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Abstract: Accurately and reliably estimating total terrestrial gross primary production (GPP) on a
large scale is of great significance for monitoring the carbon cycle process. The Sentinel-3 satellite
provides the OLCI FAPAR and OTCI products, which possess a higher spatial and temporal resolution
than MODIS products. However, few studies have focused on using LUE models and VI-driven
models based on the Sentinel-3 satellites to estimate GPP on a large scale. The purpose of this
study is to evaluate the performance of Sentinel-3 OLCI FAPAR and OTCI products combined with
meteorology reanalysis data in estimating GPP at site and regional scale. Firstly, we integrated OLCI
FAPAR and meteorology reanalysis data into the MODIS GPP algorithm and eddy covariance light
use efficiency (EC-LUE) model (GPPMODIS-GPP and GPPEC-LUE, respectively). Then, we combined
OTCI and meteorology reanalysis data with the greenness and radiation (GR) model and vegetation
index (VI) model (GPPGR and GPPVI, respectively). Lastly, GPPMODIS-GPP, GPPEC-LUE, GPPGR, and
GPPVI were evaluated against the eddy covariance flux data (GPPEC) at the site scale and MODIS GPP
products (GPPMOD17) at the regional scale. The results showed that, at the site scale, GPPMODIS-GPP

and GPPEC-LUE agreed well with GPPEC for the US-Ton site, with R2 = 0.73 and 0.74, respectively.
The performance of GPPGR and GPPVI varied across different biome types. Strong correlations were
obtained across deciduous broadleaf forests, mixed forests, grasslands, and croplands. At the same
time, there are overestimations and underestimations in croplands, evergreen needleleaf forests
and deciduous broadleaf forests. At the regional scale, the annual mean and maximum daily
GPPMODIS-GPP and GPPEC-LUE agreed well with GPPMOD17 in 2017 and 2018, with R2 > 0.75. Overall,
the above findings demonstrate the feasibility of using Sentinel-3 OLCI FAPAR and OTCI products
combined with meteorology reanalysis data through LUE and VI-driven models to estimate GPP,
and fill in the gaps for the large-scale evaluation of GPP via Sentinel-3 satellites.

Keywords: gross primary productivity; OLCI FAPAR; OTCI; light use efficiency models; vegetation
index driven model; regional scale

1. Introduction

Gross primary production (GPP) usually refers to the total amount of CO2 assimilated
in photosynthesis [1]. GPP has been an important indicator for quantitatively describ-
ing the global carbon cycle and evaluating the sustainable development of terrestrial
ecosystems [2,3]. Therefore, the real-time monitoring of changes in GPP is essential for the
field of regional and global change studies [4]. The eddy covariance (EC) technique is the
most widely used approach to measure CO2 net uptake and can obtain GPP through differ-
ent modeling methods [5]. However, the limitations of this technique: the limited number
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of EC towers and their spatial distribution, mean that EC is not suitable for quantifying
and monitoring GPP on regional, continental, and global scales [6–8].

Therefore, many models were developed for estimating GPP with various spatial
scales, and they were categorized as follows: meteorological statistical models, dynamic
global vegetation models (DGVMs), and remote sensing (RS)-driven models [9]. Meteoro-
logical statistical models [10–12] establish a simple statistical regression model between
GPP and climate factors through a large amount of measured data. Due to the lack of a
strict ecological mechanism, these models have great uncertainty and can only be used
for interannual GPP estimation [13]. DGVMs simulate changes in the various processes,
structures, and functions of the ecosystem [14–16]. However, their complex model structure
and the uncertainty of the input data and parameters have caused these models to produce
large errors when estimating GPP [17,18]. With a simple theoretical basis and practicality,
RS-driven models were developed for continuously observing spatial−temporal variations
in GPP [19,20]. At present, the most frequently used RS-driven models can be divided into
light use efficiency (LUE) models [21,22] and vegetation index (VI)-driven models [23,24].

LUE models were developed according to Monteith’s light use efficiency concept, utiliz-
ing absorbed photosynthetically active radiation (APAR) and LUE to estimate GPP [25,26].
A large number of LUE models are widely applied in GPP estimation due to their clear
mechanism and simple structure [27–32]. The fraction of absorbed photosynthetically
active radiation (FAPAR) is a significant input parameter within LUE models [32–34].
VI-driven models estimate GPP by building an empirical relationship between in situ mea-
surement GPP and vegetation indices (VIs) [35]. However, numerous VIs have been used
to estimate GPP [36–39]. EVI is the most widely used VI amongst them [40]. For example,
Wu et al. [41] used EVI to replace the chlorophyll content to estimate GPP in the greenness
and radiation (GR) model. The VI model [42] was applied to estimate GPP using several
VIs and EVI was proved the best indicator of LUE and FAPAR. Moreover, the temperature
and greenness (TG) model [23] was employed to estimate GPP with the combination of
EVI and land surface temperature (LST).

Although LUE and VI-driven models are widely used, the application of these models
still has several shortcomings. For example, MODIS GPP products (MOD17), which are
based on the MODIS GPP algorithm and MODIS FAPAR products (MOD15A2H), are
cumulative eight-day composite products with a 500-m pixel size [43–45]. The standard
EVI product is MODIS EVI, and its temporal resolution is 16 days. Numerous studies have
utilized the 8-day MODIS Terra Surface Reflectance Product (MOD09, 500 m) to calculate
EVI to obtain a higher temporal resolution, rather than directly using the MODIS EVI
product [46–48]. Besides, the MTCI is one of the VIs, and Harris and Dash [49] concluded
that the MTCI could replace EVI for estimating GPP across different biomes. However,
MTCI products were discontinued in 2012 [50].

