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Abstract: Information about forest cover and its characteristics are essential in national and interna-
tional forest inventories, monitoring programs, and reporting activities. Two of the most common
forest variables needed to support sustainable forest management practices are forest cover area
and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are com-
plemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The
spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual
pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an
essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is
increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about
which is best-suited for specific purposes such as forest area and GSV estimation. We compared five
FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to
clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest
maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land
Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al.,
and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest
pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data.
The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots
using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for
the masked GSV map were used to calculate national and regional-level model-assisted estimates.
The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the
estimates of GSV they produced (both in terms of mean and total of GSV predictions within the
national and regional boundaries) and the official NFI estimates. At the national and regional levels,
the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic
of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and
mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the
differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the
choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.
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1. Introduction

Information about forest cover and its characteristics are essential in national and
international forest inventories, monitoring programs, and reporting activities [1,2] such as
in the context of international agreements (e.g., Kyoto protocol), and restoration programs
(e.g., Reducing emissions from deforestation and forest degradation projects, REDD+) [3].
Two of the most common forest variables needed to estimate sustainable forest management
indicators as required by the national and international framework and agreements relate
to forest cover area (generally according to the international definition adopted by the Food
and Agriculture Organization (FAO) and the total growing stock volume (GSV, m3) [4,5].
These data are usually provided by national forest inventory (NFI) programs which use
probability-based approaches to infer the estimates for large areas such as countries and
regions within countries. [4,6,7]. In several countries with long NFI histories such as
Norway [8], Finland [9], Austria [10], and Switzerland [11,12], the typical NFI ground
survey is nowadays complemented by continuous spatial predictions, characterized as
wall-to-wall maps of forest variables which rely on models and wall-to-wall auxiliary data
such as remotely sensed data [13–15].

Wall-to-wall GSV data are useful because they can be integrated into decision support
systems to assess wood production and harvesting activities at small scales (i.e., in forest
properties) [16–19] and to produce small-scale estimates by aggregating individual pixel
predictions [20–23]. In the probability-based framework, multiple estimators including
the stratified, post-stratified, and model-assisted estimators can be used. The latter is
considered asymptotically unbiased in the sense that the mean of estimates obtained
using the estimator for all possible samples approaches the true value as the sample size
increases [23].

GSV and above-ground biomass are known to be strongly correlated with three-
dimensional (3D) data such as those acquired through airborne laser scanning (ALS) or
photogrammetric techniques [5,14,24–27]. However, acquiring these data is still expensive,
and some countries such as Italy still do not have wall-to-wall ALS coverage [19]. Multi-
spectral satellite data are often used instead of or with 3D data to predict GSV, thanks to
their free availability over large areas [28–31].

Several types of models can be used to produce wall-to-wall predictions of forest
attributes in a model-assisted approach. These models include both parametric and non-
parametric techniques [14,17,27,28,32] with the recent prevalence of multiple linear re-
gression and random forests [14,33,34]. Regardless of the estimation approach, spatial
knowledge of the area covered by forest land is an essential prerequisite, both to restrict the
establishment of field plots and to restrict the application of the models. A forest mask (FM)
indicates the location of forest land and is often in a raster or a spatial polygon database
format. FMs are conventionally obtained by manual delineation of aerial images, or by
supervised or unsupervised classification of satellite imagery, from both optical or radar
imagery [35–37], and more recently ALS data [38–41]. Remotely sensed data suitable for
forest mapping are nowadays frequently and freely available [42–44]. For this reason, the
number of FMs has increased exponentially, creating doubts about which is best-suited for
specific purposes such as forest area and GSV estimation. National information about forest
extent can be estimated from any of several FMs produced independently by different re-
search agencies globally or for large areas, including the European Environmental Agency
(EEA) [45], the European Space Agency (ESA) [46], the International Institute for Applied
Systems Analysis (IIASA) [1], and the Japanese Aerospace Exploration Agency (JAXA) [47].
Despite individual weaknesses and strengths, spatial differences among these products are
evident and can lead to substantial variation in their accuracies [1,48]. Furthermore, these
FMs were developed for different aims and thus have different characteristics in terms of
minimum mapping unit (MMU) and minimum mapping width (MMW), reference forest
definition, and year of production.

Multiple studies have compared land cover maps at global and local levels. Fritz
and See [49] and Giri et al. [50] compared the Global Land Cover 2000 data set and
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the MODIS global land cover product and highlighted areas with strong disagreements.
Hoyos et al. [51] compared four global satellite-based land cover maps and showed a
worsening of area agreements as the spatial scale increases. Neumann et al. [52] pro-
vided an assessment of compatibilities and differences between the CORINE2000 and
GLC2000 datasets and reported general disagreement due to the combination of thematic
similarities, spatial heterogeneity, and classification accuracy. Seebach et al. [53] compared
the advantages and limitations of four pan-European forest cover maps for the reference
year 2000, demonstrating that the spatial agreement between the maps ranged between
50% to 70% within a large study area in Europe. The authors found the greatest spatial
differences among all maps in the Alpine and Mediterranean regions. Here, the vulnera-
bility to climate change and anthropogenic disturbance is extremely large and will cause
an increased demand for accurate wall-to-wall maps [17]. Only a few studies have ana-
lyzed the effects of using different FMs on the uncertainty of forest parameter estimates.
Rodríguez-Veiga et al. [54] reported a large impact on estimates of national carbon stocks
in Mexico caused by discrepancies in forest extent estimated from different FMs. In their
study, Li et al. [55] considered the uncertainty of the MODIS land cover products, finding
substantial differences in the regional climate modeling outputs when the uncertainty was
not considered. Esteban et al. [56] estimated the effects of the uncertainty of forest species
maps used in the sampling and forest parameter estimation processes in a Spanish study
area. Their study revealed that the effects of map uncertainty are not negligible, especially
for less common Mediterranean forest species.

