model at a spatial resolution of
40 cm along with the fusion of CED as described in [46] resulted in 3074 and 3045 candidate
control points on the LiDAR and aerial images, respectively, which were matched into a
set of 975 pairs of final control points. The whole processing took 14.7 h and yielded 1.78
and 1.19 pixels as model development and validation errors, respectively. Figure 11b,d
display the effect of these modifications on correcting the displacement and misalignment
of geo-registered points, respectively.
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(a) (b)

(c) (d)

Figure 11. Examples of geo-registration corrections: black ovals represent error locations. (a) Sidewalk displacement before
corrections: aerial photo as basemap. (b) Sidewalk correct positioning: aerial photo as basemap. (c) Buildings/grass
misalignment before corrections: NIR (Near Infrared), G (Green), and B (Blue) visualization. (d) Buildings/grass alignment
after corrections: NIR, G, and B visualization.

Figure 12 outlines the overall classification accuracy on the validation and test sets
for the four investigated scenarios. For the same classifier, each combination of features
shows close accuracy values on both datasets: validation and test. Additionally, Figure 13
displays the results of the k-fold cross-validation performed on the MLP neural network
classification models. The bars represent the mean accuracy of the ten folds calculated by
averaging their results when each participated as the held-out testing set. The accuracy is
shown separately for the ground and non-ground classifications since the models operated
independently on both data after the ground filtering. The figures above the bars are the
standard deviation of the ten accuracies, assuming a normal distribution. They are minimal,
as the highest is ±0.26% for the non-ground classification of the second scenario except for
the ±7.47% recorded by the ground classification of the first scenario.
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Figure 12. Classification results on validation and test sets (ML: Maximum Likelihood, SVM: Sup-
port Vector Machine, H: Height, I: Intensity, RGB: Red Green Blue, NDVI: Normalized Difference
Vegetation Index).

Figure 13. K-fold cross-validation results of MLP neural network classification.

The skills achieved by the classifiers in each feature space group are illustrated in
Figure 14. The overall accuracy (Figure 14a) of the first scenario that involved the I and H
did not exceed 78%, which tangibly increased to cross 95% with the inclusion of the R, G,
and B spectral properties in the feature space denoted by the second scenario. The overall
accuracy increment looks uniform for the last three scenarios; however, the third feature
combination that cumulatively appends the NIR provides the best scenario, with the
largest overall accuracy surpassing 96%. The addition of the NDVI in the fourth feature set
insignificantly lowered the overall accuracy, which was still above 96%.
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(a)

(b)

(c)

Figure 14. Classification accuracy (test set). (a) Overall classification. (b) Ground accuracy. (c) Non-
ground accuracy.
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The influence of adding the radiometric characteristics to the feature space is better
addressed in the ground classification (Figure 14b) than the non-ground (Figure 14c).
The latter shows a relatively confined range of accuracies in all feature combinations,
contrary to the ground classification, where the inclusion of the R, G, and B in the second
scenario considerably improved the accuracy to around 98% after barely passing 60% in
the first scenario. In addition, the ground classification shows accuracies higher than the
non-ground in all feature combinations except the first one.

The MLP shows superiority over the ML and SVM classifiers, as it scores the highest
overall accuracy of 97.75% with the third scenario’s feature space. This supremacy is proven
in all scenarios and even highlighted in the ground classification, for which the accuracy
passes 98% in the third scenario. The ML and SVM results are very similar; nevertheless,
the ML displays preponderance in all scenarios except the first one. It achieves a 96.74%
overall-accuracy versus 96.36% for the SVM in the third scenario. In terms of running time,
Figure 15 illustrates the processing time required for the models’ training, validating, and
testing in the four considered scenarios. The ML classifiers are the fastest predictive models
in terms of the time expected for them to classify the data proportions directly with the
feature space dimension. It gradually increases from 19 to 21, 24, and 25 min for the four
feature combinations, respectively. The MLP networks show slightly longer processing
times, as they run in 26–27 min. The SVM is the most computationally expensive classifier
that noticeably slowly processes the data in 108 min for the first scenario. This time plunges
to remain relatively steady for the rest of the scenarios, which take 43, 32, and 39 min,
respectively.

Figure 15. Processing time.