The success of launching an Ocean and Land Colour Instrument (OLCI) onboard the
Sentinel-3 satellite offers a new possibility for GPP estimation. This instrument provides
a higher spatial and temporal resolution of FAPAR and MTCI products than MODIS.
Sentinel-3 OLCI was the push-broom imaging spectrometer used to measure the Earth’s
solar radiation in 21 spectral bands [51,52]. Moreover, the double satellite system (Sentinel-
3A and -3B) mean that the OLCI revisiting period is less than two days [53]. OLCI products
are mainly divided into two levels, namely level-1 and level-2 (land and water), with spatial
resolutions of about 300 m and 1200 m, respectively [54]. The OLCI Global Vegetation Index
(OGVI) and OLCI Terrestrial Chlorophyll Index (OTCI) (the proxy of MTCI [55]) are two
of the OLCI level-2 full-resolution land and atmosphere geophysical products, providing
an estimate of the FAPAR in the plant canopy and the chlorophyll index, respectively.
Compared with the MODIS FAPAR product (MOD15) and surface reflectance composite
data (MOD09), OGVI and OTCI use the actual value for each day rather than cumulative
eight-day values. Moreover, the spatial resolution is also better than that of MOD15 and
MOD09 [56]. Several studies have used Sentinel-3 satellite products for GPP evaluation. For
example, Zhang et al. [34] explored the relationship between the products of satellite FAPAR
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and solar-induced chlorophyll fluorescence (SIF). They proved the potential correlation
between FAPAR products and GPP. Harris et al. [49] demonstrated that OTCI might be an
effective substitute for MODIS to estimate GPP. Zhang et al. [50] combined OLCI FAPAR
with in situ meteorological data to drive the MODIS GPP algorithm to estimate GPP across
several biomes. The results indicated that the Sentinel-3 OLCI FAPAR products performed
better than MODIS FAPAR products at the site scale in estimating GPP and demonstrated a
significant correlation between OTCI and GPP. Nevertheless, the studies mentioned above
were all based on the site scale, and the estimation of GPP on a large scale was not involved.
Moreover, only a single LUE model was adopted, or only a simple relationship between in
situ GPP and FAPAR was established. None of these studies utilized multiple LUE or VI
models to estimate GPP.

This paper aims to demonstrate the potential of combining Sentinel-3 OLCI FAPAR
and OTCI with meteorology reanalysis data in estimating GPP with multiple models at
multiple scales. Specifically, this study has four objectives (1) integrating Sentinel-3 OLCI
FAPAR and MERRA2 meteorology reanalysis data into the MODIS GPP algorithm and
EC-LUE model to estimate GPP, (2) combining Sentinel-3 OTCI and MERRA2 meteorology
reanalysis data with the GR and VI models to estimate GPP, (3) comparing the GPP obtained
from four RS-driven models with on-site measured GPP and MODIS GPP products, and
(4) applying Sentinel-3 OLCI FAPAR and meteorology reanalysis to estimate GPP at the
regional scale and compare it with MODIS GPP products.

2. Materials and Methods
2.1. Research Sites and Region

The interest area covers regions from the upper-left corner at 45◦N and −124◦W to
the bottom-right corner at 25◦N and −89◦W in North America (Figure 1). The AmeriFlux
eddy covariance flux tower data were used in the study. Since the full year of available
measurements by the satellite products is from 2017, we chose sites with data after 2017.
The eight EC flux sites cover eight biome types, including evergreen needleleaf forests
(ENF), deciduous broadleaf forests (DBF), mixed forests (MF), closed shrublands (CSH),
open shrublands (OSH), woody savannas (WAS), grasslands (GRA), and croplands (CRO).
Since the EC flux sites with the biome types of evergreen broadleaf forests (EBF), deciduous
needleleaf forests (DNF), and savannas (SAV) are not matched in time with Sentinel-3
OLCI, this research did not estimate the GPP under these biome types at the site scale.
Additionally, due to rich biome types, California was selected as the study area for regional
GPP estimation.
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2.2. Data
2.2.1. Sentinel-3 OLCI Land Product

Sentinel-3 OLCI is an inheritor of the Medium Resolution Imaging Spectrometer
(MERIS) and has many enhancements [51,57]. There are three main kinds of OLCI products
available to the public (i.e., level-1B products, level-2 land products, and level-2 water
products). The level-2 land product provides land and atmospheric geophysical products
at full and reduced resolution, where full resolution is approximately 300 m on the ground
and reduced resolution is approximately 1200 m on the ground. An OLCI Level-2 Land
Full Resolution (OL_2_LFR) product includes an OGVI band and OTCI band. OGVI
describes FAPAR in the plant canopy and OTCI represents the terrestrial chlorophyll index.
Sentinel-3 OLCI products applied in this study covered January 2017 to December 2018 at
the US-WCr site, US-Ton site, US-PFa site and US-Var site, respectively. However, due to
the lack of site data, Sentinel-3 OLCI products from January 2017 to September 2018 at the
US-Rls site and US-Rws site, January 2017 to March 2018 at the US-GLE site and April 2017
to December 2018 at the US-Bi2 site were used.

The Sentinelsat module offers a powerful Python API for searching and downloading
the metadata of Sentinel satellite images from the Copernicus Open Access Hub (https:
//scihub.copernicus.eu/dhus (accessed on 13 January 2021)) through executing condition
and spatial queries (a region of interest can be created with a polygon on the GeoJSON
website) and was used to batch download the OLCI online and offline products. The filtered
OLCI products were automatically downloaded and stored locally as compressed files,
and a total of about 5200 scene data were downloaded in this work. Then, we developed
a complete set of OLCI product preprocessing processes, including mosaic, reprojection,
resampling, and subset processes. The snappy module developed by the European Space
Agency (ESA) and a custom script written in Python was applied to complete these data
preprocessing operations. The traditional data processing software (i.e., SNAP and ENVI)
either cannot batch process or takes a long time. Our python script can dramatically
improve the efficiency of data processing through fully automatic data retrieval, batch
processing and multithreading technology.

2.2.2. MERRA2 Daily Meteorology Reanalysis Data

Second Modern-Era Retrospective analysis for Research and Applications (MERRA2)
meteorology reanalysis data with a 0.5◦ × 0.625◦ spatial resolution have been widely
used in GPP modeling [5,58,59]. The data were downloaded from GMAO/NASA (https:
//disc.gsfc.nasa.gov (accessed on 13 January 2021)). Four MERRA2 variables were used for
this study: (1) daily surface incoming shortwave flux (SWGDN, W/m2), (2) daily minimum
air temperature at 2 m (T2MMIN, K), (3) daily mean air temperature at 2 m (T2MMEAN, K),
and (4) relative humidity (RH, %). The SWGDN was discovered within the “Single-Level
Radiation Diagnostics” collection (M2T1NXRAD), T2MMIN and T2MMEAN were found
in the “Single-Level Diagnostics” collection (M2SDNXSLV), and RH was discovered within
the “Assimilated Meteorological Fields” collection (M2I3NPASM).

