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Abstract: It has become increasingly difficult in recent years to predict precipitation scientifically
and accurately due to the dual effects of human activities and climatic conditions. This paper fo-
cuses on four aspects to improve precipitation prediction accuracy. Five decomposition methods
(time-varying filter-based empirical mode decomposition (TVF-EMD), robust empirical mode de-
composition (REMD), complementary ensemble empirical mode decomposition (CEEMD), wavelet
transform (WT), and extreme-point symmetric mode decomposition (ESMD) combined with the
Elman neural network (ENN)) are used to construct five prediction models, i.e., TVF-EMD-ENN,
REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN. The variance contribution rate (VCR) and
Pearson correlation coefficient (PCC) are utilized to compare the performances of the five decomposi-
tion methods. The wavelet transform coherence (WTC) is used to determine the reason for the poor
prediction performance of machine learning algorithms in individual years and the relationship with
climate indicators. A secondary decomposition of the TVF-EMD is used to improve the prediction
accuracy of the models. The proposed methods are used to predict the annual precipitation in
Guangzhou. The subcomponents obtained from the TVF-EMD are the most stable among the four
decomposition methods, and the North Atlantic Oscillation (NAO) index, the Nino 3.4 index, and
sunspots have a smaller influence on the first subcomponent (Sc-1) than the other subcomponents.
The TVF-EMD-ENN model has the best prediction performance and outperforms traditional machine
learning models. The secondary decomposition of the Sc-1 of the TVF-EMD model significantly
improves the prediction accuracy.

Keywords: decomposition methods; Elman neural network; difference; precipitation prediction;
Guangzhou

1. Introduction

Annual precipitation is significantly influenced by human activities and natural factors,
and annual precipitation time-series data show non-stationary characteristics. The accurate
prediction of precipitation in a changing environment is a trending topic for hydrologists.

In recent years, linear time-series models have been suggested and widely used for
precipitation forecasting. Examples include linear regression models [1], autoregressive
integrated moving average (ARIMA) models [2], and multiple linear regression models,
which are widely applied because they accurately describe the relationship between multi-
ple influential variables and rainfall [3]. However, linear time-series models require a close
linear relationship between the independent and dependent variables. The precipitation
sequence in Guangzhou is influenced by both human activities and natural conditions.
Heavy rains are frequent, and the precipitation sequence is variable.
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Artificial neural networks (ANNs) are well-suited for analyzing hydrological variables
and are widely used for precipitation prediction [4–6]. However, ANNs may not provide
good simulation results for some non-stationary and extremely volatile time series data,
which may require preprocessing.

Recently, the concept of coupling different models has attracted attention in hydrologic
forecasting. These models can be broadly categorized into ensemble models and hybrid
models [7]. The concept of ensemble models consists in establishing several different
or similar models for the same process and then combining them [8–10]. For example,
Kim, et al. [8] integrated five ensemble methods to improve the performance of streamflow
prediction. Maryam, et al. [9] integrated wavelet, seasonal autoregressive integrated
moving average (SARIMA), and hybrid ANN methods to predict monthly precipitation.
Chau and Wu [10] integrated an ANN and support vector regression (SVR) to predict
daily precipitation.

With the development of hybrid models, the combination of signal decomposition and
machine learning models has been successfully applied to hydrological prediction [11,12].
For example, Tan, et al. [11] used an adaptive EEMD-ANN model to forecast monthly
runoff. Chen, et al. [12] combined nonparametric discrete wavelet transform (DWT), EEMD,
and parameter weighted least squares (WLS) estimation methods to predict daily precip-
itation. Complete ensemble empirical mode decomposition (CEEMD), an improvement
of the EMD and EEMD, has been used for hydrological prediction [13,14]. For example,
Mumtaz, et al. [13] combined CEEMD, random forest (RF), and kernel ridge regression
(KRR) to predict monthly precipitation. Ji, et al. [14] integrated CEEMD, least-squares
support vector machine, and nearest neighbor bootstrap regression (NNBR) to predict
reservoir inflow runoff. Wavelet transforms and neural networks were combined to predict
monthly precipitation [15] and daily precipitation [16]. Extreme-point symmetric mode
decomposition (ESMD) is a method to deal with non-stationary signals; Qin, et al. [17]
used it to predict runoff.

The cited literature indicates a lack of research on the following aspects. First, several
researchers used ESMD, CEEMD, and WT for hydrological prediction. However, time-
varying filter-based empirical mode decomposition (TVF-EMD) is a method for processing
nonlinear signals that has emerged in recent years. To date, few scholars applied it for
precipitation prediction, and there is a lack of systematic comparisons of the differences of
different decomposition methods regarding the physical mechanisms related to the model.
Second, machine learning is not well suited for explaining the physical mechanisms. Few
scholars have analyzed the poor simulation performance of machine learning algorithms,
which has been attributed to the fact that machine learning algorithms do not provide
good results for simulating individual points and are susceptible to noise. In this paper, we
use TVF-EMD for precipitation prediction and compare its performance with four other
decomposition methods using the variance contribution rate (VCR) and Pearson correlation
coefficient (PCC). Wavelet transform coherence (WTC) is used to determine whether the
poor simulation performance of the first subcomponent of precipitation (Sc-1) is related
to climate indicators, such as the North Atlantic Oscillation (NAO) index, sunspots, and
the Nino 3.4 index. Machine learning algorithms often have low simulation performance
for the Sc-1. Because of the small proportion of the Sc-1 in the original signal, it has a
negligible impact on the overall prediction error of the original sequence. Few scholars have
investigated the impact of the Sc-1 on the time-series sequence, especially the effect of the
secondary decomposition of the Sc-1 on the overall prediction performance of the model.