The choice of FM can heavily impact the estimation of forest parameters in two differ-
ent manners: (i) it affects the number and locations of plots selected for the construction of
the predictive model and (ii) it affects the total area to which the model is applied [56].

The aim of this paper is to evaluate the impacts of the accuracies of different FMs on
the estimation of GSV based on the integration of field information and remotely sensed
data. We constructed a national wall-to-wall GSV map with an optimized procedure based
on a random forests model with remotely sensed imagery and other auxiliary data as
predictors [17]. We used five different FMs to mask out non-forest areas from the GSV map
and then used the model-assisted regression estimator to estimate total and mean GSV
(m3 ha−1) for the forest portion of the GSV map. We then investigated the relationship
between mask accuracies and agreement between the model-assisted total GSV estimates
and the official NFI estimates. The test was carried out for the entire area of Italy. Finally,
we clarified which product was best-suited for total and mean GSV estimation, both at
national and regional levels.

2. Materials and Methods
2.1. Study Areas

The study was carried out in Italy which covers 301,408 km2 (Figure 1). Italy has
extreme variations in climatic conditions due to proximity to the sea and elevation ranges
between coastal areas and the Alpine region with elevations as great as 4000 m asl.

The territory falls within the temperate zone of a Mediterranean climatic region (Pinna,
1970). On the coasts of the main islands, the average annual rainfall is 250 mm but reaches more
than 3000 mm in the Alpine and pre-Alpine belts. Average yearly temperatures vary between
16 ◦C in the southern coastal areas to 10 ◦C in the inner central regions and the pre-Alps,
with temperatures less than 5 ◦C in the mountain ranges and on the highest peaks.
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Figure 1. The study area with the distribution of the national forest inventory (NFI) plots colored
by growing stock volume (GSV) expressed in m3 ha−1. On the right, a detail of the distribution
of sample points used in the study within the NFI 1 x 1 km grid where the third-phase NFI plots
(Section 2.2.1) are depicted in blue and the Inventario dell’Uso delle Terre in Italia (IUTI) points
(Section 2.2.2) in white.

According to the last Italian NFI (INFC, 2007), forest vegetation and other wooded
lands occupy 10,467,533 ha, about 34% of the national territory. Forests are dominated by
deciduous trees (68%), mainly Quercus oak (Q. petrea (M.) L., Q. pubescens W., Q. robur L.,
Q. cerris L.), and European beech (Fagus sylvatica L.). The dominant conifers are Norway
spruce (Picea abies K.) and pines (Pinus sylvestris L., P. nigra A., P. pinae L., P. pinaster A.),
which are mainly artificial plantations located in mountain areas or near the coast (Figure 1).
Seven of the 14 European forest types occur in Italy, of which the most common is the
thermophilous deciduous forest [14,57].

Italy is divided into 20 administrative regions (NUTS2) for each of which the NFI
produces estimates of forest area, total and mean GSV, and their standard errors (SEs). The
average GSV is 144 m3 ha−1 [58].

2.2. Field Data
2.2.1. Second Italian National Forest Inventory

The field reference data for the wall-to-wall spatial prediction of GSV were acquired in
the framework of the second Italian NFI [59] based on a three-phase, systematic, unaligned
sampling design with 1 × 1 km grid cells [60]. In the first phase, N = 301,300 points were
selected and classified with respect to 10 coarse land-use strata using aerial orthophotos.
In the second phase, for an n < N sub-sample of the points in the “forest” stratum of the
first-phase points, qualitative information such as forest type, management, and property
were collected during a field survey. In the third phase, for a sub-sample of 6782 points
extracted from the second-phase points, a quantitative survey was carried out for circular
plots of 13 m radius (530 m2). All tree stems with DBH of at least 2.5 cm were callipered,
and for a subsample, height was measured. For all 6782 third-phase plots, allometric
models [61] were used to predict GSV (m3) which was then aggregated at plot-level and
scaled to a per unit area basis. For this study, allometric model prediction uncertainty and
uncertainty due to Global Navigation Satellite System (GNSS) position error were expected
to be negligible for the spatial resolution adopted [4,17,23,62]. The third-phase plots have
mean GSV of 145.75 m3 ha−1, with median value of 102.82 m3 ha−1.
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Official, design-based NFI estimates of total forest area and mean and total GSV
at national and regional NUTS2 levels were acquired online at https://www.sian.it/
inventarioforestale/ (accessed on: 2 October 2020) [62], for the reference year 2005.

The study area was tessellated into a 23× 23 m national grid whose pixel area matched
the area of the NFI ground plots, for a total of 569,769,690 pixels [19]. The national grid
was used as a spatial reference grid for resampling the predictor variables and the FM to
23 × 23 m resolution.