In order to run GPP estimation models at the same spatial resolution as OLCI products,
we adopted the nonlinear spatial interpolation method developed by Zhao et al. [60] for
downsizing the MERRA2 meteorology reanalysis data from a 0.5◦ × 0.625◦ resolution to a
300 m OLCI pixel resolution [43,59]. This method utilizes the fourth power of the cosine
function and the weighted distance in the closest four grid cell for computing the value
of every output pixel with an OLCI resolution [61]. The spatial interpolation scheme may
improve the meteorological input data accuracy of every 300 m pixel, eliminating sudden
changes between the two sides of the MERRA2 boundary [62].

2.2.3. EC Flux Data

The EC flux data of eight AmeriFlux sites were downloaded from the AmeriFlux data
portal (https://ameriflux.lbl.gov/ (accessed on 13 January 2021)). These eight AmeriFlux
sites are GLEES (US-GLE), Willow Creek (US-WCr), SE5 Aspen-5 CHEESEHEAD 2019

https://scihub.copernicus.eu/dhus
https://scihub.copernicus.eu/dhus
https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov
https://ameriflux.lbl.gov/
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(US-PFs), RCEW Low Sagebrush (US-Rls), Reynolds Creek Wyoming big sagebrush (US-
Rws), Tonzi Ranch (US-Ton), Vaira Ranch-Ione (US-Var), and Bouldin Island corn (US-Bi2),
represented by ENF, DBF, MF, CSH, OSH, WSA, GRA, and CRO, respectively (Table 1).
The EC flux data have a half-hourly temporal resolution, and the daily GPP values were
calculated as a sum of 30-min GPP fluxes. The REddyProc online tool (https://www.bgc-
jena.mpg.de/REddyProc/brew/REddyProc.rhtml (accessed on 13 January 2021)) [63,64]
implements a standardized approach for processing EC data and was used to calculate
GPP for the EC flux tower when GPP was not provided. Furthermore, the online tool
filters out data collection during stable atmospheric conditions using u* (friction velocity)
filtering, and gap-fills missing data using a marginal distribution sampling approach.
Flux measurements (net ecosystem exchange, latent heat flux and sensible heat flux)
and meteorology measurements (incoming shortwave radiation, vapor pressure deficit,
relative humidity, air temperature, soil temperature and friction velocity) were obtained to
calculate GPP.

Table 1. List of AmeriFlux eddy covariance tower sites adopted within the research.

Site ID Lat (◦N) Lon (◦E) Biome
Type Location Height Period Used Reference

US-GLE 41.37 −106.24 ENF Wyoming 22.65 m 2017.01–2018.03 [65]
US-WCr 45.81 −90.08 DBF Wisconsin 29.60 m 2017.01–2018.12 [66]
US-PFa 45.94 −90.24 MF Wisconsin – 2017.01–2018.12 [67]
US-Rls 43.14 −116.74 CSH Idaho 2.09 m 2017.01–2018.09 [68]

US-Rws 43.17 −116.71 OSH Idaho 2.05 m 2017.01–2018.09 [68]
US-Ton 38.43 −120.97 WSA California 23.50 m 2017.01–2018.12 [69]
US-Var 38.41 −120.95 GRA California 2.00 m 2017.01–2018.12 [70]
US-Bi2 38.11 −121.54 CRO California 5.11 m 2017.04–2018.12 [71]

ENF: evergreen needleleaf forests; DBF: deciduous broadleaf forests; MF: mixed forests; CSH: closed shrublands; OSH: open shrublands;
WSA: woody savannas; GRA: grasslands; and CRO: croplands.

2.2.4. MODIS Products

The most widely used GPP product is MOD17A2H, which uses updated Biome
Property look-up tables and an updated version of the daily GMAO meteorological data as
input data. Since the time resolution is 8 days, there are a total of 92 scene MODIS GPP
products used within two years. The purpose of using MOD17A2H is to compare of the
model prediction accuracy.

The MOD12Q1 land cover product with a 500 m spatial resolution, which is one of
the MODIS products, was used in the MODIS GPP algorithm. Boston University’s UMD
classification scheme within the dataset was also employed for offering biome-specific
information for GPP estimation models [6]. Moreover, a 1.5 km × 1.5 km area centered
on every flux tower site was extracted to represent the flux footprint, the mean values
of the 5 × 5 pixels and the mean values of the 3 × 3 pixels were the final GPP values for
Sentinel-3 OLCI products and MODIS GPP products, respectively [5,50].

2.3. Methods
2.3.1. MODIS GPP Algorithm

Firstly, we used the MODIS GPP algorithm to estimate GPP. The MODIS GPP algo-
rithm is applied based on the LUE model, which mainly uses the relationship between LUE
and environmental factors (temperature, water vapor, and light) [28,72]. The algorithm can
be expressed as follows:

GPP = ε ∗ FAPAR ∗ IPAR (1a)

ε = εmax∗TMIN_scalar ∗ VPD_scalar (1b)

https://www.bgc-jena.mpg.de/REddyProc/brew/REddyProc.rhtml
https://www.bgc-jena.mpg.de/REddyProc/brew/REddyProc.rhtml
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TMIN_scalar =


0 Tmin < TMINmin

Tmin−TMINmin
TMINmax−TMINmin

TMINmin < Tmin < TMINmax

1 Tmin > TMINmax

(1c)

VPD_scalar =


0 VPD > VPDmax

VPDmax−VPD
VPDmax−VPDmin

VPDmin < VPD <

1 VPD < VPDmin

VPDmax (1d)

where εmax, TMINmax, TMINmin, VPDmax, and VPDmin are shown in Table 2. The biome-
specific physiological parameters for each biome type are determined according to the
MOD12Q1 UMD classification scheme and BPLUT (Table 3) [59]. TMIN and VPD scalars
are simple linear ramp saturated at the maximum and minimum, respectively, and the
range is from 0 to 1 [73]. FAPAR was obtained from the OLCI FAPAR product (OGVI).
IPAR is equal to SWRad times 0.45 (Equation (1e)):

IPAR = SWRad∗0.45 (1e)

where SWRad, Tmin and VPD are obtained from MERRA2 meteorology reanalysis data.
VPD is calculated with T2MMEAN and RH (Equation (1f)) [73]:

VPD = 610.78∗e(
17.2694∗T2MMEAN
T2MMEAN+238.3 )

(
1 − RH

100

)
(1f)

Table 2. Biome properties look-up table parameters for daily gross primary production (GPP) [50,74].

