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Abstract: We introduce a novel regularization function for hyperspectral image (HSI), which is based
on the nuclear norms of gradient images. Unlike conventional low-rank priors, we achieve a gradient-
based low-rank approximation by minimizing the sum of nuclear norms associated with rotated
planes in the gradient of a HSI. Our method explicitly and simultaneously exploits the correlation
in the spectral domain as well as the spatial domain. Our method exploits the low-rankness of a
global region to enhance the dimensionality reduction by the prior. Since our method considers the
low-rankness in the gradient domain, it more sensitively detects anomalous variations. Our method
achieves high-fidelity image recovery using a single regularization function without the explicit use
of any sparsity-inducing priors such as `0, `1 and total variation (TV) norms. We also apply this
regularization to a gradient-based robust principal component analysis and show its superiority in
HSI decomposition. To demonstrate, the proposed regularization is validated on a variety of HSI
reconstruction/decomposition problems with performance comparisons to state-of-the-art methods
its superior performance.

Keywords: hyperspectral imaging; image restoration; convex functions; signal processing

1. Introduction

Convex optimization techniques have gained broad interest in many hyperspectral
image processing applications including image restoration [1–8], decomposition [9,10],
unmixing [11–13], classification [14,15], and target detection [16]. The success of such tasks
strongly depends on regularization, which is based on a priori information of a latent clear
image. Total Variation (TV) is one of the exemplary models often used for regularization in
convex optimization approaches [17–21]. Some convex optimization methods specializing
in low-rank regularization have been proposed in recent years [22,23]; these use the spectral
information directly and achieve high-quality image restoration.

In this paper, we propose a regularization scheme that directly and simultaneously
considers correlation in the spatio-spectral domains. We name the regularization function
as Total Nuclear Norms of Gradients (TNNG), which calculates nuclear norms for all planes
in the gradient domain of a HSI to exploit correlations in all spatio-spectral directions and
obtains a low-rank approximation of its structure. The function utilizes the a priori property,
where each gradient possesses strong inter-band correlation, and it directly controls each
gradient that expresses smoothness in the spatial direction and correlation in the spectral
direction. We also apply the TNNG regularization scheme to a Gradient-based Robust
Principal Component Analysis (GRPCA) and show its superior performance in image
decomposition.
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There are many methods with low-rank priors [18,22,23], but there are few approaches
that exploit low-rankness in global regions of the xz and yz planes (x, y, and z indicate
horizontal/vertical/spectral directions, respectively). Recently, a joint approach of low-
rank restoration and non-local filtering has been proposed [24]. The method achieves
high-fidelity restoration by incorporating subspace learning with the non-local filtering.
However, this method works well only for image denoising tasks.

The efficiency of our method is due to the following three features:

1. Exploiting the low-rankness of a global region (i.e., a high-dimensional matrix) allows
us to enhance the dimensionality reduction by the prior.

2. Inherently, HSIs have little correlation in oblique directions within the xz and yz
planes. We efficiently exploit this property through our regularization.

3. Since our method considers the low-rankness in the gradient domain, not the low-
rankness in the image domain, it more sensitively detects anomalous variations.

Another notable property in our regularization is that our method does not explicitly
use any sparsity-inducing norms such as `0 or `1 norms. Taking the nuclear norms on all
the xz and yz planes, we implicitly reduce variations on spatial domains as well. In the end,
our simple regularization simultaneously exploits the low-rank property and sparsity in
spatial variations as a single function. Due to this property, we can apply our regularization
function to RPCA as well as the HSI restoration, and unlike conventional methods, our
method is efficient for various applications in image restoration and decomposition.

We solve convex optimization problems using primal-dual splitting (PDS) [25] and
apply it to various hyperspectral image processing tasks. Experimentally, we conduct
HSI restoration, RPCA-based image decomposition, and HSI pansharpening problems as
examples to confirm their performance.

This paper is organized as follows. After reviewing conventional methods on HSI
processing in Section 2, we describe the details of the algorithm and the solutions for
the proposed optimization problem in Section 3. In Section 4, we present several experi-
ments on image reconstruction/decomposition to illustrate the superiority of the proposed
method. Section 6 presents a summary of this study and future prospects.

2. Related Work

Many restoration methods based on TV for multi-channel images have previously
been proposed [17–21]. Yuan et al. [21] proposed a hyperspectral TV (HTV), which is an
expansion of the TV model to HSI. They also proposed a spectral-spatial adaptive HTV
(SSAHTV), which introduces adaptive weights to HTV. SSAHTV uses spectral information
for its weighting and shows superior performance over HTV. The structure tensor TV
(STV) [17] was proposed for multi-channel images and considers low-rankness of gradient
vectors in local regions. Furthermore, its arranged version (ASTV) was proposed in [18]
and outperforms STV in some image restoration problems. These methods show high
performance on HSI restoration, but they only consider correlation in the spatial domain
explicitly. Meanwhile, spectral information is limited to indirect use in these regularization
schemes; therefore, it is relatively prone to excessive smoothing because of the substantial
impact received from the spatial properties. Some of them consider the spectral gradients,
few methods exploit the low-rankness in the gradient domain by a single regularization
function.

It is well known that there exist high correlations among HSI along the spectral
direction, especially in aerial images, as each spectral signature can be well represented by
a linear combination of a small number of pure spectral endmembers, which induces the
low-rank property. Low-rank matrix recovery (LRMR) [23], which utilizes the low-rankness
of local blocks in HSI, has been shown to have higher performance than SSAHTV and
even VBM3D [26], which is one of the most superior methods for non-local noise reduction.
Furthermore, the spatio-spectral TV (SSTV) was proposed in [27]; it applies TV to the HSI
gradient in the spectral direction. It is a regularization scheme that indirectly considers
spatial correlation through the application of TV to the spectral gradient. Although it
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is a simple method, SSTV is confirmed to be superior to LRMR. Contrary to STV and
ASTV, noise tends to remain in the restoration results of LRMR and SSTV because of the
weak influence from the spatial properties. The methods such as LRTV [22], HSSTV [28],
and LRTDTV [29] attempt to improve the performance of STV, SSTV, and its variants by
introducing new regularization. However, future tasks are still to be elucidated, such as
over-smoothing.