2.2.2. Inventory of Land Use in Italy

To evaluate the accuracy of the FMs, we used the sample points from the Italian land
use inventory (Inventario dell’Uso delle Terre in Italia, IUTI). The IUTI has adopted the
methodology of approach number three of the Good Practices Guidance for Land Use,
Land Use Change, and Forestry (GPG-LULUCF) of the Intergovernmental Panel on climate
change [63–65]. IUTI is a permanent monitoring system that estimates the extent of six
land use categories identified in the GPG-LULUCF. The IUTI is based on a systematic
unaligned sampling design with 0.5 × 0.5 km grid cells which is an intensification of the
NFI sample grid, for a total of 1,202,828 points of which 301,300 are the first-phase points of
the NFI. The six categories reported by IUTI are urban, agriculture, forest land, grassland,
wetland, other [65]. Each point is photo-interpreted in three time periods (1990, 2008, 2012)
for estimating land-use change using aerial orthophotos with spatial resolution ranging
between 1× 1 m for 1990 and 0.5× 0.5 m for 2008. We combined the six land use categories
into forest and non-forest and assigned the value 1 to all the points classified as forest
(class 1.1, 1.2) and 0 to all other categories. Subsequently, the forest class included 32% of
the total observations with 387,085 of 1,202,818 points.

For this study, we used the IUTI points as an independent dataset to evaluate the
accuracies of the FMs. We used the 2008 photointerpretation to be as consistent as possible
with the 2005 NFI ground surveys.

2.2.3. Predictor Variables

To predict GSV as described in Section 3.1, we used predictors obtained from multiple
sources including remotely sensed variables from multiple sensors, climate, and soil
characteristics (Table 1). The variables were selected based on their availability throughout
the national territory as reported by [17]. All variables were resampled from the original
resolution to the 23 × 23 m pixel size of the national grid. A more detailed description of
the database is provided by [17].

Table 1. Predictor variables based on remotely sensed and auxiliary data.

Database Band/Information Predictor Variables Original Pixel Width

Landsat 7 ETM+ Three years median of Band 1 Landsat_B1 30 m
Landsat 7 ETM+ Three years median of Band 2 Landsat_B2 30 m
Landsat 7 ETM+ Three years median of Band 3 Landsat_B3 30 m
Landsat 7 ETM+ Three years median of Band 4 Landsat_B4 30 m
Landsat 7 ETM+ Three years median of Band 5 Landsat_B5 30 m
Landsat 7 ETM+ Three years median of Band 6 Landsat_B6 30 m
Landsat 7 ETM+ Three years median of Band 7 Landsat_B7 30 m

Global PALSAR/PALSAR-2 HH polarization SAR_HH 25 m
Global PALSAR/PALSAR-3 HV polarization SAR_HV 25 m

Climate data Total annual precipitation Prec 1 km
Climate data Mean annual temperature temp_mean 1 km
Climate data Maximum annual temperature temp_max 1 km
Climate data Minimum annual temperature temp_min 1 km

European Soil Database v2.0 Subsoil available water capacity AWC_SUB 1 km
European Soil Database v2.1 Topsoil available water capacity AWC_TOP 1 km

https://www.sian.it/inventarioforestale/
https://www.sian.it/inventarioforestale/
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2.2.4. Landsat Composite Image

We constructed a cloud-free composite image across Italy based on 848 Landsat 7
Enhanced Thematic Mapper Plus (ETM+) images acquired in the same year as the field
survey (2005) +/− 1 year (Figure 2).

Figure 2. Distribution of Landsat 7 ETM+ images per month, divided by acquisition years.

We used Landsat 7 Surface Reflectance Tier 1 imagery from the Earth Engine Data
Catalog, acquired in the vegetation period (1 April–30 September), atmospherically cor-
rected using Landsat Ecosystem Disturbance Adaptive Processing System LEDAPS [66].
We masked out cloud pixels based on the quality assessment (QA) band provided with
the Landsat 7 database, using the C function of mask algorithm (CFMask) [67]. Finally,
for each 23 × 23 m national grid pixel, we calculated the median values for each Landsat
band [68].

2.2.5. SAR Variables

We used SAR data from PALSAR-2/PALSAR from the Advanced Land Observing
Satellite (ALOS) and Advanced Land Observing Satellite-2 (ALOS-2) freely available at
the global level online from the Japan Aerospace Exploration Agency (JAXA) at 25 × 25 m
resolution. We rescaled the raw backscattering coefficients for each polarization HH and
HV for the year 2007 to the 23 × 23 m pixel of the national grid. For more information
on this data we refer to https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
(accessed on: 5 November 2019)

2.2.6. Climate and Soil Variables

We derived climate data from the 1 x 1 km downscaled climatological maps obtained
by Maselli et al. [69] which is representative of the period 1981–2010. The dataset includes
the following variables: total annual precipitation, mean annual temperature, maximum
annual temperature, minimum annual temperature. For more details on these climate data,
we refer to Chirici et al. [17].

Soil variables were from the harmonized soil geodatabase of Europe (European Soil
Database v2.0—2004) [70]. The subsoil available water capacity and topsoil available water
capacity soil variables used for this study were selected using the optimization phase
described in Chirici et al. [17].

2.3. Forest Masks

We obtained five FMs available for the entire Italian territory that potentially reflect
the forest FAO Forest Resource Assessment (FRA) definition [2]. These masks can be
divided into two main categories: (i) FMs obtained by semi-automated classification of
remotely sensed data; (ii) FMs obtained by manual delineation and classification of fine-
resolution images. All the FMs were first reprojected in the WGS 84 / UTM zone 32

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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North (EPSG:32632) reference system to make them comparable and then resampled at the
23 × 23 m resolution of the national grid resulting to produce five comparable FMs.