Parameter Description

εmax The maximum light use efficiency
TMINmax Daily minimum temperature where ε = εmax
TMINmin Daily minimum temperature at which ε = 0.0
VPDmax Daylight average vapor pressure deficit at which ε = εmax
VPDmin Daylight average vapor pressure deficit at which ε = 0.0

Table 3. Biome properties look-up table for the moderate resolution imaging spectroradiometer (MODIS) GPP algorithm [50].

Biome Types ENF DBF MF CSH OSH WSA GRA CRO

εmax(gC/m2/d/MJ) 0.962 1.165 1.051 1.281 0.841 1.239 0.860 1.044
TMINmax (◦C) −8.00 −6.00 −7.00 −8.00 −8.00 −8.00 −8.00 −8.00
TMINmin (◦C) 8.31 9.94 9.50 8.61 8.80 11.39 12.02 12.02
VPDmax (Pa) 650.0 650.0 650.0 650.0 650.0 650.0 650.0 650.0
VPDmin (Pa) 4600.0 1650.0 2400.0 4700.0 4800.0 3200.0 5300.0 4300.0

ENF: evergreen needleleaf forests; DBF: deciduous broadleaf forests; MF: mixed forests; CSH: closed shrublands; OSH: open shrublands;
WSA: woody savannas; GRA: grasslands; and CRO: croplands.

2.3.2. EC-LUE

Yuan et al. [32] developed the EC-LUE model which is mainly driven by FAPAR, PAR,
the air temperature, and the Bowen ratio of sensible to latent heat flux. Because of the weak
simulation of sensible and latent heat fluxes on a large spatial scale, adopting the Bowen
ratio for presenting water stress factors (Ws) will hinder EC-LUE model application on a
large scale [75]. In this study, VPD was used to replace sensible and latent heat fluxes to
calculate Ws [21]. The GPP in EC-LUE is estimated as follows:

GPP = FAPAR ∗ IPAR ∗ εmax∗Min(TS, WS) (2a)

where FAPAR is obtained from the OLCI FAPAR product (OGVI). IPAR is the same as in the
MODIS GPP algorithm. εmax is the potential LUE without environmental stress and is set
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to 2.14 (gC/m2/d) [33]. Ts and Ws are the downward-regulation scalars for the individual
influences of temperature and humidity on LUE. Min denotes the minimum value of Ts
and Ws. Ts indicates a limiting influence of temperature on vegetation photosynthesis,
based on the algorithm of the temperature limiting factor in the Terrestrial Ecosystem
Model (TME) [76,77]:

Ts =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(
T − Topt

)2 (2b)

where T is the average air temperature (◦C), and Tmin, Tmax, and Topt represent the min-
imum, maximum, and optimum air temperatures (◦C), respectively, for photosynthetic
activities. If the air temperature is below Tmin or exceeds Tmax, Ts is set to zero. According
to [32], this study set Tmin and Tmax to 0 and 40 ◦C, respectively, and Topt was determined
to be 20.33 ◦C through nonlinear optimization. The Ws can be expressed as follows:

Ws =
VPD0

VPD0 + VPD
(2c)

where VPD0 is the half-saturation coefficient of the Equation (2c), obtained from previous
research (Table 4) [21].

Table 4. VPD0 of the eddy covariance light use efficiency (EC-LUE) model for various biome types [21].

Biome Types ENF DBF MF CSH OSH WSA GRA CRO-C4

VPD0(kPa) 0.72 0.93 0.58 1.23 1.23 1.24 1.31 0.94

2.3.3. The Greenness and Radiation Model (GR)

Gitelson et al. first introduced the GR model [78]. The GR model estimates GPP by
adopting the chlorophyll content, as well as incoming solar radiation. This model was
successfully applied within irrigated and rainfed maize, wheat cropland, and forest [48].
The GR model can be expressed as follows:

GPP = Chl ∗ IPAR ∗ m (3)

where Chl was replaced with OTCI in this study. The parameter m is a scalar decided
by the model calibration. The calculation method of model calibration is described in
Section 2.3.5.

2.3.4. The Vegetation Index Model (VI)

The VI model employed for GPP estimation was proposed by Wu et al. and applied
in crop and deciduous forest ecosystems [42]. It assumes that the VIs are a reliable proxy
of both LUE and FAPAR, so the product VIs ∗ VIs ∗ IPAR is used to estimate GPP. In this
paper, VIs is same, so the VI model can be expressed as:

GPP = VIs2∗IPAR ∗ m (4)

where OTCI is regarded as the VI parameter of the model input, m is the same as in the
GR model.

2.3.5. Calibration of the GR and VI Model

Model calibration is an important step for the operational application of the GR and VI
models and greatly impacts model accuracy [48,79]. GR and VI model calibration mainly
involves the calculation of scalar m. At present, calibration methods can be divided into
adopting the half-data method (the rest of the data are used for model validation) [23] and
the all-data method (all data are applied to model calibration and validation) [46,48]. In this
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work, to conduct a rigorous test of the model, we chose half-data to calibrate the model.
The rest of the data were then applied when testing the model. The values of scalar m were
obtained through establishing a directly linear relationship between in situ measured GPP
and model-estimated GPP values, and scalar m is the slope of linear function.

2.3.6. Analytical Methods

Three statistic analytical indices can be adopted for evaluating the accuracies and
uncertainties of all GPP models: (1) the coefficient of determination (R2), which expresses
the fit between model prediction results and true values; (2) the root mean square error
(RMSE), which refers to sample standard deviation between predictions and measurements;
and (3) bias, which reflects the differences between the estimates and the observation. RMSE
and bias are calculated as follows:

RMSE =

√
1
n
∗

n

∑
i=1

(Mi − Ei)
2 (5a)

Bias =
1
n
∗

n

∑
i=1

(Mi − Ei) (5b)

where Mi and Ei are the predicted GPP and measured GPP values, respectively. Notably, in
subsequent chapters, GPPEC represents the on-site measured GPP values, and GPPMOD17
represents the GPP values from MODIS-GPP products. GPPMODIS-GPP, GPPEC-LUE, GPPGR,
and GPPVI represent GPP estimation values obtained from the MODIS-GPP algorithm,
EC-LUE model, GR model, and VI model, respectively.