Recent DNN-based approaches have been successful for 2D image restoration tasks
such as super-resolution [30,31]. Although there are a few successful methods for HSI
such as [32–36], the superiority of DNN for HSI restoration is limited. This is due to the
following reasons: (1) Acquiring high-quality large HSI data sets is not straightforward.
(2) DNN-based methods are sensitive to attributes such as the number of spectral bands,
spectral ranges of wavelengths, types of sensor, and thus such a domain mismatch in
attributes between training and test data often degrades performance. On the other hand,
regularization-based approaches like ours are more flexible and can be applied to many
restoration tasks, such as restoration, unmixing, and classification.

3. Proposed Method
3.1. Low-Rankness of Spectral Gradients

Letting the spatial coordinates be x, y, and spectral coordinates z, we define “front” as
the direction in which we view the xy planes along the z axis. The “top” and “side” are
defined as the directions in which we view the xz and yz planes, respectively. Here, we
define x ∈ Rnv×nh×B to be a HSI with an image size of nv × nh and number of bands B.
Furthermore, we define Gv ∈ Rnh×B×3nv to be a combined 3D gradient image where the
three gradient images for x (w.r.t. vertical, horizontal, and spectral directions) observed
from the top view, are concatenated to form a 3D cuboid. Similarly, we define Gh ∈
Rnv×B×3nh to be the 3D cuboid of the gradient images observed from the side view. We will
explain detailed formulation in Section 3.2.

We represent the sum of ranks for all single-structure planes in Gv and Gh as follows:

3nv

∑
i=1

rank(G(i)
v ) +

3nh

∑
i=1

rank(G(i)
h ), (1)

where G(i)
v ∈ Rnh×B represents the i-th plane extracted from Gv and similarly G(i)

h ∈ Rnv×B

is the i-th plane extracted from Gh. Given that Gv, which is observed from the top view,
possesses size B in the vertical direction and size nv in depth, the total number of G(i)

v is
3nv. Similarly, the total number of G(i)

h is 3nh.
Since (1) uses rank with a discrete value and is a non-convex function, the minimization

problem with (1) is NP-hard. Therefore, we incorporate the nuclear norm (‖ · ‖∗ = ∑k σk),
which is the optimal relaxation of the rank constraint, and substitute

L(x) =
3nv

∑
i=1
‖G(i)

v ‖∗ +
3nh

∑
i=1
‖G(i)

h ‖∗, (2)

for (1). We refer to this regularization as the Total Nuclear Norms of Gradients (TNNG).
TNNG is used as regularization to approximate Gv and Gh through a low-rank model.

Figure 1 shows diagonal matrices S(i)
• of the image PaviaU, where singular value

decomposition (G(i)
• = U(i)

• S(i)
• V(i)>

• ) is performed on some G(i)
• (• : v or h) of the HSI. The

red lines show enlarged views of the top 15 singular values. S(i)
• possesses singular values

of G(i)
• as diagonal components. In any diagonal matrix S(i)

• , we can observe that there
is energy concentration to a handful of singular values, and most of the values are close
to 0. This observation shows that G(i)

• approximately forms a low-rank structure. In S(i)
h

of the noisy HSI, there is energy dispersion, which violates the low-rank structure, while
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there is energy concentration in a portion of S(i)
h in the restored HSI. Therefore, one can

see that the restored image has a low-rank structure and more closely approximates the
original HSI. As this property can be seen in most images, it is expected that the low-rank
approximation in the gradient domain using TNNG will work for restoration.

(a) (b) (c)

Figure 1. An example for the diagonal matrix S(i)
h of PaviaU in which the diagonal elements are

singular values of G(i)
h . The three images show S(i)

h of the original input, noisy image, and restoration
results, respectively. (a) original, (b) noisy, (c) restoration.

3.2. TNNG Regularization

In this section, we design Gv and Gh, and specifically formulate TNNG. We redefine
a HSI with an image size of N = nv · nh and the number of bands B as a vector x =
[x>1 , . . . , x>B ]

> ∈ RNB. A single plane xj ∈ RN(j = 1, . . . , B) represents the image of the j-th
band of x, and x>j represents the transposed xj.

We define the linear operator D to find the spatio-spectral gradients. Let the vertical
and horizontal difference operators be Dv, Dh ∈ RNB×NB, and let the spectral difference
operator be Ds ∈ RNB×NB as:

Ds =



−I I O . . . . . . O
O −I I O . . . O

...
. . . . . . . . .

...
... O −I I O

O
. . . −I I

I O . . . . . . O −I


, (3)

where I ∈ RN×N is an identity matrix, and O ∈ RN×N is a zero matrix. Using these
single-direction operators, we define the spatio-spectral difference operator D ∈ R3NB×NB

as follows:

D = [D>v D>h D>s ]
>. (4)

Then, we calculate the spatio-spectral gradients of HSI, Dx ∈ R3NB. This procedure is
illustrated in the left part of Figure 2. Dvx, Dhx, and Dsx ∈ RNB represent the vectorized
versions of the three 3D components (vertical, horizontal, and spectral, respectively) of the
gradient image.