The remainder of this paper is organized as follows. The principle of the TVF-EMD,
robust empirical mode decomposition (REMD), CEEMD, wavelet transform, ESMD, and
Elman neural network (ENN) methods are introduced in Section 2. The five prediction
models (TVF-EMD-ENN, REMD-ENN, CEEMD-ENN, WT-ENN, ESMD-ENN) are de-
scribed in Section 3. Section 4 provides the discussion, detailing the performances of the
models and the advantages of the proposed models over traditional machine learning
models. Finally, the conclusions are drawn in Section 5.
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2. Method
2.1. Time-Varying Filter-Based EMD

TVF-EMD is a recent method proposed by Li et al [18]. Compared with other de-
composition methods, the TVF-EMD has the following advantages: (1) it addresses the
separation and intermittence problems [19]. (2) It uses a time-varying filter in the shifting
process to address the mode mixing problem and maintains the time-varying features,
unlike many other methods, such as EEMD and CEEEMD [19]. (3) The stopping criterion
is improved, resulting in a robust performance for low sampling rates.

In the TVF-EMD, the individual components are replaced by local narrow-band
signals to improve the performance of EMD. The signals have properties that are similar
to those of the intrinsic mode functions (IMFs) but provide a suitable Hilbert spectrum.
The implementation steps of the TVF-EMD are shown in Figure 1. More details on the
TVF-EMD method can be found in Li et al. [18].
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(TVF-EMD) [20].

2.2. REMD Decomposition Method

Unlike the EMD method, the REMD has strong robustness to noise and outliers; it
relies on bilateral filtering to reduce noise.

The steps of the REMD algorithm are as follows [21]:
(1) Find the local maximum and minimum points of the sequence.
(2) Smooth the estimated envelope using Equation (1) to compute the weights of

the points:

ω{m,n}[k, j] ∝ exp(−∆I[m, n; k, j]2

2σ2
r

− m2 + n2

2σ2
s

) (1)

where the function ∆I[m, n; k, j] represents the difference in intensity between the pixel pairs.
(3) Create the maximum envelope, Emax, and the minimum envelope, Emin, by

solving Equation (2):

E∗ =
[

PT
e Pe + λ(D−W)T(D−W)

]−1
PT

e Pe I (2)

(4) Calculate the average envelope:

E(i) = (Emax + Emin)/2 (3)

(5) Extract the IMF function:

hc
i = I(i) − E(i) (4)
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(6) Repeat the previous steps (2)~(5) until the IMF’s requirements are met.
(7) Use Equation (5) to determine if there is a mode-mixing problem of hi; if so, use

Equation (6) to construct the pseudo-signal Mcos. Then, update the obtained IMF as follows:

hi = (h+i + h−i )/2 (5)

(8) Calculate the residual Res = I(i) − hi; if it does not contain any additional points,
stop the EMD process; otherwise, update i = i + 1 and I(i) = Res and return to step (1).

(9) Output the final IMF components {hi} and the residual Res.
After the previous nine steps, the precipitation sequence Y is expressed as

Y = ∑ hi + Res.
More information on REMD can be found in Chen et al. [21].

2.3. Complementary Ensemble Empirical Mode Decomposition

The CEEMD is an improvement of EMD and has the following advantages: the
residual of the added white noise can be extracted from the noisy data using pairs of com-
plementary ensemble IMFs with added positive and negative white noise; this approach
eliminates the residual noise in the IMFs [22].

The steps of the CEEMD algorithm are as follows:
(1) Add white noise in pairs (i.e., positive and negative noise) to the original data:[

C1
C2

]
=

[
1
1

1
−1

][
S
N

]
(6)

where S represents the original data; N is the added white noise; C1 is the sum of the original
data and the positive noise, and C2 is the sum of the original data and the negative noise.

(2) Obtain the ensemble IMFs from the data with positive noise contributing to a set
of IMFs with the residuals of the added positive white noise.

(3) Obtain the ensemble IMFs from the data with negative noise contributing to
another set of ensemble IMFs with the residuals of the added negative white noise.

(4) Except for steps (1)–(3), the EMD is used in this method. Therefore, the original
signal x(t) can be reconstructed as follows:

S(t) =
n

∑
i=1

Ci(t) + rn(t) (7)

where Ci(t) is the ith IMF and rn(t) is the nth residual.
For more information, please see Huang et al. [23] for the EMD method and

Yeh et al. [22] for the CEEMD method.

2.4. Wavelet Transform

Wavelet transform (WT) (Figure 2) is a multi-resolution analysis method in the time
and frequency domains. The wavelet transform decomposes a time-series signal into
different resolutions by performing scaling and shifting. It provides good localization in
the time and frequency domains [24].