3. Results
3.1. Meteorology Variables

In this study, the MERRA2 meteorology reanalysis data were taken as site meteorolog-
ical data for four GPP estimation models. For determining the meteorological data effects
on GPP estimation, we conducted a direct comparison of daily MERRA2 meteorology
reanalysis data and site meteorological data (Figure 2). The two datasets have a strong
correlation with T2M_MIN and T2M_MEAN (Figure 2a,b), suggesting that the MERRA2
meteorology reanalysis data can be reliably applied to estimate the on-site temperature
conditions. The IPAR (Figure 2c) at the eight sites had a high correlation with the measured
data. The R2 was above 0.8, and the scatter distribution was very close to the 1:1 line, which
indicated that the on-site IPAR could be reliably calculated from the MERRA2 meteorology
reanalysis data. For VPD (Figure 2d), R2 varied at different sites, and the range of R2 was
0.51–0.95. Among them, VPD at the US-WCr (DBF) and US-Bi2 (CRO) obtained a relatively
low accuracy, with R2 = 0.54 and 0.62, respectively. The VPD across shrublands obtained
the highest accuracy (R2 = 0.95).
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tions (MERRA2) meteorology reanalysis data against daily site meteorology data: (a) T2M_MIN;
(b) T2M_MEAN; (c) IPAR; and (d) VPD from different biome types.

3.2. Agreement between GPPMODIS-GPP, GPPEC-LUE, GPPMOD17 and GPPEC

We first compared the performance of GPPMODIS-GPP and GPPEC-LUE against that of
the GPPEC at all sites for 2017 and 2018 (Figure 3). For the MODIS-GPP algorithm, the
results showed that the US-Ton site obtained the best performance (R2 = 0.73), followed
by US-GLE with R2 = 0.72, US-Bi2 with R2 = 0.68, US-WCr with R2 = 0.67, US-PFa with
R2 = 0.66, and US-Rls with R2 = 0.63 (Table 5). The R2 values between the GPPMODIS-GPP
and GPPEC at the US-Var site and US-Rws site were lower than 0.5. In terms of the RMSE,
the US-Bi2 site produced the maximum error (RMSE = 7.70 gC/m2/d) and the US-Ton site
displayed the lowest error with RMSE = 1.15 gC/m2/d.

For the EC-LUE model, the results showed that the US-Ton site obtained the best
performance (R2 = 0.74), followed by the US-Var with R2 = 0.67, US-WCr with R2 = 0.58,
US-Rws with R2 = 0.57, US-PFa with R2 = 0.57, US-PFa with R2 = 0.56, and US-Bi2 with
R2 = 0.53. However, insignificant correlations were obtained at the US-GLE site, and
this situation was mainly influenced by the ENF when using EC-LUE model [32,75]. For
MODIS-GPP products, the US-GLE site exhibited the best performance, with R2 = 0.92. At
the US-Rws site and US-Var site, GPPMOD17 performed relatively poorly, with R2 = 0.48
and 0.46, respectively. These results were consistent with GPPMODIS-GPP. It is worth noting
that the performance of GPPMOD17 was worse than GPPMODIS-GPP for the US-Ton, US-Var,
and US-Bi2 site and worse than GPPEC-LUE for the US-Rws, US-Ton, and US-Var site.
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Table 5. Coefficient of determination (R2), root mean square error (RMSE, gC/m2/d) and bias (gC/m2/d) for GPPMODIS-GPP,
GPPEC-LUE, GPPMOD17 and GPPEC.

Site ID
GPPMODIS-GPP GPPEC-LUE GPPMOD17

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

US-GLE 0.72 2.20 −1.65 0.27 2.31 −1.39 0.92 1.10 −0.83
US-WCr 0.67 3.02 −0.70 0.58 4.05 1.71 0.70 2.84 0.71
US-PFa 0.66 2.09 0.62 0.56 3.23 2.07 0.72 2.56 1.34
US-Rls 0.63 1.27 −0.86 0.57 1.20 −0.64 0.74 0.90 −0.53

US-Rws 0.41 1.21 −0.83 0.57 0.77 −0.29 0.48 0.83 −0.40
US-Ton 0.73 1.14 −0.30 0.74 1.90 0.70 0.63 1.37 0.21
US-Var 0.49 1.60 0.19 0.67 2.50 1.73 0.46 2.05 1.00
US-Bi2 0.68 7.70 −4.53 0.53 7.80 −4.15 0.66 6.80 −3.12

Note: Highest R2, lowest RMSE, and lowest Bias value are shown in bold. GPPMODIS-GPP: GPP values obtained from MODIS-GPP algorithm;
GPPEC-LUE: GPP values obtained from EC-LUE model; GPPMOD17: GPP values are from MODIS GPP products.

Figure 4 illustrates the temporal variation of GPPMODIS-GPP, GPPEC-LUE and GPPEC
for all sites. Overall, GPPMODIS-GPP and GPPEC-LUE effectively matched GPPEC and gen-
erally captured the seasonal variations aligned with the GPPEC. As shown in Table 5,
GPPMODIS-GPP tracked GPPEC well at the US-Ton site, with the lowest RMSE (1.14 gC/m2/d)
and the second-lowest bias (−0.30 gC/m2/d). Similarly, GPPEC-LUE tracked GPPEC well
at the US-Rws site, with the lowest RMSE (1.01 gC/m2/d) and bias (−0.72 gC/m2/d).
However, there were still substantial underestimations and overestimations in some sites
among GPPMODIS-GPP, GPPEC-LUE and GPPEC. For example, for the MODIS-GPP algo-
rithm, at the US-Bi2 site, GPPMODIS-GPP were underestimated (RMSE = 7.70 gC/m2/d,
bias = −4.53 gC/m2/d). For the EC-LUE model, GPP fluxes were underestimated at
several sites, such as the US-Bi2 site (RMSE = 7.80 gC/m2/d, bias = −4.15 gC/m2/d)
and the US-GLE site (RMSE = 2.31 gC/m2/d, bias = −1.39 gC/m2/d), but GPPEC-LUE
values at the US-PFa site (RMSE = 3.23 gC/m2/d, bias = 2.07 gC/m2/d) and the US-
WCr site (RMSE = 4.05 gC/m2/d, bias = 1.71 gC/m2/d) were overestimated. Notably,
GPPMODIS-GPP at the US-WCr site and GPPEC-LUE at the US-Ton site obtained a low bias
but high RMSE. It was because the underestimation of GPP offset part of the deviation
during the months of 2017, as well as the overestimation of compensation in 2018 or
GPP underestimation during the growing season, alongside overestimation during the
nongrowing season.