Figure 16 provides a profound look at the per-class accuracy of the best scenario
classification performed by the three classifiers. An individual class accuracy is exposed
by producer and user accuracies. The first reflects the goodness of the classification itself,
while the latter reveals the classification accuracy compared to the ground truth classes.
Except for the vehicles and low vegetation classes, the bar charts display similar figures
that are above 93%. The accuracies of the building, high vegetation, and light asphalt
classes exceed 97%, and the sidewalk and grass accuracies even reached 100%. However,
the vehicles and low vegetation classes have the lowest accuracies. The producer accuracies
of the vehicle class are 61, 63, and 70%, and 89, 80, and 96% for the low vegetation class, as
recorded by the three classifiers ML, SVM, and MLP, respectively.
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(a)

(b)

(c)

Figure 16. Class accuracy (test set): scenario-3. (a) ML classification. (b) SVM classification. (c) MLP
neural network classification.
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Bagging classification results showed similar overall and per-class accuracy results.
Therefore, we went directly to the Voting ensemble classification using the standalone
predictions of ML, SVM, and MLP neural networks. Since the latter demonstrated the
best accuracy results, LiDAR point clouds were assigned the MLP predictions in case of a
draw frequency. The overall classification accuracy is 97.36%. This figure is higher than the
maximum urban mapping accuracy to our knowledge so far, i.e., 95%, which was achieved
by Morsy et al. [42] using costly multispectral LiDAR sensors. Moreover, it surpasses other
accuracy figures that barely exceeded 90% using computationally expensive geometric
feature spaces, as mentioned previously at the end of the Introduction section. Figure 17
displays the final map, for which a qualitative inspection reveals minor additional mis-
classification of high vegetation as buildings, light asphalt as dark asphalt, and buildings
as high vegetation, marked as A, B, and C, respectively. The transmission towers were
identified manually as non-ground scene features.

Buildings Vehicles High Vegetation Low Vegetation 

Dark Asphalt Light Asphalt Sidewalk Grass Transmission Towers

A

A

B

C

C

C

B

B

C

C

Figure 17. Final LiDAR mapping: black ovals represent examples of misclassification (A: high vegetation as buildings, B:
light asphalt as dark asphalt, C: buildings as high vegetation).

5. Discussion

As concluded in [45,46], it is better to apply the PC model for LiDAR and imagery
data geo-registration on 2D images resampled at lower spatial resolutions to avoid compu-
tationally expensive data processing and high model development error values. However,
including CED with the PC filter as a scene abstraction approach significantly reduces the
model development error values (from 5.74 to 1.78 pixels using the affine model) when
processing the data at high spatial resolutions (40 cm). It also applies to the model valida-
tion error figures but are not as noticeable (from 1.29 to 1.19 pixels). The double filtering
eliminates noise that impacts precise edge detection. This multifilter fusion diminishes
the gap between model development and validation errors. Consequently, it reconsiders
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registration models with data processed at high spatial resolutions that are excluded using
the clustering scene abstraction approach due to their false indication of poor registration
performance. Hence, the filter combination draws attention to decreasing the execution
time when dealing with high spatial-resolution data (especially if they cover large study
regions) by dividing them into tiles and/or by considering multithreading calculations.

On the other hand, the errors demonstrated in Figure 11 highlight the importance of
a thorough qualitative post-registration inspection while validating the chosen empirical
registration model. A model’s ability to minimize its development and validation errors
should not be the sole criterion for model selection. For example, the third-order polynomial
model produced the least and closest development and validation errors [45]; however, the
model caused overparameterization that resulted in displacement and misalignment errors.
Therefore, examining feature edges (i.e., building roofs and grasses) after ground filtering
as well as a preliminary classification of some ground objects and matching them to a
basemap are recommended practices for a reliable qualitative geo-registration assessment.

The results described in Figure 12 indicate the consistency of the classification models
since the same scenario exhibits almost the same accuracy value when assessed separately
by the validation and testing data. They prove the models’ consistency and precision
and, consequently, the reliability of either set in demonstrating the classification accuracy.
The k-fold cross-validation results shown in Figure 13 support this conclusion for the
MLP neural networks, where the whole data not only contributed to the testing but
also entirely participated in the training process yet produced compatible models with
consistent results. However, a slim feature space, such as the first scenario, increases the
variance of accuracies that is reflected by a high standard deviation to ±7.47% obtained in
the ground classification. Nevertheless, since height values are non-distinctive for ground
objects, they are a poor choice for being the sole feature in a feature space.

Generally, randomness is a characteristic in many machine learning algorithms due to
stochastic domains that may include data with noise, random errors, or incomplete samples
from a broader population (i.e., train/test data split). Furthermore, some algorithms use
probabilistic decisions to ensure smooth learning that is generic enough to accommodate
unseen data by fitting different models each time they run even on the same data [86].
Neural networks have additional sources of randomness as optimization classifiers that
stochastically select subsequent areas of learning in the feature space based on areas that
have been already searched. Moreover, the randomness in observation order and initial
weights highly affects their internal decisions [87]. However, the results of the k-fold cross-
validation (Figure 13) confirm robust MLP models thanks to adequate and representative
training data.