The continuous wavelet transform (CWT) of signal x(t) is defined as [25]:

CWTψ
x (τ, s) =

1√
|s|

∫ +∞

−∞
x(t)ψ ∗ ( t− τ

s
)dt (8)
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where s is the scale parameter, τ is the translation parameter, ∗ is the complex conjugate,
and ψ(t) represents the mother wavelet. The DWT requires less computation time and is
simpler to implement than the CWT. The DWT is defined as follows:

ψj,k(t) =
1√∣∣∣sj

0

∣∣∣ψ(
t− kτ0sj

0

sj
0

) (9)

where j and k are integers that control the wavelet dilation and translation, respectively. s0
represents a fixed dilation step and τ0 represents the location parameter. Typical values for
these parameters are s0 = 2 and τ0 = 2 [26].
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For a discrete time series, the dyadic wavelet transform is:

Tm,n = 2−j/2
N−1

∑
i=0

ψ(2−ji− k)si (10)

where Tm,n is the wavelet coefficient for the discrete wavelet with a scale a = 2j and location
b = 2jk. The inverse discrete transform of si is given by:

si = T +
M

∑
m=1

2M−j−1

∑
n=0

Tm,n2−j/2ψ(2−ji− k) (11)

The simplified form of Equation (11) is:

si = T(t) +
M

∑
m=1

Wm(t) (12)
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where T(t) is called the approximation sub-signal at level M, and Wm(t) represents the
detailed sub-signals at levels m = 1, 2, · · · , M.

The Daubechies wavelets exhibit a good trade-off between parsimony and information
richness [27]. This paper uses the db5 wavelet to decompose the precipitation data.

2.5. Extreme-Point Symmetric Mode Decomposition

ESMD is an effective method to deal with nonlinear signals. The ESMD algorithm is
divided into the following eight steps [28,29]:

(1) Find all local extreme points (maximum points and minimum points) of the
sequence Y and number them as Ei with 1 ≤ i ≤ n.

(2) Connect all adjacent Ei with line segments and mark the midpoint as Bi (1 ≤ i ≤
n− 1).

(3) Add a left boundary midpoint (B0) and right boundary midpoint (Bn)
(4) Create p interpolation curves L1, · · · , Lp (p ≥ 1) using these n + 1 midpoints.
(5) Repeat steps (1)–(4), until |L∗| ≤ ε (ε is the allowable error) reaches the preset

maximum number K. This provides the first mode M1.
(6) Repeat steps (1)–(5) with the residual Y−M1 to obtain M2, M3 · · · , until the last

residual R has no more than a predetermined number of extreme points.
(7) Change K to a finite integer interval and repeat steps (1)–(6). Next, calculate the

variance σ2 of Y− R and plot σ/σ0 versus K, where σ2 is the standard deviation of Y.
(8) Find the minimum σ/σ0 for (Kmin, Kmax) that corresponds to K0. Then, repeat the

previous steps (1)–(6) with K0 and output all modes. The last residual R is the optimal
adaptive global mean curve.

After the previous eight steps, the precipitation sequence Y is expressed as
Y = ∑ Mi + R. In other words, after using the ESMD method, the precipitation sequence Y
is decomposed into a series of the IMF and a trend.

2.6. Elman Neural Network

The Elman neural network (ENN) (Figure 3) [30] is a feedback neural network com-
posed of four layers, including the input layer, hidden layer, context layer, and output
layer [31]. The addition of internal feedback of the receiver layer increases the ENN’s
sensitivity to historical data and its capacity to forecast the time-series data and handle
dynamic information; thus achieving dynamic modeling [32].

The ENN is defined as follows:

x0
jt(k) = fh[

m

∑
i=1

(ωi
ijxit(k) + bi) +

n

∑
j=1

ωr
j x0

jt(k− 1)] (13)

yt+1(k) = f0[
m

∑
j=1

ω0
j xjt(k) + bj] (14)

where xjt is the input to the network at time t, x0
jt(j = 1, 2, 3, · · · , n) is the output of the

hidden layer at time t, yt+1 is the output of the network at time t + 1, ωi
ij is the connection

weight of the input layer to the hidden layer, ωr
j is the connection weight of the context

layer to the hidden layer, ω0
j is the connection weight of the hidden layer to the output layer.

fh and f0 are the transfer functions of the hidden layer and the output layer, respectively.
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More information on the ENN method is available in Elman [30] and Ardalani-Farsa
and Zolfaghari [33].

2.7. Performance Evaluation Criteria

Several commonly used evaluation criteria are used to evaluate the prediction perfor-
mance of the model.

The root mean square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x′i )
2 (15)

where xi represents the true value, x′i represents the predicted value, and N is the number
of predicted values; xi and x′i in the following equations have the same meaning.

The mean absolute error (MAE):

MAE =
1
N

N

∑
i=1

∣∣xi − x′i
∣∣ (16)

The mean absolute percentage error (MAPE):

MAPE(%) =
1
N

N

∑
i=1

∣∣∣∣ xi − x′i
xi

∣∣∣∣ ∗ 100 (17)
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The coefficient of determination (R2):

R2 = 1− (
N

∑
i=1

(xi − x′i)
2/

N

∑
i=1

(xi − x)2) (18)

where x represents the average value, and the range of R2 is [0–1]; the larger the R2, the
better the fitting performance.

3. Empirical Study
3.1. Study Area and Data Description

Located in southern China and the lower reaches of the Pearl River, Guangzhou is the
capital city of Guangdong province. It is a first-tier city in China. Guangzhou is located at
longitude 112◦57”–114◦3” E and latitude 22◦26”–23◦56” N, as shown in Figure 4.
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The annual precipitation data were obtained from the continuously measured data of
the China Meteorological Data Network (http://data.cma.cn/data/cdcdetail/dataCode/
SURF_CLI_CHN_MUL_YER_CES.html, accessed on 10 February 2021) and ranged from
1951 to 2019. The model was trained with the data sets from 1951 to 2014 and validated
with datasets from 2015 to 2019.

As shown in Figure 5, the annual precipitation of Guangzhou exhibits an increasing
trend and high variability, indicating non-stationarity. It is observed that 1980 was a
demarcation point, with a slow increase in precipitation before 1980 and a faster increase
after 1980.