2.3.1. National Forest Mask (NFM)

We used the national forest mask (NFM) which is based on the mosaic of local forest
maps produced by manual photointerpretation by the Italian regional forest authorities [19].
The mosaic was constructed by merging 16 fine resolution forest maps with nominal refer-
ence scales varying between 1:5000 and 1:25,000 and five land use maps specifically filtered
to produce forest cover maps. All the maps were based on manual photointerpretation
of aerial orthophotos. The local forest maps were reclassified into Boolean masks using
code 1 for pixels classified as “forest”, and code 0 for pixels classified as “non-forest”. The
NFM is a mosaic of 20 fine-resolution regional forest maps resampled at the 23 × 23 m
national grid resolution. The mask is also available on-line at www.forestinfo.it

2.3.2. Copernicus Land Monitoring System (CLMS) Forest Mask

To construct the Copernicus FM, we first used the 2012 Forest Type map (https://land.
copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/
2012?tab=download) (accessed on: 5 November 2020) that uses the Tree Cover Den-
sity layer (https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-
cover-density/status-maps/2012?tab=download) (accessed on: 5 November 2020) to clas-
sify all 20 × 20 m pixels of European lands as forest when the tree cover density is
at least 10% and when such pixels are aggregated into a continuous patch of at least
0.52 hectares [46]. We excluded pixels in agricultural and urban contexts from the Forest
Type map, using the Forest Additional Support Layer also available from Copernicus
at https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-
1/status-maps/2012?tab=download (accessed on: 5 November 2020). The resulting map
reflects as closely as possible the international forest definition in a raster layer having
23 × 23 m resolution

2.3.3. JAXA Forest Mask

JAXA constructed an FM for the reference years 2007 ± 1 with a spatial resolution of
25 × 25 m based on the HV-polarization backscatter images acquired by the PALSAR and
PALSAR 2 sensors carried by the ALOS and ALOS2 satellites. JAXA adopted the FAO forest
definition [47] and is available online at https://developers.google.com/earthengine/
datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR (accessed on: 5 Novemeber 2020).

2.3.4. Hybrid Global Forest Mask 2000 (FM00)

Schepaschenko et al. [1] constructed a global FM using a hybrid approach combining
multiple local, national, and global datasets into a single product. This map was constructed
by converting the global forest probability map into a forest/non-forest map using a
threshold calculated for each country. The threshold selected for this study produced area
estimates that matched as closely as possible the official FAO forest area statistics. We
characterized this map as “FM00”. The map has a spatial resolution of 1 × 1 km, was
produced for the reference year 2000, and is available online at https://application.geo-
wiki.org/branches/biomass/ (accessed on: 5 November 2020).

2.3.5. Corine Land Cover 2006 (CLC06)

The CORINE Land Cover (CLC) project was initiated in 1990 by the European Environ-
mental Agency (EEA) [71] and has been updated in 2000, 2006, 2012, and 2018 to monitor
land-use changes in the 39 participating countries [45]. It consists of land cover maps based
on a nomenclature system of 44 classes produced by photointerpretation of fine-resolution
satellite imagery. CLC uses a MMU of 25 hectares and a MMW of 100 m. For this study, we
acquired the CLC map for the reference year 2006 ± 1 (referred to as “CLC06”) obtained by
photo-interpretation of SPOT-4/5 and IRS P6 LISS III dual data images (EEA, 2007) [45]

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/2012?tab=download
https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://developers.google.com/earthengine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR
https://application.geo-wiki.org/branches/biomass/
https://application.geo-wiki.org/branches/biomass/
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and available online in vector format at https://land.copernicus.eu/pan-european/corine-
land-cover/clc-2006?tab=download (accessed on: 5 November 2020). To derive the CLC
mask, we first rasterized the vector product to the 23 × 23 m spatial resolution of the
national grid, and then we assigned the categories 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.2.3, 3.2.4 to the
“forest” class and all the remaining categories to the “non-forest” class.

2.4. Overview of the Method

A concise overview of the methodology followed is presented: (i) a wall-to-wall GSV
map was constructed using a random forests model with the NFI plot GSV data and the
predictor variables; (ii) the accuracies of the five FMs were assessed; (iii) the wall-to-wall
GSV map was masked in turn with each of the five FMs, obtaining five masked GSV
maps; (iv) for each masked GSV map we estimated the mean and total GSV with the
model-assisted regression estimator, at the national and regional levels; (v) we compared
model-assisted estimations for each FM with the official estimate from the Italian NFI, in
terms of correlation coefficient; (vi) we assessed the relationship between FM accuracies
and GSV estimates in terms of the correlation coefficient.

2.5. Wall-to-Wall National GSV Map

To estimate the effects of FM accuracy on the model-assisted GSV estimates, we
constructed a GSV map consisting of GSV predictions for all 23 × 23 m pixels of the
national grid (569,769,690 pixels) using the random forests (RF) prediction technique
with the NFI plot GSV data and the predictor variables described in Table 1. RF was
optimized following Chirici et al. [17] by selecting the combination of predictor variables
and parameter values (ntree and mtry) that minimized the root mean square error (RMSE)
calculated using the leave one out cross-validation (LOOCV) technique [72]. RMSE was
calculated as:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where n is the number of third-phase NFI plots (i.e., 6782), yi is the i-th GSV associated
with the plots and ŷi is the i-th GSV predicted by the random forests model. The most
accurate combination resulting from LOOCV was used to predict the GSV for all N pixels
of the study area to produce a 23 × 23 m resolution GSV map. The model fitting and
optimization phase was performed using the randomForest package within the statistical
software package R 3.6.3 [73] (https://www.r-project.org, accessed on: 5 November 2020).
For the 6782 NFI plots, the pixel-level GSV predictions ranged between 0 and 690 m3 ha−1

with a standard deviation of 68.5 m3 ha−1 while the original NFI values ranged between
0.3 and 701 m3 ha−1 with a standard deviation of 147 m3 ha−1. The map was found to have
a mean deviation of −4.3 m3 ha−1.