Next, we introduce two operators Pv, Ph ∈ R3NB×3NB, which rearrange pixels so that
the upper and side planes of Dx are located in the front:

Pv =

 P′v O O
O P′v O
O O P′v

, Ph =

 P′h O O
O P′h O
O O P′h

, (5)

where P′v is a matrix that rotates each of Dvx, Dhx, and Dsx such that the yz, xy, and zx
planes face in the directions of “front”, “side”, and “top”, respectively, and similarly P′h
has a role of rotating the cuboids such that the zx, xy, and yz planes faces in the directions
of “front”, “side”, and “top”, respectively (see the right part of Figure 2). In addition,
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we use the operator Γ, which converts a vector into a 3D cuboid, to rewrite the vectors
PvDx and PhDx ∈ R3NB as follows:

PvDx ∈ R3NB 7→ Gv = Γ(PvDx) ∈ Rnh×B×3nv ,

PhDx ∈ R3NB 7→ Gh = Γ(PhDx) ∈ Rnv×B×3nh .
(6)

The right side of Figure 2 shows an image diagram when Gv and Gh are designed using
D, Pv, and Ph. Rewriting (2) using D, Pv, and Ph defined by (4) and (5), TNNG in (2) is
expressed as follows:

L(x) =
3nv

∑
i=1
‖Γ(PvDx)(i)‖∗ +

3nh

∑
i=1
‖Γ(PhDx)(i)‖∗, (7)

where ‖Γ(PvDx)(i)‖∗ represents the nuclear norm of the i-th plane in the 3D cuboid
Γ(PvDx).

Figure 2. Gradient images and rotation by P′v and P′h.

3.3. HSI Restoration Model

In this section, we formulate an image restoration problem. The HSI observation
model is represented by the following equation using an original image x ∈ RNB and an
observed image y ∈ RK:

y = Ax + n, (8)

where A ∈ RK×NB(K ≤ NB) is the linear operator that represents deterioration (for
example, it represents random sampling in the case of compressed sensing [37,38]), and
n ∈ RK represents additive noise. Based on the observation model, the convex optimization
problem for the HSI restoration using TNNG can be formulated as follows:

min
x

λL(x) +Fy(Ax) s.t. x ∈ C. (9)

Here, λ is the weight of TNNG, C = [ρmin, ρmax]NB represents the box constraint of the pixel
values in the closed convex set, and ρmin, ρmax represent the minimum and maximum pixel
values taken by x, respectively. In addition, Fy is a data-fidelity function, and it is necessary
to select a suitable Fy depending on the observed distribution of noise. We assume that
the additive noise follows a Gaussian distribution, and thus we use the `2-norm to express
the convex optimization problem of Problem (9) as follows:

min
x

λL(x) + 1
2
‖Ax− y‖2

2 s.t. x ∈ C. (10)
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3.4. Gradient-Based Robust Principal Component Analysis

We apply TNNG to 3D Robust Principal Component Analysis (RPCA). RPCA [39]
has been used in many computer vision and image processing applications. The goal of
RPCA in the case of 2D images is to decompose an image matrix Y ∈ RM×N to a low-rank
component L ∈ RM×N and a sparse residual S ∈ RM×N by solving the following equation:

min
L,S

λ‖L‖∗ + ‖S‖1 s.t. Y = L + S. (11)

We extend this to HSI image decomposition by applying TNNG as follows:

min
x,s

λL(x) + ‖s‖1 s.t. y = x + s, x, s ∈ C. (12)

By solving (12), we achieve the decomposition of the observed measurement y ∈ RNB

as y = x + s, where x ∈ RNB is low-rank in the gradient domain, and s ∈ RNB is the
sparse component. The two constraints in (12) guarantee the exact reconstruction and
the reasonable range of pixel values. Unlike the existing 3D RPCA methods [40,41], we
analyze the low-rankness of an HSI in the gradient domain. As it is gradient-based, it
also has the capability of excluding sparse anomalies more sensitively, so it is expected
that the performance of the decomposition improves. We call this Gradient-based RPCA
(GRPCA). This problem is also convex optimization, and thus one efficiently obtains a
global optimum solution by convex optimization algorithms.

3.5. HSI Pansharpening Model

Pan sharpening is a technique for generating an HSI with high spatial and spectral
resolutions by combining a panchromatic image (pan image) with a high spatial resolution
and a HSI with a high spectral resolution. It is important in the field of remote sensing and
earth observation.

Let x ∈ RNB be a true HSI with high spatial resolution, yhs ∈ RN′B (N′ < N) be an
observed HSI with low spatial resolution, and ypan ∈ RN be an observed gray-scale pan
image. The observation model of HSI for pansharpening can be formulated as follows:

yhs = SBx + nhs, ypan = Rx + npan, (13)

where B ∈ RNB×NB and S ∈ RN′×NB represent the lowpass operator and sub-sampling
operator, respectively. The matrix R ∈ RN×NB represents an average operator. In our
setting, we simply average all bands to makes a gray-scale image. nhs ∈ RN′B and
npan ∈ RN represent additive noise.

