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Abstract: Precipitation data provide a crucial input for examining hydrological issues, including
watershed management and mitigation of the effects of floods, drought, and landslides. However,
they are collected frequently from the scarce and often insufficient network of ground-based rain-
gauge stations to generate continuous precipitation maps. Recently, precipitation maps derived
from satellite data have not been sufficiently linked to ground-based rain gauges and satellite-
derived soil moisture to improve the assessment of precipitation distribution using spatial statistics.
Kriging methods are used to enhance the estimation of the spatial distribution of precipitations.
The aim of this study was to assess two geostatistical methods, ordinary kriging (OK) and ordinary
cokriging (OCK), and one deterministic method (i.e., inverse distance weighting (IDW)) for improved
spatial interpolation of quarterly and monthly precipitations in Poland and near-border areas of the
neighbouring countries (~325,000 or 800,000 km2). Quarterly precipitation data collected during
a 5-year period (2010–2014) from 113–116 rain-gauge stations located in the study area were used.
Additionally, monthly precipitations in the years 2014–2017 from over 400 rain-gauge stations located
in Poland were used. The spatiotemporal data on soil moisture (SM) from the Soil Moisture and
Ocean Salinity (SMOS) global satellite (launched in 2009) were used as an auxiliary variable in
addition to precipitation for the OCK method. The predictive performance of the spatial distribution
of precipitations was the best for OCK for all quarters, as indicated by the coefficient of determination
(R2 = 0.944–0.992), and was less efficient (R2 = 0.039–0.634) for the OK and IDW methods. As for
monthly precipitation, the performance of OCK was considerably higher than that of IDW and OK,
similarly as with quarterly precipitation. The performance of all interpolation methods was better
for monthly than for quarterly precipitations. The study indicates that SMOS data can be a valuable
source of auxiliary data in the cokriging and/or other multivariate methods for better estimation of
the spatial distribution of precipitations in various regions of the world.

Keywords: satellite-based soil moisture; precipitation; inverse distance weighting; kriging and
cokriging models; spatial interpolation

1. Introduction

Soil moisture–precipitation feedback provides a crucial input for numerous hydro-
logical and agricultural issues, including watershed management [1], mitigation of the
effects of floods and landslides [2], climate change [3–7], irrigation [8,9], waterborne dis-
eases [10], field trafficability and soil tillage [11,12], and simulation of crop growth and
productivity [13,14].

The spatial distribution of rainfall is frequently assessed using ground-based rain-
gauge stations [15,16] since they provide the most precise and reliable measured data [17].
However, the network of the stations varies considerably and is often scarcely and not
adequately distributed to obtain sufficiently dense point measurements for generating

Remote Sens. 2021, 13, 1039. https://doi.org/10.3390/rs13051039 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6134-2237
https://orcid.org/0000-0003-2795-5408
https://orcid.org/0000-0002-1955-9512
https://doi.org/10.3390/rs13051039
https://doi.org/10.3390/rs13051039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13051039
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/5/1039?type=check_update&version=3


Remote Sens. 2021, 13, 1039 2 of 22

continuous high-quality rainfall maps in target areas [7,18,19]. Hence, to gain a suitable
spatial distribution of precipitations based on point data, spatial interpolation methods
should be used [18,20,21]. The recent literature review [22] may suggest a conclusion that,
due to the particularly complex spatiotemporal variability and physical mechanism of
rainfall, acquisition of rainfall data of high quality and resolution is still challenging.

Several spatial interpolation methods employing rain-gauge records have been devel-
oped (e.g., conventional trend surface analysis Thiessen polygons, deterministic methods
such as inverse distance weighted (IDW) estimating values at unsampled points by the
weighted average at surrounding points [23,24], and more complex geostatistical meth-
ods (e.g., kriging) that count the spatial dependence between rain gauges and the spatial
arrangement around the forecasting place) [25–28]. The suitability of each interpolator
depends on the environmental conditions, and hence, a comparative study aiming at the
selection of the best method in the target area is recommended [4,15,29].