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_YER_CES.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_YER_CES.html
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Figure 5. Annual precipitation in Guangzhou.

3.2. Model Forecasting Results

This section describes the results of the five prediction models (TVF-EMD-ENN,
REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN). Each prediction model decom-
posed the precipitation sequence into several subcomponents using signal decomposi-
tion. The ENN was used to predict these subcomponents. Subsequently, the predicted
values of the subcomponents were converted into the predicted precipitation values
through summation.

The same parameters were used for the ENN to conduct a fair comparison of the
prediction accuracy of the different models. We used the data of the past three days as
input to predict the output on the fourth day. The number of neurons in the hidden layer
was 3, the number of iterations was 1000, and the training function was traingdx.

3.2.1. TVF-EMD-ENN Forecasting Results

The parameters of the max output of the IMFs, the b-spline order, and the stopping
criterion were 6, 26, and 0.1, respectively, for the TVF-EMD. The decomposition results of
annual precipitation in Guangzhou are shown in Figure 6.
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The annual precipitation sequence was decomposed into six subcomponents; the
subsequence shows regular periodic changes. However, with an increase in the number
of decomposition layers, the frequency and amplitude of the subsequence decrease, and
the non-stationarity of the sub-sequences weakens, providing a suitable data input for the
ENN for the prediction.

After the precipitation sequence was decomposed, the six subcomponents obtained
from the TVF-EMD decomposition were predicted by the ENN. The absolute error of the
prediction is shown in Figure 7.
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error of the nth subcomponent obtained from TVF-EMD-ENN.

It is observed in Figure 7 that T1 and T2 had a better prediction performance than the
other components, with an absolute error of about 10 mm. However, the prediction result
of the test set showed that T6 provided slightly worse results, with an absolute prediction
error of around 50 mm, which was the opposite of the results of the training period. T6
showed poor prediction performance on the test set. The effect on the prediction accuracy
of the total precipitation will be presented in the discussion section.

3.2.2. REMD-ENN Forecasting Results

We set the maximum number of iterations to 30, the maximum number of IMF to 6,
and the end extension rate of the original data to 0.2 in the REMD. The decomposition
results are shown in Figure 8.
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The first subcomponent R1 obtained from the REMD decomposition exhibits some
non-stationarity and uncertainty, and its decomposition performance is worse than that of
the remaining four subcomponents.

As shown in Figure 9, the absolute prediction errors and fluctuations of R1 and R2
were relatively large, and the prediction performance was inferior to that of the T1 and T2
of the TVF-EMD-ENN model. The last sub-component, R5, provided the best results, with
an absolute error of less than 4 mm.
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3.2.3. CEEMD-ENN Forecasting Results

We set the standard deviation of the noise to 0.2, the ensemble number to 100, and the
decomposition level to 6. The decomposition results of the CEEMD are shown in Figure 10.
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The C1 component had relatively large frequency, amplitude, and variability. The C6
component provided the best results, with the smoothest curve and the least amount of
non-stationarity.
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As shown in Figure 11, the prediction performance of the first subcomponent was rel-
atively poor for the test data. The absolute value of the prediction error and the fluctuation
were large. The prediction performance of the remaining components is relatively good.
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3.2.4. WT-ENN Forecasting Results

The wavelet basis function was db5, and the number of decomposition layers was 6.
The decomposition results of the WT are shown in Figure 12.
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Figure 12. The precipitation decomposition result of the WT. Xn represents the nth subcomponent
obtained from the WT.

The WT of the X1 and X2 components was slightly worse than that of the other
components, exhibiting some variability.

As shown in Figure 13, the first and second subcomponents of the WT showed a poor
prediction performance in the test set, as well as a large absolute error and volatility. The
prediction performance of the first and second subcomponents in the training set was poor,
around 1973, which was similar to the results of the REMD-ENN model.
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3.2.5. ESMD-ENN Forecasting Results

We set the maximum number of iterations to 40, the minimum number of the remain-
ing mode extremum points to 4, and the best screening number to 34. The decomposition
results of the ESMD are shown in Figure 14.
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The E1 component performed slightly worse than the other component, exhibiting
some randomness and volatility. The prediction performance of the ESMD-ENN model is
shown in Figure 15.
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E1 had a poor predictive performance with a large absolute error and considerable
instability. E1 also performed poorly in the test set, with large absolute errors. In addition,
around 1975, the prediction performance of E2 and E3 of the training set was poor, with
strong variability.

The results of the five models indicated that the TVF-EMD model has the best pre-
diction performance for the first subcomponent, whereas the REMD-ENN, CEEMD-ENN,
WT-ENN, and ESMD-ENN models had poor prediction performance for the first subcom-
ponent. Although some of the models did not perform well in the prediction of individual
subcomponents, the subcomponents account for a small proportion of the precipitation
and have a negligible influence on the overall prediction error. Thus, we do not discuss
their influence here. Since the first subcomponent obtained from the signal decomposition
is the one with the largest amount of non-stationarity, we discuss the influence of the first
sub-component on the overall precipitation prediction error below.

4. Results and Discussion

The results in Section 3.2.2, Section 3.2.3, Section 3.2.4, Section 3.2.5 indicated that the
REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN models showed poor simulation
performance for predicting the Sc-1. However, it is unclear if climate indicators are the
reason for poor prediction performance. Thus, a quantitative analysis of the differences
between the five decomposition methods is required to determine if the subcomponents
with poor prediction performance influence the precipitation prediction results. A compar-
ison of the proposed methods with traditional machine learning models was performed to
assess the advantages and disadvantages of the methods.