The goal of the pansharpening problem is to recover the full spatial and spectral
resolution image x, which is similar to u, from the observed two images yhs and ypan. Using
the proposed regularization defined by (7), we adopt the following convex optimization
problem to estimate x.

min
x

L(x)

subject to ‖SBx− yhs‖2 ≤ εhs,

‖Rx− ypan‖2 ≤ εpan,

x ∈ [0, 1]NB,

(14)

where εhs and εpan are user-defined parameters that controls the fidelity of x.
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3.6. Optimization

In this study, we adopt primal-dual splitting (PDS) [25] to solve the convex opti-
mization problems in (10), (12), and (14). PDS is an iterative algorithm to solve a convex
optimization problem of the form

min
x

F(x) + G(x) + H(Lx), (15)

where F represents a convex function where the gradient is β-Lipschitz continuous and
differentiable, G and H represent the non-smooth convex functions where the proximity
operator can be efficiently calculated, and L is a linear operator. Proximity operator [42,43]
is defined using the lower semi-continuous convex function ψ and index γ > 0, as

proxγψ(v) = arg min
z

ψ(z) +
1

2γ
‖z− v‖2

2. (16)

The PDS algorithm to solve Problem (15) is given as follows [25,44,45]:
x(k+1) = proxγ1G( x(k) − γ1(∇F(x(k)) + L>z(k))),

v← z(k) + γ2L(2x(k+1) − x(k)),

z(k+1) = v− γ2prox 1
γ2

H

(
1

γ2
v
) (17)

where ∇F is the gradient of F, x is the primal variable, z is the dual variable of Lx, v is
the mediator variable to calculate z, and the superscript (k) indicates the k-th iteration.
The algorithm converges to an optimal solution of Problem (15) by iteratively solving (17)
under appropriate conditions on γ1 and γ2.

In the paper, we explain only the procedure to solve Problem (10), but one can also
solve Problem (12) and (14) in a similar way. The respective algorithms are shown in shown
in Algorithm 1 and Algorithm 2. To apply PDS to Problem (10), we define the indicator
function ιC with a closed convex set as follows:

ιC(x) =

{
0, x ∈ C,
+∞, otherwise.

(18)

We use this indicator function to turn Problem (10) into a convex optimization problem
with no apparent constraints as follows:

min
x

λL(x) + 1
2
‖Ax− y‖2

2 + ιC(x). (19)

Problem (19) is formed by the convex functions allowing efficient calculation of the
proximity operator. To represent (19) in the same format as Problem (15), to which PDS can
be applied, we separate each term of Problem (19) into F, G, and H as follows:

F(x) =
1
2
‖Ax− y‖2

2, G(x) = ιC(x),

H(Lx) = λL(x) = λ(
3nv

∑
i=1
‖Γ(PvDx)(i)‖∗ +

3nh

∑
i=1
‖Γ(PhDx)(i)‖∗).

(20)

The function F : RNB → R is formed only by the differentiable `2-norm, and thus its
gradient ∇F is obtained by

∇F(x) = A>(Ax− y). (21)

The function G : RNB → R∪ {∞} becomes the indicator function ιC . The proxγ1G of
(17) becomes proxγ1ιC

: RNB → RNB, the projection that is the proximity operator to the
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box constraint. If we set the projection to proxγ1ιC
(x) = PC(x), then the projection PC(x)

can be given, for i = 1, . . . , NB, as follows:

[PC(x)]i =


ρmin, if xi <ρmin,
xi, if ρmin≤ xi ≤ρmax,
ρmax, if xi >ρmax.

(22)

We perform the operation separately for each element xi in x. The function H :
R3NB+3NB → R corresponds to the regularization function, and the dual variable z and
linear operator L can be given as follows:

z = [z>1 , z>2 ]
> 7→

3nv

∑
i=1
‖Γ(z1)

(i)‖∗ +
3nh

∑
i=1
‖Γ(z2)

(i)‖∗,

L : RNB → R3NB+3NB, x 7→ (PvDx, PhDx).

(23)

Here, z1 and z2 are dual variables corresponding to PvDx and PhDx, respectively.
Given that TNNG uses a nuclear norm, the prox 1

γ2
H performs soft-thresholding with

respect to singular values of each matrix G(i)
• = Γ(P•Dx)(i)(• : v or h) in (7). Here, the

singular value decomposition of G(i)
• becomes G(i)

• = U(i)
• S(i)
• V(i)>

• . Thus, the proximity
operator, prox 1

γ2
‖·‖∗ is given as follows:

prox 1
γ2
‖·‖∗(G

(i)
• ) = U(i)

• S̃(i)
• V(i)>

• ,

S̃(i)
• = diag(max{σ(i)

1 − γ, 0}, . . . , max{σ(i)
M − γ, 0}),

(24)

where diag(·) represents a diagonal matrix with diagonal elements (·), and M is the
maximum number of singular values.

Based on the above discussion, we can solve the convex optimization problem of
Problem (10) using PDS, whose steps are shown in Algorithm 3. The calculation for the
projection PC (step 4) is indicated in (22), and the proximity operator of nuclear norms
(steps 7, 8) is given by (24). We set the stopping criterion to |x(k+1)− x(k)|/|x(k+1)| < 1e− 5.

We turn Problem (12) into a convex optimization problem with no apparent constraints
as follows:

min
x

λL(x) + ‖s‖1 + ιy(x + s) + ιC(x) + ιC(s). (25)

Problem (25) is formed by the convex functions allowing efficient calculation of the
proximity operator. To represent (25) in the same format as Problem (15), to which PDS can
be applied, we separate each term of Problem (25) into F, G, and H as follows:

F(x) = 0, G(x) = ιC(x) + ιC(s),

H(Lx) = λ(
3nv

∑
i=1
‖Γ(PvDx)(i)‖∗ +

3nh

∑
i=1
‖Γ(PhDx)(i)‖∗) + ‖s‖1 + ιy(x + s).

(26)

Steps 12 of Algorithm 1 is the proximity operator, prox 1
γ2
‖·‖1

is given as follows:

[
proxγ‖·‖1

(x)
]

i
= sgn(xi)max{|xi| − γ, 0}, (27)

for i = 1,. . . ,NB, where sgn(·) denotes the sign of (·), proxγι{y}
(·) is y.