2.6. Accuracy Assessment of FMs

We first assessed the five FMs with respect to thematic accuracy using the IUTI dataset
as reference data. For each of the 1,202,828 points of the IUTI database, we extracted
the forest/non-forest classification from the five FMs and constructed the respective five
confusion matrices. For each matrix we calculated four metrics:

OverallAccuracy =
∑ True positive + ∑ True negative

∑ Total population
(2)

κ =
p0 − pe

1− pe
(3)

where:

p0 = Overall Accuracy and pe =
1

N2 ∑
k

∑ True positive ∗∑ True negative (4)

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006?tab=download
https://www.r-project.org
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for k categories and N observations.

Precision =
∑ True positive

∑ True positive + ∑ False positive
(5)

Recall =
∑ True positive

∑ True positive + ∑ False negative
(6)

These metrics need to be used together to correctly describe the quality of classification
in the case of unbalanced datasets. This is the case for forest masks when the forest and
non-forest classes cover the land area with very different proportions. In such cases, many
classification performance indicators including overall accuracy may provide misleading
information [74,75]. For this reason, the mask accuracy comparison should focus on recall
as per Equation (6) and, most importantly, precision as per Equation (5).

2.7. Impact of FMs Accuracy on Model-Assisted GSV Estimation

The five FMs were used to mask out all non-forest pixels in the national GSV map. The
pixel-level predictions for the resulting five masked GSV maps were used with a model-
assisted, generalized regression estimator to infer mean and total GSV at both national
(NUTS1) and regional levels (NUTS2) [20–23]. An initial estimate of GSV can be calculated
from the masked GSV maps as,

µ̂initial =
1
N

N

∑
i=1

ŷi (7)

where N is the number of forest pixels within the masked GSV map and ŷi is the GSV
prediction obtained using the RF model for the i-th pixel. However, this estimator may be
biased because of systematic prediction error. The bias can be estimated as,

ˆBias(µ̂initial) =
1
n

n

∑
j=1

(
ŷj − yj

)
(8)

where n is the NFI sample size, i.e., the number of plots used for constructing the model,
ŷj is the GSV model prediction for the j-th plot and yj the observed value of GSV for the
j-th plot. Subtracting the estimated bias from the initial estimate yields the model-assisted
estimator as,

µ̂ma = µ̂initial − ˆBias(µ̂initial) =
1
N

N

∑
i=1

ŷi −
1
n

n

∑
j=1

(
ŷj − yj

)
(9)

where ma denotes model-assisted, µ̂ma is the estimate of mean GSV for the given masked
GSV map, N is the number of forest pixels within the masked GSV map, ŷi is the GSV
prediction obtained using the RF model for the i-th pixel. The standard error (SE) for the
estimator is:

SE(µ̂ma) =

√√√√ 1
n(n− 1)

n

∑
j=1

(
ej − e

)2 (10)

where n is the NFI sample size, ej = ŷj − yj and e = 1
n

n
∑

j=1
ej.

Similarly, the model-assisted estimator for the GSV total was:

τ̂ma =
N

∑
i=1

yi −
N
n

n

∑
j=1

(
ŷj − yj

)
(11)
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where τ̂ma is the estimate of total GSV for the given GSV-masked map, N the number of
pixels within the masked GSV map, ŷi the GSV prediction obtained using the RF model for
i-th pixel. The SE for the τ̂ma is given by d’Oliviero et al. [76]:

SE(τ̂ma) =

√√√√N2
(

1
n
− 1

N

) n

∑
j=1

(
ej − e

)2

n− 1
(12)

where N is the population size, n is the NFI sample size, ej = ŷj − yj and e = 1
n ∑n

j=1 ej.
It is important to note that correction for estimated bias compensates for GSV map

inaccuracy and makes the model-assisted estimator asymptotically unbiased.
Using the SEs, it was possible to construct confidence intervals for both estimates of

mean and total GSV for the entire study area. These intervals are expressed as

Êma ± tn ∗ SE
(
Êma

)
(13)

where Êma denotes either the model-assisted estimate of mean GSV or total GSV, SE
(
Êma

)
is the SE of Êma, and the factor tn depends on the desired significance level and the
distribution of the response variable. For most distributions and applications, tn = 2
produces an approximate 95% confidence interval [23]. For purposes of constructing
confidence intervals, the focus of the study was estimation of mean and total GSV and
the SEs using the model-assisted regression estimators. To compare the GSV estimates
produced with the five masked GSV maps and the NFI estimates at national and regional
levels, we used the t statistic calculated as follows:

t =
Êma − ÊNFI√

SE2
(
Êma

)
+ SE2

(
ÊNFI

) (14)

where Êma denotes either the model-assisted estimate of mean GSV or total GSV for the
masked GSV maps, ÊNFI denotes either the NFI estimate of mean GSV or total GSV, and
SE2(Êma

)
and SE2(ÊNFI

)
are the squares of the SEs of the estimates. Values of |t| > 2

indicate that the two estimates are statistically significantly different. Correlations for
estimates of both mean and total estimates and the corresponding NFI estimates in terms
of Pearson correlation coefficient (ρ̂Mean, ρ̂Total) were also calculated.