4.1. Reason for the Poor Prediction Performance of Sc-1

It is well known that the simulation results of machine learning algorithms have
uncertainties. Few studies investigated whether the poor prediction performances of the
subcomponents of precipitation obtained by different decomposition methods are related
to climate indicators.

We found that Sc-1 provided unsatisfactory results in the test set. However, it is un-
known whether these anomalies are related to sunspots or the El Nino Southern Oscillation.
Here, we use Wavelet transform coherence (WTC) to describe the degree of correlation
between the precipitation subcomponents and the climate series to ascertain whether the
poor simulation performance of Sc-1 at some points is related to the climate indicators.
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The WTC of two time series X and Y is defined as:

R2
n(s) =

∣∣S(s−1WXY
n (s))

∣∣2
S(|s−1WX

n (s)|2) ∗ S(|s−1WY
n (s)|

2
)

(19)

where S is a smoothing operator that depends on the wavelet type, and

WXY
n (s) = WX

n (s).WY
n ∗ (s) (20)

where ∗ is the complex conjugate, R2
n(s) is between 0 and 1; 0 indicates no correlation

between the sequences, and 1 indicates a strong correlation between the sequences.
The confidence levels of the red-noise background were assessed. Monte Carlo meth-

ods were adopted to estimate the statistical significance of the wavelet coherence [34].
The significance level at each scale was calculated solely from values outside the cone
of influence (COI). A detailed description of the calculation of WTC is provided by
Grinsted et al. [35].

The NAO index and the Nino 3.4 index were obtained from https://www.psl.noaa.
gov/data/climateindices/, accessed on 10 February 2021; both are monthly averages.
The sunspot data representing the annual mean sunspot number were obtained from
http://www.sidc.be/silso/infosnytot, accessed on 10 February 2021.

The results of the WTC analysis of the four decomposition methods (REMD, CEEMD,
Wavelet, ESMD) to determine the relationships between the SC-1 and the NAO index, the
Nino 3.4 index, and the sunspots are shown in Figure 16.

The correlation between Sc-1 and the sunspots was high for the REMD, CEEMD, and
ESMD methods and low for the WT method, which was reflected in the period of 11 years.
However, there were similarities between the four methods. In the period of 2–4 years,
the Sc-1 and the sunspots showed a strong significant correlation in 2010–2015, with a
correlation coefficient of 0.9. In addition, due to the boundary effect, if the length of the
precipitation and sunspot sequence was relatively long, the Sc-1 and sunspots showed a
strong correlation in the period of 2–4 years after 2015. Therefore, we can infer that the poor
simulation results of the Sc-1 in the test sets of the REMD-ENN, CEEMD-ENN, WT-ENN,
and ESMD-ENN may be related to sunspots.

The correlation between Sc-1 and the NAO was high for the REMD, CEEMD, and
ESMD methods and low for the WT method, which was reflected in the period of 6–8 years
from 1960 to 1965, and there were no arrows before 1960 to 1965. For the REMD, CEEMD,
and ESMD methods, there was a significant positive correlation between Sc-1 and the NAO
index in the period of 6–8 years from 1960 to 1965, with a correlation coefficient of 0.9. The
prediction result of Sc-1 for the REMD-ENN, CEEMD-ENN, and ESMD-ENN models in
1960–1964 was unsatisfactory. It can be inferred that this poor performance was strongly
related to the NAO. In addition, in the period of 3–6 years, the Sc-1 and the NAO index
showed a strong correlation between 1995 and 2005, with a correlation coefficient of 0.9.
The Sc-1 of the REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN models had poor
prediction performance from 1995 to 2005, which may be related to the NAO.

https://www.psl.noaa.gov/data/climateindices/
https://www.psl.noaa.gov/data/climateindices/
http://www.sidc.be/silso/infosnytot
http://www.sidc.be/silso/infosnytot
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ship between Sc-1 of REMD and the sunspots, (B) represents the relationship between SC-1 of 

Figure 16. The wavelet transform coherence (WTC) between Sc-1 and the sunspot data
(A–D), North Atlantic oscillation (NAO) (E–H), and the Nino 3.4 index (I–L). (A) rep-
resents the relationship between Sc-1 of REMD and the sunspots, (B) represents the
relationship between SC-1 of CEEMD and the sunspots, (C) represents the relationship
between Sc-1 of the WT and the sunspots, and (D) represents the relationship between
Sc-1 of ESMD and the sunspots. (E–H) and (I–L) reflect the corresponding relationships
between the Sc-1 of the same models with the NAO index and the Nino 3.4 index, respec-
tively. The period is measured in years. Thick contours denote the 5% significance levels.
The pale regions denote the cone of influence (COI), where edge effects might distort the
results. The colors denote the strength of the wavelet transform.



Remote Sens. 2021, 13, 1018 17 of 25

The correlation between Sc-1 and the Nino 3.4 was high for the REMD, CEEMD,
and ESMD methods and low for the WT method, which was reflected in the period of
8–16 years. There were few arrows in the relationship between Sc-1 and the Nino 3.4
index between 1951 and 2019. However, the Sc-1 of the WT-ENN showed poor simulation
performance in 1973, in the period of 4–5 years, the Sc-1 and the Nino 3.4 index had a strong
correlation between 1969 and 1974 (correlation coefficient of 0.9). It can be inferred that
the poor performance of the Sc-1 of the WT-ENN model in 1973 was related to the Nino
3.4 index. For the REMD, CEEMD, and ESMD methods, in the period of 10–16 years, the
Sc-1 and Nino 3.4 had a strong correlation between 1990 and 2005 (correlation coefficient of
0.9). The Sc-1 of the REMD-ENN, CEEMD-ENN, and ESMD-ENN models in 1990–2005
showed poor prediction performance, which was likely related to the Nino 3.4 index. In
addition, due to the boundary effect, if the length of precipitation and Nino 3.4 was longer,
the Sc-1 and Nino 3.4 index showed a strong correlation in the period of 3–7 years after
2015. Therefore, we can infer that the poor simulation performance of the Sc-1 in the test set
of the REMD-ENN, CEEMD-ENN, WT-ENN, and ESMD-ENN models was likely related
to the Nino 3.4 index.