Expanding the poor LiDAR feature space to include the R, G, and B radiometric
signatures as in the second scenario boomed the overall mapping accuracy (Figure 1a).
Since the naked-eye scene visualization (Figure 6b) is discriminative, this addition to the H
and I features enabled the classifiers to differentiate between buildings, sidewalks, dark
and light asphalts. Moreover, consideration of the NIR spectral property in the third
scenario provided a better recognition of the green objects such as grasses, and high and
low vegetation, which improved the overall accuracy. On the other hand, the intangible
contribution of the NDVI is justified as it is a calculated index derived from the already
included NIR and R features, and this repetition did not add significant value to the
classification accuracy. As described previously in this section, the first scenario represents
a 1D feature space in the ground classification. Therefore, its accuracy (Figure 14b) was
influenced by adding R, G, and B to the feature space in the second scenario more than
the non-ground classification, where the H values do represent a discriminative feature
(Figure 14c). It also explains the plunge in accuracy of the ground classification compared
to the non-ground in the same scenario.

The higher accuracy figures denoted by the ML over the SVM classifier, despite being
very close, support the validity of assuming a Gaussian probability data distribution,
which makes ML more advisable than SVM since the latter requires substantial time for
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training and hyperparameter fine-tuning. However, this conclusion does not apply to 1D
feature spaces, as in the ground classification of the first scenario, where ML dipped the
accuracy to 38.09% compared to 59.47% by SVM (Figure 14b) and subsequently lowered
the overall accuracy to 64.76% compared to 74.97% of SVM (Figure 14a). On the other hand,
the outperformance of the MLP networks reflects their flexibility in addressing nonlinear
predictive problems due to their capacity of approximating unknown functions, which
justifies their outstanding accuracy figures even with 1D feature spaces. Its overall accuracy
reached 77.59% in the first scenario, which is a considerably better performance than ML
and SVM, given the same situation.

Another distinguishing feature of the MLP neural networks is the updating of the
parameters and the backpropagation of errors at each epoch, which eventually stabilizes the
models by ensuring good learning without overfitting or underfitting. Figure 18 shows the
learning curves of the MLP network classification of the best scenario, i.e., the third feature
combination. The plots reveal an association between the model error evaluated on the
training and validation sets and the number of epochs used in the model configuration. An
underfit model shows a better performance (lower loss) on the training than the validation
data, with a noticeably poor validation performance that either declines or levels off with
the increase in epochs. The performance decline can be solved by increasing the number of
epochs and/or the training data size, whereas expanding the model capacity to include
more neurons and/or hidden layers may help to solve the leveling-off problem. On the
other hand, an overfit network gives improved accuracies on the training and validation
data, with the validation curve overlapping with the training’s and then deviating from
it with the increase of epochs. Terminating the model at the inflection point and/or
introducing more training data may solve the issue. Therefore, the plots in Figure 18
confirm a good fit since the models perform well on both sets, in which the curves stabilize
around the same loss value while the epochs grow.

(a) (b)

Figure 18. MLP neural network learning curves: scenario 3. (a) Ground training. (b) Non-ground training.

ML is a systematic classifier that straightforwardly follows Equation (1), where the
feature space dimension directly affects the size of the mean vector and variance-covariance
matrix. Therefore, a progressively increasing processing time is observed along with the
four feature combinations (Figure 15). Despite the highest model skills recorded by the
MLP networks, they are slightly more time-consuming than ML, with a training period
occupying the vast majority of the total processing time regardless of the feature space
dimension. The run time almost did not change along with the given scenarios, as it is
connected to the network structure that remained the same in all feature combinations.
Nevertheless, the models once created carried out predictions quickly (i.e., 1.7 min in the
classification using the best scenario). SVM spends a long time building hyperplanes to
differentiate various classes, in general. Such a drawback is significantly highlighted when
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training the models using a narrow feature space as in the ground classification of the first
scenario, the processing of which took twice the time needed for the non-ground data.