3.3. Agreement between GPPGR, GPPVI and GPPEC

The scatter plots between the GPPGR, GPPVI, and GPPEC for every site are displayed in
Figures 5 and 6. The performance of the two models is different at various sites. Therefore,
the two models’ applicability depends on the biome type. For example, insignificant
correlations between the GR and VI models were obtained at the US-Rws site, US-Ton
site and US-Rls site. Even for the same biome type, their performance was different. For
instance, the GR model had a better performance than the VI model at the US-GLE site.
Additionally, strong relationships between GPPGR, GPPVI and GPPEC were established at
the US-WCr site, US-Bi2 site, US-PFa site, and US-Var site. In particular, the GR and VI
models both obtained the best performance at the US-WCr site, with R2 = 0.84 and 0.81,
respectively.
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The time series of GPPGR, GPPVI and GPPEC in 2017–2018 are presented in Figure 7.
Overall, the temporal dynamics of GPPGR and GPPVI are roughly the same. The GPPGR
and GPPVI tracked the GPPEC well at the US-Bi2 site, US-PFa site, US-Var site, and US-WCr
site. As shown in Table 6, GPPGR and GPPVI at the US-GLE site were overestimated, with
bias = 3.18 gC/m2/d and 1.16 gC/m2/d, respectively. Additionally, GPPGR and GPPVI
were underestimated at the US-Ton site, with bias = −0.75 gC/m2/d and −1.48 gC/m2/d,
respectively. Notably, both GPPGR and GPPVI showed a poor relationship with GPPEC at
the US-Rls site and US-Rws site. This situation was mainly due to the underestimated GPP
values during the growing season and overestimating GPP values during the nongrow-
ing season.
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Table 6. Coefficient of determination (R2), root mean square error (RMSE, gC/m2/d) and bias (gC/m2/d) for GPPGR,
GPPVI, and GPPEC.

Site ID
GR Model VI Model

R2 RMSE Bias R2 RMSE Bias

US-GLE 0.50 3.51 3.18 0.17 2.47 1.46
US-WCr 0.84 2.92 −0.66 0.81 3.31 −1.76
US-PFa 0.66 2.09 1.12 0.68 1.72 0.09
US-Rls 0.35 1.38 0.24 0.44 1.31 −0.15

US-Rws 0.05 1.03 −0.22 0.03 1.17 −0.57
US-Ton 0.18 1.82 −0.75 0.20 1.95 −1.48
US-Var 0.51 1.75 0.34 0.66 1.67 −0.63
US-Bi2 0.76 4.21 1.66 0.73 4.29 −1.48

Note: Highest R2, lowest RMSE, and lowest Bias value are shown in bold. GPPGR: GPP values are calculated from GR model; GPPVI: GPP
values are calculated from VI model.

3.4. Spatial−Temporal Consistency between GPPMODIS-GPP, GPPEC-LUE and GPPMOD17

We compared the spatial distribution of the annual mean GPP (gC/m2/d) and maxi-
mum daily GPP (gC/m2/d) from GPPMODIS-GPP and GPPEC-LUE across California in North
America during 2017 and 2018 at a 300 m spatial resolution. The annual mean GPP was
the average of each pixel throughout the year. The maximum daily GPP was the maxi-
mum value of each pixel throughout the year. Notably, the spatial distributions of GPPGR
and GPPVI were not shown here due to the insufficient calibration data for upscaling to
the regional scale. Figure 8a−f show the spatial distribution of the annual mean GPP
throughout California. The GPPMODIS-GPP and GPPEC-LUE reached the highest values in the
western coastal area and decreased along a longitudinal gradient from the west (dominated
by forest) to the east (dominated by shrubland and grassland). For the maximum daily
GPP (Figure 8g−l), the highest value was ~23 gC/m2/d for the Northwest Coastal Forest
Belt. The southeastern shrubland region had low GPP values. From 2017 to 2018, the
maximum daily GPP decreased significantly in the southwestern shrubland (35◦N–37◦N,
−121◦W–199◦W). The biggest discrepancy between the annual mean GPP value and maxi-
mum daily GPP value could be found in the central croplands, where the maximum daily
GPP was high, and the annual mean GPP was moderate. Overall, the GPPMODIS-GPP and
GPPEC-LUE showed similar spatial−temporal patterns to GPPMOD17. Notably, compared
with GPPMOD17, GPPMODIS-GPP, and GPPEC-LUE relatively underestimated the GPP values
for cropland.
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4. Discussion