Precipitations frequently exhibit high spatial variability related to topographic and
climate factors [30–32]. Therefore, to improve the estimation of the spatial distribution of
rainfall, a multi-element survey using the geostatistical cokriging method can be appro-
priate [5,15,18,29]. The cokriging method allows the joint use of, for example, a sparsely
distributed variable such as rain gauges and a densely sampled secondary variable that
complements the former [26,27]. A recent study conducted by Adhikary et al. [15] revealed
that elevation employed as a secondary variable in the cokriging method significantly
enhanced the estimation of rainfall in Australian catchments with mountainous and com-
plex terrain. In another recent study carried out by Pellicone et al. [29] in a mountainous
region of Calabria (Italy), ordinary cokriging (OCK) and kriging with external drift (KED)
interpolators using elevation and distance to the coastline as secondary variables improved
the spatial rainfall distribution. However, in a relatively flat region in Belgium, the OCK
and KED methods with elevation as a secondary variable did not enhance the estima-
tion of spatial rainfall distribution [33]. In Swiss conditions, cokriging using temporal
rain-gauge data as a secondary variable improved the estimations of the precipitations
compared with radar estimates [34]. In another study [35], blending satellite and ground
precipitation observations using a Bayesian kriging approach significantly improved the
satellite-derived estimates. The above literature suggests that further developments that
include new secondary variables are required to improve the prediction of the spatial
distribution of rainfall.

A secondary variable that has not been used so far in the cokriging method is the
soil moisture content available from satellite data of the Soil Moisture and Ocean Salinity
(SMOS) mission [36,37]. Soil moisture (SM), in general, rises upon the incidence of rain
events [38,39] and affects precipitation events on the other hand [40,41]. The SMOS mission
launched in November 2009 [42] offers soil moisture observations for the topsoil (up to
several centimetres’ depth) [43,44] using the interferometric radiometry method (1.4 GHz)
from the orbit. SM data can be obtained every 1–3 days [45]. Validation has shown that
SMOS SM data are well correlated with in situ soil moisture (R > 0.7) [46], exhibit reasonable
root square mean error (RMSE) (≤0.04 m3 m−3) [43,46–49], and thus show good global
performance [43,45]. Recent studies have demonstrated that assimilation of remotely
sensed soil moisture has the potential to improve the quality of the near-real-time SMOS-
based rainfall product [50,51] and to determine soil water resources [52].

It has been shown that the soil moisture–precipitation (SMP) feedback can be posi-
tive [53,54] or negative [55] depending on the environmental conditions. Several studies
have demonstrated [40,53,56] that soil moisture information promotes rainfall generation,
and the strength of this feedback is enhanced during warm seasons. In a study conducted
by Vivoni et al. [40], the greater areal range of the storm maximum occurring in the high
terrain of the Nacimiento Mountains was attributed to interaction between initial soil
moisture and orographically induced rainfall. A negative SMP feedback was observed
under a strong stability barrier at the top of the terrestrial boundary layer, which requires
more sensible heat to induce appropriate turbulent mixing [55].
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The main objective of this study was to examine whether satellite SMOS soil moisture
data used along with rain-gauge records in the cokriging method are suitable for enhancing
the estimation of the spatial distribution of quarterly (in the years 2010–2014) and monthly
(in the years 2014–2017) precipitation over the area of Poland and near-border areas of
neighbouring countries. The results of the cokriging method are compared with those of
two methods (i.e., ordinary kriging and inverse distance weighting), which do not include
satellite soil moisture data. Adequate evaluation of the spatial distribution of precipitation
is important in a target area where rainfed agriculture is mostly practised and precipitation
is the key uncertainty affecting water availability.