The relationship between the Sc-1 of the TVF-EMD and the sunspots, NAO index, and
Nino 3.4 index is shown in Figure 17.
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(a) represents the relationship between the SC-1 and the sunspots, (b) represents the relationship
between the Sc-1 and the NAO index, and (c) represents the relationship between the Sc-1 and the
Nino 3.4 index.

The results show a relatively low correlation between the Sc-1 of TVF-EMD and the
sunspots, NAO index, and the Nino 3.4 index. The Sc-1 decomposed by the TVF-EMD is
more stable and less affected by the sunspot, NAO index, and Nino 3.4 index than those of
the other methods. Therefore, the Sc-1 prediction performance of TVF-EMD provides the
best prediction performance and most stable results among the methods.

4.2. The Difference between the Five Decomposition Methods

The VCR was used to determine the proportion of the subcomponents in the original
signal. The VCR is the percentage of the sum of the variance of each IMF component and
the variance of each IMF component obtained by decomposition. The variance contribution
of the IMF component reflects the contribution of the decomposed signal of this frequency
to the entire sequence. The greater the VCR, the greater the contribution of the signal to the
sequence. The variance is defined as follows:

σ2
x = E2(x)− (E(x))2 (21)
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where E(x) is the expected value of x.
The PCC was used to determine the correlation between the subcomponent sequences

obtained from each decomposition method and the precipitation sequence. The larger the
PCC, the stronger the correlation between the sequences. The PCC is defined as follows:

r = (∑ XY− ∑ X∑ Y
N

)/

√
(∑ X2 − (∑ X)2

N
)(∑ Y2 − (∑ Y)2

N
) (22)

where N is the length of the time sequence, X represents the subcomponent sequence ob-
tained from the decomposition method, and Y represents the original
precipitation sequence.

The VCR and PCC values of the subcomponents obtained from the five decomposition
methods are shown in Figure 18.
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The VCR values of the Sc-1 of the REMD, CEEMD, Wavelet, and ESMD were rel-
atively large. The average value was 58%, indicating that the Sc-1 of the four methods
contributed considerably to the precipitation sequence. However, the VCR of the Sc-1 of
the TVF-EMD was relatively small (20%), demonstrating that the Sc-1 of the TVF-EMD
contributed relatively little to the precipitation sequence. In addition, the VCR value of the
last subcomponent of TVF-EMD was the largest among the four methods, indicating that
the last subcomponent of the TVF-EMD contributed most to the precipitation sequence.
The non-stationarity of the subcomponent weakened with an increase in the number of
signal decomposition layers, and the prediction performance of the subcomponents of the
ENN improved. Since the Sc-1 of CEEMD, ESMD, REMD, and WT contributed more to the
precipitation sequence, the prediction performance was poor. In contrast, the Sc-1 of TVF-
EMD contributed little to the precipitation sequence. Thus, the prediction performance
of the TVF-EMD-ENN model was better than that of the REMD-ENN, CEEMD-ENN,
WT-ENN, and ESMD models. A comparison of the model prediction results is described in
Section 4.3.
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As shown in Figure 18, the correlation between the Sc-1 obtained from the TVF-EMD
and precipitation was the lowest among the models, with a PCC value of 0.44. The PCC val-
ues of the other four methods were above 0.67, indicating a moderate correlation between
the Sc-1 and precipitation. In contrast, the other components had a weak correlation with
precipitation. If the Sc-1 has a poor prediction performance, it influences the prediction
performance of precipitation, even if the effect is not significant. Figure 19 illustrates the
interaction between the Sc-1 and the precipitation prediction error. If the Sc-1 prediction
error is large, the relative error of precipitation prediction is also large.
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4.3. Advantages of the Proposed Models over Traditional Machine Learning Models

The prediction models established in this paper are based on decomposition and
reconstruction. First, the precipitation series was decomposed into several subcomponent
sequences. Then, the ENN model was used to predict these components, and the precipita-
tion prediction was obtained by summing the prediction values of the subcomponents. As
the number of signal decomposition layers increased, the non-stationarity and volatility
of the precipitation subcomponents weakened, improving the performance of the neural
network for predicting the subcomponents.

The advantages of the decomposition-reconstruction model are two-fold. First, the
prediction error of precipitation is determined by the subcomponents. Even if the prediction
error of the individual subcomponent is large, the subcomponent may account for a small
proportion in the precipitation sequence, and the error does not significantly influence the
precipitation prediction performance. Second, the precipitation subcomponents obtained
from the decomposition method have positive and negative values, canceling the error. In
traditional machine learning models without decomposition, a large prediction error of
certain points significantly affects the overall prediction performance. These advantages are
reflected in the results in Figure 19, showing the relative prediction errors of the five models.