Remote Sens. 2021, 13, 819 9 of 19

Algorithm 1 PDS Algorithm for Solving Problem (12)

1: input : x(0), s(0)

2: set : γ1, γ2 and initial values for z(0)1 , z(0)2 , z(0)3 , z(0)4 are given.
3: while a stopping criterion is not satisfied do
4: x(k+1) = PC{x(k) − γ1(D>(P>v z(k)1 + P>h z(k)2 ) + z(k)4 )};
5: s(k+1) = PC{s(k) − γ1(z

(k)
3 + z(k)4 )};

6: v1 ← z(k)1 + γ2PvD(2x(k+1) − x(k));
7: v2 ← z(k)2 + γ2PhD(2x(k+1) − x(k));
8: v3 ← z(k)3 + γ2(2s(k+1) − s(k));
9: v4 ← z(k)4 + γ2(2s(k+1) − s(k));

10: z(k+1)
1 = v1 − γ2prox 1

γ2
‖·‖∗(

1
γ2

v1);

11: z(k+1)
2 = v2 − γ2prox 1

γ2
‖·‖∗(

1
γ2

v2);

12: z(k+1)
3 = v3 − γ2prox 1

γ2
‖·‖1

( 1
γ2

v3);

13: z(k+1)
4 = v4 − γ2prox 1

γ2
ι{y}

( 1
γ2

v4);

14: Update iteration: k← k + 1;
15: end while
16: output : x(k+1)

We turn Problem (14) into a convex optimization problem with no apparent constraints
as follows:

min
x
L(x) + ιByhs

2,εhs
(SBx) + ιBypan

2,ε pan
(Rx) + ιC(x) (28)

Problem (28) is formed by the convex functions allowing efficient calculation of the
proximity operator. To represent (28) in the same format as Problem (15), to which PDS can
be applied, we separate each term of Problem (28) into F, G, and H as follows:

F(x) = 0, G(x) = ιC(x),

H(Lx) =
3nv

∑
i=1
‖Γ(PvDx)(i)‖∗ +

3nh

∑
i=1
‖Γ(PhDx)(i)‖∗ + ιByhs

2,εhs
(SBx) + ιBypan

2,ε pan
(R).

(29)

Steps 12 and 13 of Algorithm 2 is updated by using the following `2 ball projection:

proxγ,Bv
2,ε(x)

=

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
‖x−v‖2

, otherwise,
(30)

where ε is the radius of the `2-norm sphere. And, Bv
2,ε is define as Bv

2,ε := {x ∈ RNB | ‖x−
v‖2 ≤ ε}.

4. Results

To show the effectiveness of the proposed method, we conducted several experiments
on compressed sensing (CS), signal decomposition, and pansharpening. There results were
compared the results with some conventional methods.

We used PSNR and Structural Similarity Index (SSIM) [46] as objective measures of
CS and signal decomposition, and SAM [47], ERGAS [48], and Q2n [49] for pansharpening.
The evaluation methods for SAM, ERGAS,and Q2n are explained below. y ∈ RNB is a
grandtruth image, x ∈ RNB is a restored image.
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Algorithm 2 PDS Algorithm for Solving Problem (14)

1: input : x(0)

2: set : γ1, γ2 and initial values for z(0)1 , z(0)2 , z(0)3 , z(0)4 are given.
3: while a stopping criterion is not satisfied do
4: x(k+1) = PC{x(k) − γ1(D>(P>v z(k)1 + P>h z(k)2 ) + B>S>z(k)3 + R>z(k)4 )};
5: v1 ← z(k)1 + γ2PvD(2x(k+1) − x(k));
6: v2 ← z(k)2 + γ2PhD(2x(k+1) − x(k));
7: v3 ← z(k)3 + γ2SB(2x(k+1) − x(k));
8: v4 ← z(k)4 + γ2R(2x(k+1) − x(k));
9: z(k+1)

1 = v1 − γ2prox 1
γ2
‖·‖∗(

1
γ2

v1);

10: z(k+1)
2 = v2 − γ2prox 1

γ2
‖·‖∗(

1
γ2

v2);

11: z(k+1)
3 = v3 − γ2prox 1

γ2
Byhs

2,εhs
( 1

γ2
v3);

12: z(k+1)
4 = v4 − γ2prox 1

γ2
Bypan

2,ε pan
( 1

γ2
v4);

13: Update iteration: k← k + 1;
14: end while
15: output : x(k+1)

Algorithm 3 PDS Algorithm for Solving Problem (10)

1: input : x(0)

2: set : γ1, γ2 and initial values for z(0)1 , z(0)2 are given.
3: while a stopping criterion is not satisfied do
4: x(k+1) = PC{x(k) − γ1(A>(Ax(k) − y) + D>(P>v z(k)1 + P>h z(k)2 ))};
5: v1 ← z(k)1 + γ2PvD(2x(k+1) − x(k));
6: v2 ← z(k)2 + γ2PhD(2x(k+1) − x(k));
7: z(k+1)

1 = v1 − γ2prox 1
γ2

H(
1

γ2
v1);

8: z(k+1)
2 = v2 − γ2prox 1

γ2
H(

1
γ2

v2);

9: Update iteration: k← k + 1;
10: end while
11: output : x(k+1)

• SAM is defined as follows:

SAM(x, y) =
1
n

n

∑
j=1

arccos
xj>yj

‖xj‖2‖yj‖2
, (31)

where ‖ · ‖2 is denotes the `2 norm.

• ERGAS is defined as follows:

ERGAS(x, y) = 100d

√√√√ 1
N

N

∑
k=1

(
‖xk − yk‖2

2
µk

)2

, (32)

where d is resolution ratio between HSI with low spatial resolution and gray-scale
pan images, µk is the sample mean of k-th band of y.
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• Q2n is defined as follows:

Q(x, y) =
σxy

σxσy

2x̄ȳ
x̄2 + ȳ2

2σxσy

σ2
x + σ2

y
, (33)

where the definition of each variable is x̄ = 1
P ∑P

j=1 xj, ȳ = 1
P ∑P

j=1 yj,

σx =
√

1
P ∑P

j=1
(
xj − x̄

)2, σy =
√

1
P ∑P

j=1
(
yj − ȳ

)2, σxy = 1
P ∑P

j=1
(
xj − x̄

)(
yj − ȳ

)
.