The per-class accuracies obtained by the three classifiers (Figure 16) indicate satisfying
results, except for the vehicles for which the producer accuracy figures were notably lower
due to the class misclassification with the low vegetation. This consequently decreased
the non-ground classification accuracies (Figure 14c) as compared to the ground ones
(Figure 14b). Vehicles are small-sized mobile urban features with no distinguishable
spectral characteristics. They are unlikely to maintain their locations on scenes captured by
different sensors at various times as in this geo-registration case, where the LiDAR point
clouds were obtained in 2015 independently from the aerial photo that was captured a
year ahead. Figure 19 shows how the vehicle points inherited the radiometric properties
of the ground surfaces where they usually park (i.e., grassy sidewalks). As non-ground
objects, vehicles were closer to the low vegetation class spectrally and geometrically, given
that the height was the only geometric feature considered in the classification. Considering
additional geometric properties in the classification feature space can help eliminate this
misclassification. ML and MLP classifiers gave relatively close vehicle-class accuracies,
notably higher than the SVM that hardly creates discriminative hyperplanes to differentiate
between similar classes [29,88].

Figure 19. Radiometric characteristics of vehicles: green ovals represent vehicle locations—NIR, G, and B visualization.

Bagging classification results were similar, indicating a good training dataset; however,
Bagging took a substantial amount of processing (>4 h) to classify the LiDAR data 11 times.
Hence, neither the Bagging classification nor the k-fold cross-validation (processing ten
folds also exceeded four hours) are advisable when having adequate training data, which
were already proven reliable on validation and testing data. The transmission towers
in the final map (Figure 17) do not have sufficiently frequent appearance in the study
area to be considered an independent class. Their points inherited vegetation radiometric
properties after geo-registration, and their height misled the classifiers to predict them as
high vegetation. Therefore, they were picked up manually and reclassified.

Figure 20 plots the locations of the extra misclassification examples denoted in
Figure 17 on the corresponding aerial photo that contributed to the geo-registration. Mis-
classification of some high vegetation points as buildings (A examples) is due to aerial
and LiDAR data acquired at different times. These high trees were not planted at the time
of obtaining the aerial image, so they inherited the dark asphalt’s spectral characteristics.
Eventually, they became similar to the buildings’ radiometric and geometric properties,
as they also share similar height values. The B examples on the aerial photo mark spots
of shadows that belong to light asphalt but are wrongly predicted as dark asphalt, as the
latter radiometrically resemble shadows. Finally, the C examples address the misprediction
of some edge-building points as high trees. It is a result of an inaccurate orthorectifica-
tion of the aerial image, where the building facades are still observed. The zoom-in in
Figure 20 exhibits an overlay of the geo-referenced LiDAR and aerial images, where the
inexact orthorectification shifted the roofs from their correct projection and revealed the
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interfaces. Consequently, the building points located on the edges acquired the spectral
characteristics of the facades and surrounding surfaces that are planted, leading to being
wrongly assigned to high vegetation, especially with close height ranges.

The shadow effect appears in the per-class accuracy results (Figure 16), where the
dark asphalt figures are slightly below the rest of the classes. On the other hand, the
impact of the high-vegetation/buildings misclassification due to different acquisition
times and inaccurate orthorectification of aerial data does not show up in the accuracy
results. That is because LiDAR point clouds at such locations were not included in the
training data (Figure 9b), of which the validation and testing sets are a part (Figure 10).
The abovementioned impacts are the drawbacks associated with the geo-registration of
airborne LiDAR data to aerial/satellite images. Nevertheless, it provides an affordable yet
accurate means of densifying classification feature spaces for better mapping.

Figure 20. Examples of misclassification by external factors (A: different acquisition time, B: shadow, C: inexact orthorectifi-
cation) on corresponding aerial photo: the zoom-in shows a height LiDAR-image overlay in transparent orange layer.

In the end, we can summarize the contribution of our proposed study to the fusion of
airborne LiDAR and imagery data in the classification of urban land-uses as follows:

• Referring to the geo-registration of both data types by the PC model and scene
abstraction algorithm that locate control points, which are not limited to points on
traditional linear elements and intersections. The approach does not require data to
be georeferenced, applies empirical registration models without knowing the physical
model characteristics, and overcomes the problem of airborne LiDAR data not coming
with onboard optical images collected during the same flight mission. Full details
about the geo-registration approach are found in [46].

• Suggesting the inclusion of the CED to the PC filter for a more concise detection
of geo-registration primitives. This study highlights the importance of a thorough
qualitative inspection of the abovementioned geo-registration method’s results, as
empirical models might cause overparameterization that cannot be quantitatively
revealed.

• Introducing a new data fusion approach to LiDAR point cloud classification that
constructs radiometric-based feature spaces from spectral characteristics inherited
from aerial images. With affordable sensors and computationally inexpensive feature
spaces that include only I and H from LiDAR data and RGB, NIR, and NDVI from
aerial photos, we achieved a mapping accuracy over 95% with a conventional classifier
as ML and over 97% with MLP.