2. Study Area and Data Used

The study area included the whole territory of Poland and near-border areas of
neighbouring countries (i.e., the Czech Republic, Slovakia, Ukraine, Belarus, Lithuania,
and Russia), covering approximately 800,000 km2. The study area is dominated by soils
with texture of loamy sands and loams. In the case of the examined area of Poland, it was
approximately 325,000 km2. Quarterly precipitation data for a 5-year period (2010–2014)
from 113–116 rain gauges retrieved from Tutiempo Network, S.L., Copyright 2018, located
in a variety of networks were used (Figure 1A). Monthly precipitation data were obtained
from over 400 ground meteorological stations of the Institute of Meteorology and Water
Management—National Research Institute (IMGW) (Figure 1B). These free-access data are
in ASCII format [57]. The original 1-day precipitation values were summed to monthly
blocks in order to be consistent with the time scale of the SM from SMOS. It was assumed
that a given weather station is representative of the entire SMOS pixel in which it is located.
The rain-gauge stations were located at different altitudes varying from 1 to 1988 m a.s.l.
The average altitude was 311 m with standard deviation as high as 320 m and, consequently,
a coefficient of variation (average divided by standard deviation and multiplied by 100%) of
103%. The distribution of the altitudes exhibited a positive asymmetry and high slenderness.
Skewness and kurtosis were 2.658 and 8.886, respectively. For this study, the SMOS L2 v.
650 datasets provided by the European Space Agency were examined. Based on the SMOS
mission data processing algorithm, for each record assigned to a single DGG (Discrete
Global Grid) node number, L2 retrieval has been carried out, under the condition that
such pixel is not masked by no measurement value (−999 is assigned as an indicator of
no measurements). The procedure for masking is defined by the series of quality flags
defined in the mission Algorithm Theoretical Basis Document (ATBD) [58]. Additionally,
variety of flags is applied to define the scene for which retrieval is conducted (including
complex urban areas). The largest complications originate from external sources, such
as radiofrequency interference (RFI) [58]. RFI contaminates the original signal, leading
to exaggerated values of brightness temperature and, in consequence, unphysical values
of SM. Thus, such pixels are masked by −999 (no measurement) value, before the L2
processing algorithm is applied. The datasets were downloaded from ftp://smos-ds-02.eo.
esa.int/SMOS/L2SM/MIR_SMUDP2/. Next, further products were built from these data.
The soil moisture contents in the topsoil (less than ~10 cm) were extracted from the SMOS
satellite data for about 5000 (for Poland and neighbouring countries) and 2000 (for Poland)
points on the Discrete Global Grid (15 km grid) using the Icosahedral Snyder Equal Area
(ISEA) map 4H9 projection. SMOS soil moisture was averaged quarterly in 2010–2014 [59]
and monthly in 2014–2017. For the purpose of geostatistical analysis, a regularization
procedure was performed (i.e., it was assumed that each pixel is represented by one point
located in its centre).

ftp://smos-ds-02.eo.esa.int/SMOS/L2SM/MIR_SMUDP2/
ftp://smos-ds-02.eo.esa.int/SMOS/L2SM/MIR_SMUDP2/
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Figure 1. Spatial distribution of rain-gauge stations in Poland and neighbouring countries and SMOS pixel (A). Map was
created using Google Earth (v. 7.3.2.5776). Google, proprietary software, https://www.google.com/earth/. The background
maps from Google Maps (https://www.google.com/maps/@51.1367607,20.6545385,5.5z), accessed 12 April 2017, and
https://pl.wikipedia.org/wiki/Plik:Poland_location_map_white.svg (B). Elevation map of Poland, n.p.m.—above sea level
(C), https://pl.wikipedia.org/wiki/Mapa_hipsometryczna#/media/Plik:Poland-hipsometric_map.jpg. The background
maps were modified using Microsoft Office PowerPoint 2019.

We validated the soil moisture data based on measured soil moisture at the stations
in the Podlasie and Polesie regions using classical statistics, Bland–Altman plot, con-
cordance correlation coefficient, and total deviation index. The validation results were
satisfactory [49].