The R2 between GPPMODIS-GPP, GPPEC-LUE, and GPPEC showed the strong correlation
between modelled GPP and measured GPP. The performance of RMSE varied at different
sites. Compared with GPPMOD17, GPPMODIS-GPP offered better GPP prediction at the US-
Ton site and US-Bi2 site, and GPPEC-LUE offered better GPP prediction at the US-Ton site,
US-Var site, and US-Rws site. At the US-Ton site, GPPMODIS-GPP and GPPEC-LUE obtained
the best performance. Previous research showed that the savanna GPP estimation accuracy
was smaller than other biome types because of the misclassification and sparse vegetation
cover [50,74,80]. However, the woody savanna has a denser vegetation cover than the
savanna [74,80,81]. This structure can reduce the influence of understory vegetation and
improve GPP estimation accuracy [82]. Additionally, GPPMODIS-GPP and GPPEC-LUE also
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obtained a good performance at the US-WCr site and US-PFa site. This finding was consis-
tent with previous studies [5,83]. For the US-WCr site, both GPPMODIS-GPP and GPPEC-LUE
performed best in estimating GPP. The reasons for this can be summarized as follows.
Firstly, DBF has obvious seasonal and phenological characteristics which can be monitored
by satellites in real time [32]. Secondly, the vegetation structure of DBF is simple and
the vegetation coverage varies greatly in different seasons, so the estimation of FAPAR is
relatively simple and accurate [32]. Thirdly, DBF usually grows at mid and high latitudes
with less cloudiness so that high-quality time-series images can be obtained [44]. For the
US-PFa site, GPPMODIS-GPP and GPPEC-LUE represented the growth status of MF. However,
compared with GPPMODIS-GPP, GPPEC-LUE was overestimated (RMSE = 3.23 gC/m2/d,
bias = 2.07 gC/m2/d). The factor that caused this overestimation was the complex vegeta-
tion structure of the mixed forest, which had various εmax due to abundant plant species.
Moreover, the leaf shape, tree height, and light energy absorption conditions are differ-
ent among tree species. Therefore, a single εmax used in the input model causes certain
errors [84,85]. The performance of GPPMODIS-GPP and GPPEC-LUE at two shrubland sites
varied. For the US-Rls site, GPPMODIS-GPP and GPPEC-LUE both had a moderate correlation
against GPPEC, with R2 = 0.63 and 0.57, respectively. However, for the US-Rws site, the
accuracy of GPPMODIS-GPP was the lowest, and the performance of GPPEC-LUE was better
than that of GPPMODIS-GPP. The factor that caused this phenomenon was the estimation
accuracy of GPP at shrubland sites, which varied in different areas [22,86]. The growth of
shrubland is mainly affected by water, so more consideration should be given to water influ-
ence factors when estimating shrubland GPP [81,84]. Therefore, for shrubland in temperate
and frigid zones, GPP estimation accuracy is higher, but in the tropics, affected by VPD and
FAPAR, the accuracy of shrubland GPP estimation is lower. At the US-Var site, the perfor-
mance of GPPEC-LUE was also better than GPPMODIS-GPP, and the accuracy of the GPPEC-LUE
was the second highest (R2 = 0.67). The accuracy of GPPMODIS-GPP (R2 = 0.49) was consis-
tent with that of GPPMOD17 (R2 = 0.46). However, the performance of GPPMODIS-GPP at the
US-GLE site was far better than that of GPPEC-LUE. For the US-GLE site, the accuracy of
GPPMODIS-GPP was worse than the US-Ton site (R2 = 0.72). For the US-Bi2 site, the rela-
tionship between GPPMODIS-GPP, GPPEC-LUE and GPPEC was moderate, and GPPMODIS-GPP
and GPPEC-LUE obviously underestimated the cropland GPP (RMSE = 7.70 gC/m2/d,
bias = −4.53 gC/m2/d and RMSE = 7.80 gC/m2/d, Bias = −4.15 gC/m2/d, respectively).
This finding is aligned with previous research [50,87]. In crop ecosystems, different crops
have different εmax and growth cycles, so a single εmax cannot represent well all types of
crops [88,89]. Additionally, the rotation period varies for different crop types. Therefore,
if the same input variables are used to estimate GPP for different crops, this can lead to a
large deviation in GPP estimation [90].

The performance of GPPGR and GPPVI was diverse for different biome types. The
correlation between GPPGR, GPPVI, and GPPEC was strongest at the US-WCr site, with
R2 = 0.84 and 0.81, respectively. Compared to the US-WCr site, the correlation between
GPPGR, GPPVI and GPPEC was relatively weak at the US-GLE site. This result was con-
sistent with previous research, where OTCI was highly correlated with tower GPP across
deciduous forests and weakly correlated with tower GPP across evergreen forests [49,50].
The reason for this phenomenon could be that stress causes a decrease of the photosynthetic
efficiency [91], the conical canopy structure, and the density of evergreen needleleaf trees.
The consequent shadowing effect leads to the failure of OTCI for detecting subtle changes
within the seasonal chlorophyll content of evergreen needleleaf forests [92,93]. Addition-
ally, GPPGR and GPPVI showed moderate correlations with GPPEC at the US-PFa site. The
factors that caused this can be considered from two aspects. Firstly, the vegetation structure
of mixed forests is complex, and different vegetation types will affect the estimation of
GPP. Secondly, mixed forest productivity will drop sharply when the temperature drops
in a short period. However, the vegetation index cannot change significantly in this case,
leading to its failure in capturing the impact of temperature change on GPP [47,94,95].
A strong correlation could also be observed between GPPGR, GPPVI, and GPPEC at the
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US-Bi2 site. Previous studies have found a similar relationship between OTCI or other
chlorophyll indices and GPP [49,78,96]. Notably, GPPGR and GPPVI had the highest RMSE
(4.21 gC/m2/d and 4.29 gC/m2/d, respectively) at the US-Bi2 site. The reason for this
is that compared with GPPEC, GPPGR and GPPVI overestimated GPP in the nongrowing
season and underestimated it in the growing season (Figure 7h). A previous study demon-
strated that OTCI started to increase earlier than the time of corn sowing [49]. The high
GPPGR and GPPVI obtained in the nongrowing season may represent fallow land, which is
gradually colonized by weed species or affected by humidity changes, and not represent
actual crop growth [49]. At the US-Var site, the correlation between GPPVI and GPPEC
(R2 = 0.66) was better than that between GPPGR and GPPEC (R2 = 0.50). This difference
may be related to the vertical and horizontal heterogeneity of grasslands [49]. C3 annual
grasses dominated the US-Var site. Previous studies [49,97] showed that, compared with
grasslands dominated by C4 species, C3 grasslands exhibited lower OTCI values during the
peak growth period, explaining why GPPVI had a higher accuracy than GPPGR. However,
GPPGR and GPPVI performed poorly in woody savannas and two shrubland sites. The
probable reason for this was that the influence of the soil background on the low vegetation
coverage at these sites led to the failure of OTCI in tracking GPP [50].

At the regional scale, GPPMODIS-GPP and GPPEC-LUE agreed quite well with GPPMOD17.
For the annual mean GPP, GPPMODIS-GPP and GPPEC-LUE were relatively high in the western
coastal areas, where the biome types were mainly evergreen forests. The low GPPMODIS-GPP
and GPPEC-LUE were obtained in grasslands. The finding aligned with a previous study [61],
where evergreen forests exhibited strong photosynthesis and open shrublands were the
least productive. Forest ecosystems have a relatively higher maximum daily GPP, and
open shrublands have the lowest maximum daily GPP compared with other vegetation
types. Notably, the maximum daily GPP across grasslands in the northeast was larger
than in central areas, and the high sensitivity to soil moisture may be the cause of this
phenomenon [61]. The inconsistency between the annual mean GPP and maximum daily
GPP may be mostly due to the influence of temperature and rainfall on the length of the
different growing seasons [61].