• Investigating different combinations of the features as mentioned above with various
commonly known classifiers: ML, SVM, and MLP in regards to the logic behind each
classifier, overall and per-class accuracies, and processing time. This comparison
helped exclude SVM and derived features (i.e., NDVI) from enhancing the mapping
accuracies.
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For future work, we recommend applying shadow-removal and post-orthorectification
strategies to aerial data before geo-registration to eliminate the impact of LiDAR point
clouds receiving incorrect radiometric properties and thus to minimize misclassification
errors. In addition, we suggest investigating the expansion of feature spaces by performing
an object-based classification to allow geometric features and/or extra radiometric ones
from hyperspectral imagery data.

6. Conclusions

This study examines the effect of including different radiometric properties along
with the height values on the classification results of LiDAR point clouds of an urban mor-
phology. The morphology comprises classical urban-residential objects: sidewalks, grasses,
dark and light asphalt, buildings, vehicles, and high and low vegetations. In contrast to tra-
ditional point-based classification work that relies on high-dimensional geometric-oriented
feature space, our research uses spectral properties inherited from an aerial photo after
geo-registering it to the LiDAR point clouds to form different feature combinations. That
provides an affordable approach towards rich feature spaces instead of the computationally
expensive conventional ones and the costly multispectral airborne LiDAR sensors. The
geo-registration added R, G, B, and NIR to the LiDAR’s I and H feature space as well as
the calculated NDVI.

We considered four scenarios for ground and non-ground classifications. The first
scenario started with H and I and then incrementally involved RGB, NIR, and NIR for the
remaining feature combinations. We applied three supervised machine learning algorithms
to classify the scene, i.e., ML, SVM, and MLP neural networks, and used three separate
sets out of the original LiDAR data for model training, validation, and testing. The
validation and testing results of the three classifiers and the k-fold cross-validation of the
MLP networks showed consistent accuracies, which indicated that the models were reliable
for the prediction of unseen data.

The best classifying features were those of the third scenario. The NDVI is already
derived from the NIR and R signatures, so it did not add to the results. The best scenario
gave overall accuracies of 96.74, 96.36, and 97.75% for the three classifiers. The MLP
results were the most outperforming, followed by the ML algorithm. That is because of the
layering feature of MLP that approximates nonlinear prediction problems and the ML’s
valid assumption about the normal distribution of data. The SVM was not as promising as
ML and MLP, especially with mixed classes and narrow feature spaces, where it struggled
to build discriminative hyperplanes. The three classifiers processed the data in 24, 32,
and 26 min, respectively. The run time of the ML, SVM, and MLP models relied on the
feature dimension, feature dimension and complexity of classes, and the network structure,
respectively.

The per-class accuracies showed a low-vegetation/vehicle and dark/light-asphalt
misclassifications. The first is due to vehicles acquiring the properties of grassy park-
ing surfaces, and the latter is a consequence of the shadow existence in the aerial image.
Moreover, the LIDAR/imagery data acquisition at different times and the inaccurate
orthorectification of the aerial photo resulted in misclassification of the buildings and high-
vegetation classes. These mispredictions highlight the shortcomings of the LiDAR/aerial
data geo-registration as well as the importance of a thorough qualitative post-classification
assessment. The inclusion of geometric indices can eliminate the abovementioned misclas-
sifications. Nevertheless, the addition of traditional spectral signatures such as R, G, B,
and NIR to the LiDAR’s height values boomed the mapping results to exceed 97%. Finally,
the Bagging classification and k-fold cross-validation exceeded four hours to process the
data. Hence, they are not recommended practices in cases with sufficient training samples.
The majority voting results of the three classifiers produced an overall accuracy of 97.36%.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CED Canny Edge Detector
CRF Conditional Random Field
DIM Dense Image Matching
GBT Gradient Boosted Trees
GNB Gaussian Naive Bayes
H Height
HMP Hierarchical Morophological Profile
HSV Hue Saturation Value
I Intensity
IDE Integrated Development Environment
IDW Inverse Distance Weighted
IMMW Iterative Majority Moving Window
KNN K-Nearest Neighbors
LiDAR Light Detection and Ranging
LULC Land Use Land Cover
MIR Mid Infrared
ML Maximum Likelihood
MLP Multilayer Perceptron Neural Network
MP Morophological Profile
NAD North American Datum
NDSM Normalized Digital Surface Model
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NN Nearest Neighbor
PC Phase Congruency
PCA Principal Component Analysis
PCR Principal Component Regression
ReLU Rectified Linear Unit
RF Random Forest
RGB Red Green Blue
ROC Receiver Operating Characteristics
SVM Support Vector Machine
TIN Triangulated Inverse Network
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
UTM Universal Transverse Mercator
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