Basic statistics including mean, minimal, and maximal values for annual and monthly
rainfall and soil moisture were calculated in 2010–2014 and 2014–2017 (Figure 2).

https://www.google.com/earth/
https://www.google.com/maps/@51.1367607,20.6545385,5.5z
https://pl.wikipedia.org/wiki/Plik:Poland_location_map_white.svg
https://pl.wikipedia.org/wiki/Mapa_hipsometryczna#/media/Plik:Poland-hipsometric_map.jpg
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Figure 2. Mean, minimal (Min), and maximal (Max) values for annual rainfall (A) and soil moisture data (B) with standard
deviations in Poland and neighbouring countries for the study period 2010–2014 and for monthly rainfall (C) and soil
moisture data (D) in Poland for the study period 2014–2017.

As can be seen in Figure 2A, the average annual precipitation totals were the greatest
in 2010 (874 mm), and the smallest values were recorded in 2011 (599 mm) with an upward
trend in the successive years, up to 704 mm (in 2014). The largest maximum annual fall was
noted in 2010 (2157 mm in the mountains, 1989 m above sea level), whereas the smallest
maximum was reported in 2011 (1433 mm at an altitude of 1327 m). The largest minimum
annual fall was recorded in 2013 (462 mm, 323 m above sea level), and the lowest minimum
was noted in 2011 (279 mm on 106 m above sea level). The variability of precipitation in
2010–2014 expressed by the coefficient of variation ranged from 29% to 35%.

The mean precipitation of monthly precipitations in the years 2014–2017 was 58.5 mm
and generally lowest at the end of autumn to early spring (from 16 to 66 mm) and consider-
ably greater in late spring to early autumn (from 71 to 131 mm) (Figure 2C). The coefficient
of variability (CV) of the precipitations varied from about 25% to 85%. The variability was
greater in autumn and winter than in spring and summer.

The mean soil moisture for the 5-year period (2010–2014) was 0.151 m3 m−3, with the
highest and the lowest values in 2010 (0.171 m3 m−3) and in 2012 (0.128 m3 m−3), respec-
tively (Figure 2B). The coefficients of variation were similar in all study years (26.6–33.3%).
The minimum and maximum soil moisture values were close to zero and 0.5 m3 m−3. The
skewness (0.20–0.57) and kurtosis (0.46–1.79) values indicate that soil moisture distribution
was positively skewed and slightly narrow. The mean soil moisture in the individual
quarters varied from 0.12 to 0.2 m3 m−3. The variability of soil moisture was, in general,
highest in quarter I (to 40%) and lowest in quarter II (around 23%). The yearly standard
deviations ranged from 0.04 to 0.051 m3 m−3. The standard variation was approximately
6.3% in quarter I and lower (up to ca. twofold) in the other quarters. The coefficient of
variation was greater than 33% in each year and approximately 40% in quarter I of 2012
and 2013, with similar and lower variability in quarters II and III and increased variability
in quarter IV. Histograms of soil moisture distributions indicate that the asymmetries were
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negative in quarter III and mostly positive in the other seasons (see Figure 3 in [59]). To
obtain the normal distribution required in geostatistics, the variables with the highest
asymmetry were transformed using the square root.

The mean soil moisture in the years 2014–2017 was 0.162 m3 m−3 with the highest
and the lowest values of monthly soil moisture in January 2017 (0.085 m3 m−3) and
in February 2017 (0.254 m3 m−3), respectively (Figure 2D). The coefficients of variation
were generally similar in all study years (23.9%–48.0%) except January 2017 (97%). The
minimum and maximum of monthly soil moisture values were respectively close to zero
and 0.748 m3 m−3 (in wetlands). The values of skewness (−0.425 to 2.008) indicate that soil
moisture distribution was slightly negatively and positively skewed, and those of kurtosis
(−0.07 to 5.8) that it had a normal or narrow shape. Both the skewness and kurtosis values
indicate that the monthly soil moisture distributions were close to the normal distribution.