For PSNR, SSIM, and Q2n, higher values indicate better performance, and for SAM
and ERGAS, lower values indicate better performance. We used 17 HSIs for the evaluation
available online such as [50,51], which have 102 to 198 spectral bands. Variation on the
dynamic range of HSIs is very high, and thus for consistent evaluation on images with
various ranges, we linearly scale the images to the range [0, 1], and then the standard
metrics are used. For CS and signal decomposition, we experimentally adjusted the weight
λ and adopted the values where the PSNR was the highest value. For pansharpening, εhs
was calculated from the noise levels of nhs and yhs, and εpan was calculated from the noise
levels of npan and ypan. For the parameters of the conventional methods, we experimentally
adopted parameters at which the PSNR was the highest value.

4.1. Compressed Sensing

We conducted experiments on compressed sensing, in which the observation model
is represented by y = Au + n, and the linear operator A ∈ RbrNBc×NB denotes a known
random sampling matrix (r is the ratio of sampling points). The convex optimization
problem for the compressed sensing reconstruction using the regularization functionR is
as follows:

min
x

λR(x) + 1
2
‖Ax− y‖2

2 s.t. x ∈ C. (34)

We compared the performances by replacing the regularization function. Additive
noise n is fixed to the Gaussian noise with standard deviation σ = 0.1, and the sampling
ratio is set to r = 10, 20 and 30%. Table 1 shows the numerical results of the compressed
sensing reconstruction. As LRTDTV is not designed for the compressed sensing and
yielded inferior results in our implementation, we did not include it in the experiment. The
proposed method reported the 0.9–2.2 dB higher values in PSNR on the average and the
best SSIM scores for most of the images. Moreover, we confirmed the strong superiority of
the proposed method for any sampling ratio r.

Figure 3 shows the experimental results for the sampling ratio r = 20%. Each
PSNR[db] is 31.02 for (c), 32.75 for (d), 35.02 for (e), and 35.86 for (f). From this fig-
ure, we can observe increased blurring in ASTV and HSSTV to recover the resolution loss
and remove the noise caused by the reconstruction. In the experiments on ASTV and
HSSTV, the blurring was reduced by decreasing the weight λ, but we confirmed that the
insufficient HSI reconstruction led to a decreased evaluation in PSNR and SSIM. For SSTV,
the noise remained in the restored results. SSTV has weak smoothing effects in the spatial
direction; therefore, the noise remains regardless of the weight λ. The proposed method
has better restoration results than the conventional methods because the detailed areas are
maintained while the noise and loss caused by the reconstruction are reduced.
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Table 1. Numerical values for CS reconstruction (PSNR [dB]/SSIM).

r HSI ASTV SSTV HSSTV TNNG
(ours)

PaviaC 26.18/0.591 27.07/0.591 28.84/0.799 30.27/0.797
PaviaU 25.71/0.594 26.64/0.580 28.30/0.798 29.80/0.820
Frisco 29.25/0.691 30.14/0.663 32.99/0.891 33.16/0.868

10% Stanford 29.52/0.683 30.39/0.665 33.31/0.878 33.86/0.870
Indian 28.92/0.692 29.03/0.646 30.47/0.829 32.23/0.883
Salinas 30.65/0.683 31.45/0.687 34.34/0.903 35.38/0.933

AVE. of 17 imgs 28.58/0.706 29.10/0.641 31.04/0.859 33.23/0.881

r HSI ASTV SSTV HSSTV TNNG
(ours)

PaviaC 27.93/0.648 29.75/0.714 31.31/0.835 32.10/0.846
PaviaU 27.36/0.672 29.28/0.704 30.77/0.832 31.52/0.854
Frisco 30.89/0.751 32.49/0.768 35.24/0.911 35.31/0.908

20% Stanford 31.02/0.741 32.75/0.768 35.02/0.898 35.86/0.910
Indian 29.90/0.722 30.95/0.735 32.61/0.885 33.01/0.849
Salinas 32.26/0.742 33.34/0.759 36.96/0.935 37.26/0.948

AVE. of 17 imgs 29.84/0.741 31.50/0.746 33.81/0.888 34.96/0.908

r HSI ASTV SSTV HSSTV TNNG
(ours)

PaviaC 28.85/0.711 31.30/0.775 32.35/0.861 33.13/0.875
PaviaU 28.41/0.717 30.85/0.768 31.89/0.862 32.40/0.875
Frisco 31.87/0.782 33.64/0.811 36.07/0.912 36.49/0.930

30% Stanford 31.98/0.773 33.90/0.808 35.87/0.909 36.98/0.931
Indian 30.67/0.759 31.84/0.770 33.51/0.888 33.97/0.911
Salinas 33.12/0.770 34.11/0.783 37.98/0.945 38.12/0.956

AVE. of 17 imgs 30.61/0.766 32.72/0.791 34.89/0.898 35.79/0.925

(a) (b) (c)

(d) (e) (f)

Figure 3. Results for CS reconstruction experiments in it Stanford (130th band). (a) original image,
(b) observation, (c) ASTV, (d) SSTV, (e) HSSTV, (f) TNNG (ours)

4.2. Robust Principal Component Analysis
4.2.1. Image Decomposition

To evaluate our GRPCA, we first applied it to a standard sparse component decom-
position. Following conventional methods such as [41], we randomly selected 30% of
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pixels in a HSI and replaced them with random values with a uniform distribution, which
is a typical example to measure the performance of RPCA. The goal is to decompose
the corrupted image to a latent low-rank HSI and the random values. We evaluated the
performance with PSNR and SSIM between the corrupted image y and the obtained HSI x
in (12) and compared it with the low-rank based decomposition methods, TRPCA [41] and
LRTDTV [29].