In addition, we calculated relative efficiency (RE) to assess the quality of the model-
assisted estimators, compared to the SE obtained by the NFI [17], both at national and
regional scales. RE was calculated as:

RE =
ˆVar
(
Ê NFI

)
ˆVar
(
Ê ma

) (15)

where ˆVar
(
Ê NFI

)
and ˆVar

(
Ê ma

)
are the estimated variances of the NFI estimates and the

model-assisted estimates, respectively.
Values of RE greater than 1.0 are evidence of greater precision in the model-assisted

estimates [77]. RE could be interpreted as the factor by which the original sample size
would have to be increased to achieve the same precision as that achieved using the
remotely sensed auxiliary data [17].

Finally, we evaluated the relationship between the accuracies of the FMs (in terms of
overall accuracy, κ, precision and recall) and the SEs of the model-assisted estimates for the
NUTS2 administrative level using the Pearson correlation coefficient (ρ̂).

3. Results
3.1. Forest Mask Accuracy Assessment

At the national level, the most accurate FM was the NFM with an underestimation
against the NFI estimates of only −2%, followed by the CLC06 with −3%, JAXA with
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−4%, CLMS with +16%, and FM00 with +51%. The same ranking was obtained from the
comparison with IUTI in terms of OA, κ, and precision (Table 2). For 17 of the 20 regions,
the NFM was the most accurate, followed by the CLMS FM in two regions, and CLC06
in the remaining region. The confusion matrices for each one of the five FMs are shown
in Figure 3.

Table 2. Accuracy assessment for the five forest masks (FMs) based on the confusion matrices with
the IUTI.

Mask

Accuracy

OA
(Equation (2)) κ (Equation (3)) Precision

(Equation (5))
Recall

(Equation (6))

CLMS 0.88 0.73 0.73 0.92
JAXA 0.85 0.61 0.71 0.74
FM00 0.76 0.51 0.55 0.91

CLC06 0.87 0.70 0.77 0.81
NFM 0.91 0.79 0.84 0.90

Figure 3. Confusion matrices of each forest mask.

We also noted that regardless of the FM used, the islands (Sicilia and Sardegna) and
some of the southern regions (Calabria, Campania, Puglia) were characterized by small
precision and recall (sensitivity), leading to numerous misclassifications of non-forest as
forest (commission errors) (Figure 4).
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Figure 4. Comparison of four accuracy metrics among the FMs, calculated at regional level (NUTS2).

3.2. GSV Model-Assisted Estimations

In Figure 5, the GSV map of Italy produced with the RF model is reported.

Figure 5. Growing stock map of Italy generated with random forests model. GSV in m3 ha−1. On
the right, a detail of the GSV map masked with the five forest masks.
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For the five masked GSV maps, µ̂ma ranged between 125 (CLMS) and 135 (NFM), m3 ha−1

with SE(µ̂ma) between 1.1 and 1.3 m3 ha−1. For comparison, the design-based estimation
of mean GSV from the NFI was 131 m3 ha−1 with SE of 1.6 m3 ha−1. Three of the five
GSV-masked maps (NFM, CLC06, JAXA) produced estimates that were not statistically
significantly different from the NFI estimate. The value of τ̂ma ranged between 1321 (JAXA)
and 1525 (CLMS) millions m3, with SE(τ̂ma) between 13 (NFM) and 17 (JAXA) million m3,
while the official estimate from the NFI was 1366 million m3 with SE of 14 million m3,
demonstrating a general trend towards overestimation of total volume (Table 3). The
differences between the total GSV estimate for two of the five masked GSV maps (NFM,
CLC06) and the NFI estimate were not statistically significantly different from 0.

Table 3. Model-assisted regression estimates for the five maps. The last row has the Italian NFI estimates.

Forest Mask Model-Assisted and NFI Estimates

ûma
SE(µ̂ma)

(m3 ha−1)
t(û)

(Equation (14_) τ̂ma (m3) SE(τ̂ma)
t(τ̂)

(Equation (14)) RE

CLMS 125 1.2 −3 1,525,000,000 14,487,500 7.9 1.17
JAXA 131 1.3 0 1,321,000,000 13,342,100 −2.3 1.09
FM00 113 1.1 −9.5 1,791,000,000 17,014,500 19.3 1.15

CLC06 135 1.3 1.94 1,387,000,000 13,572,900 1.0 1.12
NFM 134 1.2 1.5 1,371,000,000 13,037,800 0.26 1.16

INFC (NFI) 131 1.6 0 1,366,000,000 13,959,000 0 1

For the 20 NUTS2 administrative regions, the greatest correlation with the NFI es-
timates was achieved by the GSV map masked with the NFM mask with ρ̂ = 0.972 and
ρ̂ = 0.986 for the mean and total GSV, respectively (Table 4). The GSV maps masked with the
CLMS and FM00 masks, despite their large values of ρ̂, show a systematic overestimation
of the τ̂ma.

Table 4. Coefficient of correlation between the mean and total model-assisted estimate and NFI
estimates for administrative NUTS2 regions (* p-value = 0; ** p-value < 0.001).