Except for the TVF-EMD, the relative prediction errors of the Sc-1 of the other four
methods were relatively large. The performance of the ESMD-ENN model was the worst,
with the highest relative errors of Sc-1 in 2015 and 2018 (1484% and –98.78%, respectively).
The prediction performance of Sc-2 was slightly better than that of Sc-1. The prediction
performance of the REMD-ENN model was unsatisfactory, especially in 2017–2019. The
non-stationarity of the subcomponents weakened with an increase in the number of signal
decomposition layers. The prediction performance of the subcomponents increased from
Sc-3 to Sc-6, with small relative prediction errors.

Although the prediction performances of Sc-1 and Sc-2 were unsatisfactory, the precip-
itation prediction is determined by several subcomponents, with different proportions of
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subcomponents, as shown in the precipitation decomposition results of the five decomposi-
tion methods and Section 4.2. In general, the relative prediction error of the five forecasting
models was within the acceptable range.

Comparisons were made with traditional prediction models, including the radial
basis function (RBF) neural network, the long short-term memory (LSTM) neural network,
and the ENN. The TVF-EMD, REMD, ESMD, and CEEMD are based on the EMD. We
also assessed the prediction performance of the EMD-ENN and EEMD-ENN models. The
comparison of the prediction performance of the ten models is shown in Table 1.

Table 1. The comparison of the prediction performance of the ten models.

Prediction
Indices

Model
CENN EEENN EENN ENN ESENN LSTM RBF RENN TEENN WTENN

MAE (mm) 306.26 519.9 1076 1012 217.12 546.5 893.9 197.42 86.58 246.5
MAPE (%) 14.01 22.61 43.44 41.96 9.93 21.69 36.31 8.35 3.68 10.78

R2 0.7 0.7 0.06 0.6 0.64 0.16 0.06 0.7 0.93 0.82
RMSE (mm) 411.89 581.6 1276 1120 273.88 631.4 967.1 250.85 96.48 276.42

Note. CENN = CEEMD − ENN; EEENN = EEMD − ENN; EENN = EMD − ENN; ENN = Elman neural network; ESENN = ESMD − ENN;
LSTM = long short-term memory neural network; RBF = radial basis function neural network; RENN = REMD − ENN; TEENN = TVF −
EMD − ENN; WTENN = WT − ENN.

The TEENN had the best prediction performance, with the optimal RMSE, R2, MAPE,
and MAE values of 96.48 mm, 0.93, 3.68%, and 86.58 mm, respectively. The prediction
performances of the CENN, RENN, ESENN, WTENN, EEENN, and TEENN models were
better than that of the EENN model. Among the seven decomposition-reconstruction
prediction models, the prediction performance of the EENN model was the worst, with
RMSE, R2, MAPE, and MAE values of 1276 mm, 0.06, 43.44%, and 1076 mm, respectively.
In addition, we found that the prediction performance of the decomposition-reconstruction
model was better than that of the neural network models without decomposition. The
prediction performances of the LSTM, ENN, and RBF models were the three lowest among
the ten prediction models.

In general, the TEENN model was optimal, and we recommend TVF-EMD decom-
position for precipitation prediction when the data are significantly influenced by climate
factors and anthropogenic influences.

4.4. Improving the Prediction Performance of the Model

We found that the TVF-EMD provided the best prediction performance, and the
other four methods performed poorly for predicting the Sc-1 (Figure 20). Thus, we used
the TVF-EMD model and performed a secondary decomposition (Figure 20) of Sc-1 for
the other four methods to determine if the prediction performance of the REMD-ENN,
CEEMD-ENN, WT-ENN, and ESMD-ENN models could be improved.

Since Sc-1 has a certain influence on the prediction performance of the REMD-ENN
CEEMD-ENN, WT-ENN, and ESMD-ENN models, only the prediction performance of
each model before and after Sc-1 re-decomposition is compared.

As shown in Figure 21, after the secondary decomposition of the Sc-1 of the TVF-
EMD, the prediction performances of Sc-1 and precipitation improved to varying degrees,
and the absolute value of the relative prediction error decreased to varying degrees. The
most significant improvement in the prediction performance of Sc-1 was observed for the
CEEMD-ENN model in 2017 and 2018; the absolute values of the relative error decreased
from 220% to 35.56% and 175.2% to 12.66%, respectively. For the ESMD-ENN model,
the prediction performance of Sc-1 improved most significantly in 2016 and 2017, with
decreases in the absolute value of the relative error from 259.4% to 40.7% and 205.9% to
5.32%, respectively. The prediction performance of the REMD-ENN model improved most
significantly in 2018, and the absolute value of the relative prediction error dropped from
74.66% to 0.69%. The prediction performance of the Sc-1 of the WT-ENN model improved
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most significantly in 2016 and 2017. The absolute value of the relative prediction error
decreased from 305.1% to 3.26% and from 489.5% to 69.42, respectively.
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Figure 21. The improvement in the relative error of the Sc-1 and annual precipitation prediction after
TVF − EMD decomposition. CENN = CEEMD − ENN; CTEENN = CEEMD − TVF − EMD − ENN;
EENN = ESMD − ENN; ETENN = ESMD − TVF − EMD − ENN; RENN = REMD − ENN; RTEENN
= REMD − TVF − EMD − ENN; WTENN = WT − ENN; WTEENN = WT − TVF − EMD − ENN.