We show the results in Table 2, where one can confirm that our method outperforms
the conventional methods for most of the HSIs. This result shows that the proposed
regularization function is able to correctly evaluate the image based on its low-rank nature.
In addition, we believe that the proposed regularization function can evaluate the low-rank
property of the image better than the conventional methods.

Table 2. Numerical results for image decomposition (PSNR [dB] / SSIM).

HSI TRPCA LRTDTV GRPCA (ours)

PaviaC 35.16/0.961 38.17/0.966 40.45/0.977
PaviaU 35.01/0.965 36.93/0.964 39.55/0.976
Frisco 44.16/0.990 42.00/0.986 48.18/0.995

Stanford 41.80/0.980 44.05/0.986 48.19/0.993
Indian 35.43/0.940 37.06/0.961 37.87/0.988
Salinas 37.29/0.984 46.41/ 0.993 48.34/0.991

AVE. of 17 imgs 39.03/0.974 40.61/0.975 43.93/0.986

4.2.2. Mixed Anomaly Removal

We have tested the decomposition capability for images with mixed anomalies com-
posed of dead lines/circles and impulsive noise. We compared our performance with
TRPCA and LRTDTV. We conducted the removal of the anomaly pattern: sparsely scattered
impulsive noise and dead lines/circles, where we prepare a mask for the dead lines and
circles and generate images with dead pixels by multiplying the mask and an image (See
Figure 4). We assume that anomalies sparsely appear, and then they can be removed in the
low-rank component x in (12).

(a) (b) (c)

Figure 4. Dead lines/circles are generated by pixel-wise multiplication with mask. (a) original image,
(b) mask, (c) generated image

We show our decomposition results in Figure 5 and the objective comparison in Table
3, where one can confirm that our method outperforms the conventional methods for most
of the HSIs. Under mixed anomalies, we experimentally confirmed that TNNG maintains
stable performance compared with the conventional methods, while the performance
depends on experimental conditions and types of images in LRTDTV and TRPCA. This
indicates that the image can be restored by using the spectral information of other pixels
even if there is a defect in the gradient region due to the evaluation of low rankness.
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(a) (b) (c) (d)

Figure 5. Results for GRPCA in Washington (76th band). (a) Input image, (b) Image with anomalies,
(c) Low-rank component, (d) Sparse component

Table 3. Numerical results for mixed anomaly removal experiments: impulse (d = 10%) + dead
lines/circles (PSNR [dB]/SSIM).

HSI TRPCA LRTDTV GRPCA (ours)

PaviaC 37.95/ 0.981 41.22/0.977 42.25/0.981
PaviaU 37.73/0.982 40.4/0.976 41.45/0.983
Frisco 48.69/ 0.997 44.83/0.995 50.93/0.997

Stanford 45.79/0.994 50.33/ 0.997 50.95/0.995
Indian 37.25/0.969 37.58/ 0.970 38.88/0.970
Salinas 40.29/0.993 48.19/0.997 50.29/0.996

AVE. of 17 imgs 42.50/0.990 44.32/0.988 46.68/0.991

4.3. Pansharpening

We compared the proposed method defined by (14), with four conventional pansharp-
ening methods: GFPCA [52], BayesNaive and BayesSparse [53], and HySure [54]. We
conducted experiments on three types of noise levels, Type I (σhs = 0.05, σpan = 0.01), Type
II (σhs = 0.1, σpan = 0.01), Type III (σhs = 0.15, σpan = 0.01), where σhs and σpan are the
standard deviation of noises added on a hyperspectral and a pan image, respectively.

Table 4 shows the comparison with the conventional methods. One can see from
the results that our method outperforms the conventional methods in many cases. For
subjective comparison, we show an example of the estimated HSIs from the data with Type
I on PaviaC as shown in Figure 6.

The estimated HSIs with high spatial resolution are shown in Figure 7. Each PSNR[db]
is 25.45 for (b), 26.90 for (c), 28.86 for (d), 30.0 for (e), and 31.16 for (f). We divided the band
of these HSIs into three parts and visualized the average of each as RGB images. The details
of the results obtained by GFPCA and BayesNaive are over-smoothed and its shading
is unnatural. BayesSparse and HySure can estimate sharper images than those images,
however, the texture of trees and buildings is lost. In contrast, the proposed method is
particularly accurate in the restoration of the shading on the upper right and the texture
of the central building on the upper left. As shown in (14), the optimization problem
for pan-sharpening is the equation that minimizes the regularization function using the
proposed method, and the number of hyperparameters is reduced by using constraints on
HS and PAN images.
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(a) (b) (c)

Figure 6. Data for Pansharpening in PaviaC ( Type I ). (a)original image, (b) pan image, (c) HSI.

(a) (b) (c)

(d) (e) (f)

Figure 7. Results for Pansharpening experiments in PaviaC. (a) original image, (b) GFPCA,
(c) BayesNaive, (d) BayesSparse, (e) HySure, (f) TNNG (ours).

Table 4. Numerical results for pansharpening: I (σhs = 0.05, σpan = 0.01), II (σhs = 0.1, σpan = 0.01), III (σhs = 0.15, σpan = 0.01).