Forest Mask ^
ρTotal

^
ρMean

CLMS 0.978 * 0.963 **
JAXA 0.968 ** 0.971 **
FM00 0.979 * 0.949 **
CLC 0.977 ** 0.970 **
NFM 0.986 * 0.972 *

Regarding µ̂ma, for 16 of 20 regions, the differences between the model-assisted esti-
mates and the NFI estimate were not statistically significantly different from 0 for the NFM
masked GSV map, for 15 regions for CLMS and JAXA, for 14 regions for CLC06, and for
10 regions for FM00. Similar results were obtained for τ̂ma for which the differences for
16 of 20 regions were not statistically significantly different from 0 for the NFM masked
GSV map, 15 for CLC06 and JAXA, six for CLMS, and two for FM00. The regions that al-
ways showed a statistically significant difference between the model-assisted estimates and
the official NFI turned out to be the islands (Sardegna, Sicilia) and two regions (Puglia, Um-
bria), while those for which there were never significant differences were seven, distributed
in northern and central Italy.

RE exceeded 1 for most regions, regardless of the FM used. RE < 1 was observed in
one region for the CLMS and FM00 masks (Toscana), two regions for the CLC06 mask
(Toscana, Emilia Romagna), and four regions for the JAXA mask (Toscana, Emilia Romagna,
Sardegna, Umbria). The only masked GSV map that leads to RE coefficient always >1 was
the NFM.
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3.3. Relationship Between FMs Accuracy and GSV Estimates

The relationship between the accuracies of the FMs and the SEs of the estimates with
the model-assisted estimator is presented in Table 5. The correlation was calculated for the
20 administrative regions.

Table 5. Correlation coefficient between the accuracy metrics and the SEs of estimates for each FM.
The overall values were calculated based on all five FMs together.

Forest Mask
^
ρ

Overall Accuracy κ Precision Recall

CLMS −0.26 −0.43 −0.48 −0.25
JAXA 0.26 −0.27 −0.36 −0.62
FM00 0.12 −0.24 −0.57 −0.68
CLC 0.09 −0.20 −0.39 −0.29
NFM 0.09 −0.26 −0.26 −0.58

Overall 0.03 −0.20 −0.32 −0.42

4. Discussion

The aim of this study was to assess the effects of using different FMs available for Italy
for the area-based estimation of GSV. We first constructed a pixel-level GSV map for the
entirety of Italy based on the procedure recently proposed by [17]. We then acquired five
different FMs and, after evaluating their accuracies against an independent dataset (IUTI),
we used them to mask out non-forest areas from the national GSV map produced with the
random forest model. We then compared the five resulting model-assisted GSV estimates
aggregated at regional levels with the official design-based NFI estimates.

Four of the five FMs achieved overall accuracies > 85%, based on the 2008 land use
classification of IUTI points, with the CLC06 and NFM outperforming the other products.
At the national level, the FM that achieved the greatest overall accuracy, κ and precision
was the NFM, followed by the CLC06. Despite the greatest recall (0.91) achieved, the FM00
was affected by systematic overestimation of the regional forest area due to the original
coarse resolution [1] which made this FM unsuitable for GSV estimation.

In contrast, the JAXA FM produced the smallest recall (0.74), most probably because
the SAR backscatter in the HV polarization is relatively insensitive to Mediterranean
vegetation [19,78] which probably caused an underestimation of the forest area. The
photointerpreted FMs, CLC06 and NFM, had the greatest precision. This is an expected
result because forest land use identification is typically done by local experts. However,
CLC06 produced less precision than the NFM because it was implemented for monitoring
land cover, not land uses, adopting a MMU and a crown cover threshold greater than that
adopted by the INFC 2005 [53,79]. In fact, the CLC project did not map forest clear-cuts
and other natural or anthropic disturbances as forest land use, but rather as bare soil or
other non-forest classes, affecting the estimation of forest area. Conversely, the NFM, as
a mosaic of local forest maps, is designed to monitor forest land use, such as the NFI.
However, the small precision of the accuracy showed that false positives were the majority
of classification errors.

At the regional level, OA was greater than 85% for 18 regions for the NFM mask,
followed by the CLMS mask (14 regions), the CLC06 mask (12 regions), the JAXA mask
(3 regions), and the FM00 mask (1 region). Regardless of the FM used, the greatest uncer-
tainty was found in the southern regions and the islands (Campania, Calabria, Abruzzo,
Basilicata, Sardegna, Sicilia), most probably because of the complex Mediterranean forma-
tions and complex agroforestry landscape tiles that characterized these regions where the
NFI estimates also have larger associated SEs.

The greatest accuracies were achieved for regions characterized by greater forest cover
(Liguria, Trentino-Alto Adige, Friuli-Venezia Giulia, Umbria, Toscana). These regions are
characterized by extensive forests with continuous coverage and greater accumulation of
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GSV, as in the Apennine and Alpine Mountains, which probably reduces the likelihood of
forest misclassifications, regardless of the FM considered.

Conversely, the forests bordering other land uses, along rivers, and in the coastal and
rural contexts are typically characterized by a sparse canopy, which makes them more
difficult to correctly classify, even by manual photointerpretation.

In conclusion, regarding the qualities of the FMs, the most accurate was the NFM,
which was comparable with the CLC06, but with the advantage of a finer MMU which
makes it more suitable for regional and local scale applications.