From the perspective of improving the performance of annual precipitation prediction,
the prediction performance of the CEEMD-ENN model improved most significantly in
2016 and 2018. The absolute value of the relative prediction error decreased from 16.42% to
2.18% and 40.53% to 2.44%, respectively. The prediction performance of the ESMD-ENN
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model improved most significantly in 2017 and 2018. The absolute value of the relative
prediction error decreased from 5.57% to 2.18% and 26.9% to 10.19%, respectively. The
prediction performance of the REMD-ENN model improved most significantly in 2016 and
2018. The absolute value of the relative prediction error decreased from 14.42% to 6.35%
and 17.93% to 3.39%, respectively. The prediction performance of the WT-ENN model
improved most significantly in 2015 and 2017. The absolute value of the relative prediction
error decreased from 7.67% to 3.23% and 22.01% to 15.53%, respectively.

After Sc-1 was decomposed again by TVF-EMD, the improvements in the performance
indices of the Sc-1 for the precipitation prediction of the four models (REMD-ENN, CEEMD-
ENN, WT-ENN, ESND-ENN) are shown in Figure 22.
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Figure 22. The secondary decomposition of Sc-1 improved the annual precipitation prediction of the four models. CENN =
CEEMD − ENN; CTEENN = CEEMD − TVF − EMD − ENN; EENN = ESMD − ENN; ETENN = ESMD − TVF − EMD −
ENN; RENN = REMD − ENN; RTEENN = REMD − TVF − EMD − ENN; WTENN = WT − ENN; WTEENN = WT − TVF
− EMD − ENN.

After the secondary decomposition of the Sc-1 by the TVF-EMD, the prediction per-
formance of annual precipitation of the four methods improved. The RMSE of CENN
decreased from 411.9 mm to 8.68 mm, which was the most significant improvement. The
R2 of ESENN improved most obviously, from 0.64 to 0.9. The MAPE of CENN decreased
from 14.01% to 3.19%, which was the most significant improvement. The MAE of CENN
improved most obviously, from 306.3 mm to 72.04 mm.

In general, the secondary decomposition of the Sc-1 by the TVF-EMD significantly im-
proved the prediction performance of the models. This proposed secondary decomposition
prediction model shows applicability for other time-series predictions in hydrology.

5. Conclusions

The annual precipitation in Guangzhou is substantially influenced by human activities
and climatic factors, and the time series shows significant non-stationarity and volatility.
The following conclusions can be drawn based on the results of the precipitation prediction.

The subcomponents obtained by the TVF-EMD decomposition were relatively stable
and were less affected by the sunspots, NAO index, and Nino 3.4 index than those of the
other models. The VCR of the subcomponents obtained from the TVF-EMD was relatively
balanced, and the VCR of the Sc-1 was significantly smaller than that of the other four
decomposition methods. The PCC between the precipitation and the Sc-1 of TVF-EMD was
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smaller than that of the other four decomposition methods. The TVF-EMD-ENN prediction
model is superior to the other four prediction models.

The TVF-EMD-ENN model had the best and most stable prediction performance
among the five decomposition-reconstruction prediction models. The prediction per-
formance of the decomposition-reconstruction prediction model was better than that of
traditional machine learning models. The prediction performance of the Sc-1 and precipita-
tion improved significantly after the secondary decomposition of the Sc-1 by the TVF-EMD,
and the MAE, MAPE, R2, and RMSE showed various degrees of improvement. We first
recommend the TVF-EMD for precipitation prediction to deal with non-stationary data.

Under the interference of climate change and human activities, the precipitation
series presents a certain non-stationarity. Therefore, the development of hybrid predic-
tion models by introducing signal decomposition methods may lead to more accurate
and stable prediction results, and may also contribute to research related to hydrolog-
ical time series prediction, to address a wide range of issues related to effective water
resource management.
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Acronyms
TVF-EMD Time-varying filter-based empirical mode decomposition
REMD Robust empirical mode decomposition
CEEMD Complementary ensemble empirical mode decomposition
ESMD Extreme-point symmetric mode decomposition
WT Wavelet transform
ENN Elman neural network
VCR Variance contribution rate
PCC Pearson correlation coefficient
WTC Wavelet transform coherence
NAO North Atlantic Oscillation
Sc-1 The first subcomponent
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
R2 Coefficient of determination

TVF-EMD-ENN
Time-varying filter-based empirical mode decomposition and Elman
neural network

REMD-ENN Robust empirical mode decomposition and Elman neural network

CEEMD-ENN
Complementary ensemble empirical mode decomposition and Elman
neural network

ESMD-ENN Extreme-point symmetric mode decomposition and Elman neural network
WT-ENN Wavelet transform and Elman neural network
Tn The Nth subcomponent obtained from TVF-EMD

TEn
The absolute prediction error of the Nth subcomponent obtained from
TVF-EMD-ENN
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Rn The nth subcomponent obtained from REMD

REn
The absolute prediction error of the Nth subcomponent obtained from
REMD-ENN

Cn The nth subcomponent obtained from CEEMD

CEn
The absolute prediction error of the Nth subcomponent obtained from
CEEMD-ENN

Xn The nth subcomponent obtained from the WT

XEn
The absolute prediction error of the Nth subcomponent obtained from
WT-ENN

EEn
The absolute prediction error of the Nth subcomponent obtained by
ESMD-ENN

En The nth subcomponent obtained from ESMD
COI Cone of influence
CENN CEEMD-ENN
CTEENN CEEMD-TVF-EMD-ENN
ESENN ESMD-ENN
ESTEENN ESMD-TVF-EMD-ENN
RENN REMD-ENN
RTEENN REMD-TVF-EMD-ENN
WTENN WT-ENN
WTTEENN WT-TVF-EMD-ENN
LSTM Long short-term memory neural network
RBF Radial basis function neural network
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