I

HSI GFPCA BayesNative BayesSparse HySure TNNG (ours)

PSNR 25.45 26.90 28.86 30.00 31.16
PaviaC SAM 8.698 7.636 7.754 6.415 6.696

ERGAS 6.396 5.668 4.625 3.808 3.368
Q2n 0.248 0.337 0.339 0.473 0.484

PSNR 24.85 26.51 27.67 29.26 30.25
PaviaU SAM 9.346 7.718 8.568 7.176 7.001

ERGAS 7.072 5.997 5.247 4.179 3.747
Q2n 0.165 0.232 0.261 0.387 0.398
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Table 4. Cont.

PSNR 31.09 31.07 34.59 34.20 34.74
Frisco SAM 3.973 5.451 3.733 4.338 4.594

ERGAS 3.556 3.690 2.507 2.423 2.354
Q2n 0.844 0.844 0.869 0.919 0.894

PSNR 31.44 31.41 35.15 33.67 35.19
Stanford SAM 4.398 7.614 4.204 3.822 5.928

ERGAS 5.675 6.722 4.606 4.380 4.653
Q2n 0.480 0.493 0.518 0.521 0.548

PSNR 29.33 29.36 32.93 33.52 34.93
Suwannee SAM 5.816 7.685 5.762 4.946 5.343

ERGAS 3.717 3.917 2.556 2.341 2.214
Q2n 0.516 0.560 0.597 0.612 0.662

II

PSNR 25.37 25.55 28.53 29.45 29.76
PaviaC SAM 9.159 11.888 8.481 7.238 8.964

ERGAS 6.478 6.861 4.827 4.093 4.053
Q2n 0.249 0.351 0.348 0.468 0.476

PSNR 24.57 25.32 27.35 28.09 29.16
PaviaU SAM 10.025 10.935 9.477 8.000 7.927

ERGAS 6.974 6.269 5.188 4.542 4.069
Q2n 0.167 0.198 0.275 0.347 0.348

PSNR 30.82 28.83 33.82 32.86 33.48
Frisco SAM 4.822 9.755 4.747 4.670 5.369

ERGAS 3.719 5.106 2.804 2.940 2.876
Q2n 0.843 0.844 0.874 0.892 0.893

PSNR 31.10 29.06 34.33 32.98 33.89
Stanford SAM 5.979 14.048 5.832 5.224 6.512

ERGAS 6.437 11.421 5.567 5.343 4.958
Q2n 0.478 0.497 0.519 0.516 0.516

PSNR 29.13 27.38 32.30 32.29 33.48
Suwannee SAM 6.696 12.619 6.895 5.389 6.098

ERGAS 3.865 5.523 2.889 2.708 2.524
Q2n 0.518 0.534 0.598 0.598 0.616

III

PSNR 25.25 23.94 28.17 28.34 28.67
PaviaC SAM 9.863 16.210 9.522 8.263 10.273

ERGAS 6.611 8.596 5.126 4.680 4.542
Q2n 0.256 0.313 0.376 0.419 0.433

PSNR 24.65 23.99 27.23 27.79 28.81
PaviaU SAM 10.225 14.694 9.848 8.940 8.503

ERGAS 7.254 8.285 5.569 5.047 4.277
Q2n 0.169 0.197 0.282 0.362 0.350

PSNR 30.39 26.59 32.52 31.83 32.42
Frisco SAM 6.000 14.050 6.105 6.951 6.440

ERGAS 4.000 6.743 3.290 3.428 3.308
Q2n 0.846 0.659 0.876 0.889 0.893

PSNR 30.60 26.68 33.29 31.56 32.83
Stanford SAM 7.927 20.437 7.926 7.312 7.823

ERGAS 7.659 17.236 7.100 7.000 5.686
Q2n 0.483 0.418 0.534 0.518 0.509

PSNR 28.75 25.35 31.49 31.07 32.34
Suwannee SAM 7.973 17.544 8.250 7.695 7.416

ERGAS 4.160 7.376 3.327 3.378 2.924
Q2n 0.514 0.407 0.603 0.593 0.592
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5. Discussion
Computing Time

All methods are executed using Matlab 2019a on a MacBook Air (Retina, 13-inch,
2019), 1.6 GHz dual core Intel Core i5, and 16 GB 2133 MHz LPDDR3. The proposed
method takes much more time than the conventional method. This is because the singular
value decomposition of equation (7) needs to be performed 3nv + 3nh times. Speeding up
the processing is a major issue for the future, and we plan to pursue this point in the future.

• Compressed Sensing
The maximum execution time for each method was about 2000 s for ASTV, 530 s for
SSTV, 670 s for HSSTV, and 2500 s for TNNG (ours).

• Image Decomposition
The maximum execution time for each method was about 1600 s for LRTDTV, 610 s
for TRPCA, 2400 s for TNNG (ours).

• Mixed Anomaly Removal
The maximum execution time for each method was about 1680 s for LRTDTV, 620 s
for TRPCA, 2500 s for TNNG (ours).

• Pansharpening
The maximum execution time for each method was about 4.2 s for GFPCA, 1.7 s for
BayesNative, 130 s for BayesSparse, 110 s for HySure, and 7200 s for TNNG (ours).

6. Conclusions

In this paper, we proposed a new regularization scheme for HSI reconstruction called
TNNG. We focused on the HSI property where the gradient image possesses strong inter-
band correlation and utilized this property in the convex optimization. TNNG is a reg-
ularization scheme aimed at enforcing the low-rank gradient structure when observed
from the spectral direction. We achieved high-performance HSI restoration by solving
this regularized convex optimization problem using PDS. In experiments, we conducted
compressed sensing reconstruction, image decomposition, and pansharpening. While
the efficiencies of conventional methods depend on applications, the proposed method is
superior to the conventional methods through both subjective and objective evaluations
in various applications. In the proposed method, the process is done for a whole image
without exploiting local features. It would be necessary for the future to consider further
advances in performance by introducing local processing. And, the improvement of the
calculation speed is also an issue.
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