Regarding the model-assisted GSV estimates, although all the masked GSV maps
overestimated total GSV, the NFM masked GSV map was most accurate as a trade-off
between the national and regional GSV and the SE of estimates. The general overestimation
was caused by the trend of the prediction model to overpredict GSV for pixels with small
observed GSV values. (i.e., GSV < 250 m3 ha−1). This evidence, along with the limited
GSV that characterizes Italian forests, caused the general overestimation at the national
level. One possible solution is to increase the performance of the model, for example,
by integrating ALS metrics which is a well-established data source for enhancing GSV
predictions [8,13,15]. Both the CLMS and FM00 masked GSV maps suffered from systematic
prediction error which caused the overestimation of τ̂ma, both nationally and regionally.
For the CLMS masked GSV map, this can be caused by the inclusion of many agricultural
and rural areas that occur in Italy [46], and for FM00 because of the original coarse spatial
resolution (1 × 1 km). The differences between the model-assisted total GSV estimates
and the official NFI estimate for two of the five masked GSV maps (NFM, CLC06) were
statistically significantly different from 0. At the national level, the mean GSV estimates
were comparable for all maps, except for the GSV map masked with the FM00 mask.
The JAXA masked GSV map produced the same estimate as the NFI for mean GSV but
underestimated the total due to the underestimation of forest area. However, the SEs were
almost comparable for all the GSV-masked maps considered. The SE is mainly affected by
the number of NFI plots used for building the model and calculation of the correction term
in the estimator. Despite the differences among the FMs, the NFI plots falling within the
forested portions of the FMs were similar, ranging between 6100 (CLMS) and 5800 (JAXA).
Differences in the number of plots selected by each FM are likely to be concentrated at the
forest edge, where maps are more prone to classification errors. These results confirm the
findings of Esteban et al. [56], suggesting that the FM effects on area estimates are more
important than the effects of field plot sampling variability on the uncertainty of the mean
and total estimates.

At the regional level, the NFM produced the greatest ρ̂ relative to the NFI estimates,
both for µ̂ma and τ̂ma, with the largest number of regional estimates in accordance with the
NFI (16 regions out of 20). The NFM was also the only FM that led consistently to RE > 1.
The CLC06 achieved similar results, with the major exception of Sardegna and in general
in the southern regions, where, as we reported before, the MMU of the CLC project is not
fine enough to discern the complex patchwork in the landscape of a rural region.

SE(τ̂ma) was smaller than SE(τ̂NFI) for 16 regions, which represent 70% of the Italian
territory. The regions with the greatest SE(τ̂ma) were Puglia, Valle d’Aosta, Molise, Basil-
icata, and Marche (SE(τ̂ma) > 5%) probably because of the small number of NFI plots in
these regions. Nevertheless, with the use of the model-assisted estimation approach, it was
possible to decrease the error of the estimates with respect to the NFI estimates, both at the
national (NUTS1), and regional levels (NUTS2).

Regarding the relationship between the FM accuracy and the SEs of the estimates, we
found small correlation coefficients, in particular with the overall accuracy. The SE depends
primarily on the sample size, which is less affected by the accuracy of the FMs, as reported
by Esteban et al. [56]. The accuracy metric was more correlated with the SE of the estimates
than was the recall, followed by the precision. This is an expected result because these
metrics are strictly related to the area classified as forest which, in turn, affects the number
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of NFI plots included in the FMs. Of interest, the FM with the greatest recall (CLMS) was
also the FM that included the greatest number of NFI plots.

However, the negative correlation with the other accuracy metrics demonstrated that
a more accurate FM leads to a smaller SE(τ̂ma).

It would be interesting to combine the available maps by aggregating their beneficial
features to overcome the problems associated with each FM as per McRoberts et al. [23].
Another option would be to calibrate the FMs using the NFI data as per Næsset et al. [80].

In conclusion, the differences in the accuracies of the FMs led to different GSV esti-
mates, although the SEs were almost comparable. The smallest GSV difference against
the official NFI estimate was obtained by the most accurate FMs, i.e., the NFM. This is
likely due to the correct classification of the main, dense forests, which have the largest
amount of volume and subsequently make the greatest contribution in the model-assisted
estimation. Presumably, forest misclassification occurs mainly along the margins and in
boundary areas between different land uses.

5. Conclusions

This paper presents a comparative analysis of the impacts of different forest masks on
model-assisted estimation of GSV. Several conclusions can be drawn from this study.

• At national and regional levels, the masked GSV map constructed using the NFM
mask produced GSV estimates that were most similar to the official NFI estimates.
Regardless of the forest mask, the major disagreement with the official estimate was
found in the southern regions and islands, most probably because of the presence of
the Mediterranean macchia, which is difficult to classify correctly, even by manual
photointerpretation of fine-resolution images. These were the regions with the least
classification accuracies. Regions with abundant forest components (central and
northern regions) produced the most accurate masks and the most accurate and most
precise GSV estimates.

• Despite the small correlation coefficients, we found a negative relationship between
forest mask accuracy and the standard error of the GSV estimate, demonstrating
that the accuracy of the FM must be considered in the GSV estimation through the
model-assisted estimator.

• The quality of the model-assisted estimation mostly depends on the performance
of the prediction model. A more accurate FM can compensate for systematic model
prediction errors, leading to a greater agreement with official NFI GSV estimates, both
at national and regional levels.

In conclusion, we recommend using the NFM, both at regional and national levels,
for studies aimed at estimating forest parameters related to variables such as forest area,
GSV, AGB, and carbon stock. However, it is plausible to assume that as the accuracy of the
model predictions increases thanks to the growing availability of 3D data, the NFM will
always produce more accurate and precise estimates of total GSV. In this regard, we hope
that in the future, wall-to-wall ALS coverage will be finally available in Italy, to enhance
the prediction of forest variables with even greater accuracy.

Finally, we strongly recommended that the different forest mapping and monitoring
programs currently active in Italy converge on a common method and lead to harmonized,
multiscale systems in line with the international forest definition.
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