In addition, we further analyzed the uncertainty in simulating GPP using Sentinel-3
OLCI products and MERRA2 meteorology reanalysis data in this study. Several factors can
influence the GPP estimation using the MODIS-GPP algorithm and EC-LUE model. First is
the inconsistency of the spatial resolution between Sentinel-3 and meteorology reanalysis
data. The errors may have been derived from the interpolation of MERRA2 meteorology
reanalysis data from 0.5◦ × 0.625◦ to 300 m. Second is the coarse classification of vegetation
types on land cover maps. Boston University’s UMD classification scheme in the MOD12Q1
land cover dataset classifies croplands as one category and does not distinguish between
C3 and C4 crops. C3 and C4 crops possess various photosynthetic pathways and light use
efficiencies [88,89]. Because the C3/C4 mixing ratio for each cropland pixel is unknown,
we simply used the single εmax and meteorological parameters to estimate GPP on a large
scale. Therefore, GPPMODIS-GPP and GPPEC-LUE are underestimated or overestimated in
croplands. Thirdly, the image data quality is also a significant factor influencing GPP
estimation. Due to atmospheric contamination (i.e., clouds, aerosols), Sentinel-3 OLCI
products have more missing data and low reliability during winter. Future work should be
focused on spatial−temporal fusion techniques, which can further enhance the temporal
and spatial continuity of Sentinel-3 OLCI products by fusing Sentinel-2 images with
Sentinel-3 OLCI to achieve more accurate regional and large-scale GPP estimation [98,99].

Although our results showed that GPPMODIS-GPP, GPPEC-LUE, GPPGR and GPPVI did
not always perform better than GPPEC or GPPMOD17, it needs to be emphasized that
the objective of our study was not to distinguish which model was superior for GPP
estimation. Our study aimed to demonstrate the potential of integrating Sentinel-3 OLCI
products and MERRA2 meteorology reanalysis data to estimate GPP at site and regional
scales. Our results also demonstrated that the LUE model and VI-driven model were
suitable for ESA’s Sentinel-3 data. The Sentinel-3 Sea and Land Surface Temperature
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Radiometer (SLSTR) provides land surface temperature (LST) products with a higher
temporal resolution. In future research, the integration of SLSTR LST products and OLCI
FAPAR or meteorology reanalysis data in other models for estimating GPP should be
conducted. For a wider application of Sentinel-3 OTCI products, future work requires more
in situ data to explore the OTCI and GPP’s relationship. Moreover, further investigations
should focus on combining other remote sensing data or satellite-driven models with OTCI-
based models. Previous studies have found that meteorological factors could improve
VI-driven GPP estimation models [23]. Some existing satellite-driven models could make
up for the insufficiency of GPP models based on physiologically driven spectral indices,
such as MTCI [100,101]. Additionally, the Fluorescence Explorer satellite, the ESA’s eighth
Earth Explorer, is expected to be launched by 2022, which can offer important auxiliary
data for using Sentinel-3 products to estimate GPP [33,102].

5. Conclusions

Within this research, we assessed the performance of two Sentinel-3 OLCI products
(FAPAR and OTCI) combined with MERRA2 meteorology reanalysis data to estimate
GPP through four GPP models (the MODIS GPP algorithm, EC-LUE model, GR model,
and VI model) at the site and regional scales during 2017 and 2018. The following major
conclusions can be drawn from the study:

(1) The relationship between GPPMODIS-GPP, GPPEC-LUE and GPPEC is obvious for
all sites. GPPMODIS-GPP exhibited the best performance with GPPEC at the US-Ton site
(R2 = 0.73), and the weakest performance for the US-Rws site (R2 = 0.41). In addition,
GPPMODIS-GPP and GPPEC-LUE were underestimated or overestimated at several sites, such
as the US-Bi2 site, US-GLE site, US-WCr site and US-PFa site. Compared with GPPMOD17,
GPPMODIS-GPP was superior to GPPEC at the US-Ton site, US-Var site, and US-Bi2 site, and
GPPEC-LUE was superior at the US-Ton site, and the US-Var site;

(2) Compared with GPPEC, the performance of GPPGR and GPPVI varied across
different biome types. Good performances were obtained across deciduous broadleaf
forests, mixed forests, grasslands, and croplands, and low R2 values were obtained across
evergreen needleleaf forests, shrublands, and woody savannas;

(3) At the regional scale, GPPMODIS-GPP and GPPEC-LUE both showed a very high
spatial−temporal consistency with GPPMOD17. The GPP value was high in the western
coastal area and low in southwestern shrubland across California. The annual mean
GPP value and maximum daily GPP exhibited a strong correlation with GPPMOD17 in
broadleaf forests, mixed forests, grasslands and croplands, but a relatively weak correlation
in evergreen needleleaf forests and shrublands.
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Abbreviations

GPP Gross primary production
LUE Light use efficiency
VIs Vegetation indices
EC Eddy covariance
MODIS Moderate resolution imaging spectroradiometer
MTCI MERIS Terrestrial Chlorophyll Index
OLCI Ocean and Land Colour Instrument
OTCI OLCI Terrestrial Chlorophyll Index
GR Greenness and radiation model
TG Temperature and greenness model
MOD17 MODIS GPP products
GPPMODIS-GPP GPP values obtained from MODIS-GPP algorithm
GPPEC-LUE GPP values obtained from EC-LUE model
GPPGR GPP values obtained from GR model
GPPVI GPP values obtained from VI model
GPPEC GPP values obtained from eddy covariance flux towers
GPPMOD17 GPP values obtained from MODIS-GPP products
FAPAR Fraction of absorbed photosynthetically active radiation
APAR Absorbed photosynthetically active radiation
IPAR Incident photosynthetically active radiation
T2MMIN Minimum air temperature at 2 m
T2MMEAN Mean air temperature at 2 m
RH Relative humidity
SWRad Surface incoming shortwave flux
VPD Vapor pressure deficit
WS Water stress factors
TS Temperature stress factors
T Average air temperature
Tmin Minimum air temperature
Tmax Maximum air temperature
Topt Optimum air temperature
εmax Maximum light use efficiency
Chl Chlorophyll content
LST Land surface temperature
EVI Enhanced vegetation index
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