3. Methodology
3.1. Semivariograms and Cross-Semivariograms

The analysis of the spatial dependence and distribution of precipitation (z1) and soil
moisture (z2) was performed using geostatistical methods. The normality of precipitation
was obtained after square root transformation. After that, the soil moisture distribution was
close to normal and thereby met the required condition of a stationary or quasi-stationary
process. The experimental semivariogram γ(h) and cross-semivariogram between precipi-
tation (z1) and soil moisture (z2) − γ12(h) for the distance h (◦) were calculated from the
following equations [60]:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[z1(xi)− z1(xi + h)]2 (1)

γ12(h) =
1

2N(h)

N(h)

∑
i=1

[z1(xi)− z1(xi + h)]·[z2(xi)− z2(xi + h)] (2)

where N(h) is the number of pairs of points with values of [z1(xi), z1(xi+h)], [z2(xi), z2(xi+h)],
distant by h, and xi is the spatial coordinate. For semivariograms and cross-semivariograms
determined empirically, the following three mathematical models were selected:

− spherical model:

γ(h) =

 C0 + C ·
[

1.5 |h|A0
− 0.5

(
|h|
A0

)3
]
|h| ≤ A0

C0 + C h > A0

(3)

− exponential model:

γ(h) = C0 + C·
[

1− e−
|h|
A0

]
|h| > 0 (4)

− Gaussian model:

γ(h) = C0 + C·

1− e
− |h|

2

A2
0

|h| > 0 (5)

where γ(h) is the semivariance for internal distance class h, h is the lag interval, C0 is
the nugget variance ≥0, C is the structural variance ≥C0, A0 is the range parameter, and
C0 + C is the sill. In the case of the spherical isotropic model, the effective range A = A0.
In the case of the exponential isotropic model, the effective range A = 3A0, which is the
distance at which the sill (C + C0) is within 5% of the asymptote. In the case of the Gaussian
model, the effective range A = 30.5A0, which is the distance at which the sill (C + C0) is
within 5% of the asymptote. In the case of the anisotropic model, the effective range



Remote Sens. 2021, 13, 1039 7 of 22

A =
√

A2
1[cos2(θ − ϕ)] + A2

2
[
sin2(θ − ϕ)

]
, where A1 is the range parameter for the major

axis (φ) and A2 is the range parameter for the minor axis (φ + 90). In the case of the
exponential anisotropic model, the range (or effective range) is 3A1 for the major axis and
3A2 for the minor axis, φ is the angle of maximum variation, and θ is the angle between
pairs. In the case of the Gaussian anisotropic model, the range (or effective range) is 30.5A1
for the major axis and 30.5A2 for the minor axis, φ is the angle of maximum variation, and θ
is the angle between pairs. To evaluate anisotropy, the azimuth direction Az with the lowest
semivariance values defined by smaller in the major direction (lower average semivariance)
and largest in the minor (90◦–offset) direction was used.

The obtained mathematical functions of semivariograms and cross-semivariograms
were used for the spatial analysis of autocorrelation or for the visualization, through
estimation, of the rainfall value under consideration in space with the kriging or cokriging
methods. In places where no samples had been taken, the data were estimated using the
IDW (inverse distance weighting), OK (ordinary kriging), and OCK (ordinary cokriging)
methods. Experimental semivariograms were calculated based on the rainfall dataset and
soil moisture for each quarter and month with consideration of the effect of distribution
anisotropy of both quantities on the semivariogram parameters. The spherical, exponential,
and Gaussian functions were fitted (selected) to the empirical semivariograms for each
quarterly and monthly dataset of rainfalls and soil moisture. Then, models (functions) with
the minimum residual sum of squares and the highest R2 values were selected.

3.2. Interpolation Methods

A deterministic inverse distance weighting (IDW) and two geostatistical methods
(i.e., ordinary kriging (OK) and ordinary cokriging (OCK)) were used to assess the spatial
distribution of precipitations.

3.2.1. Inverse Distance Weighting

Inverse distance weighting (IDW) estimates values of precipitations at unsampled
points by the weighted average of observed data at surrounding points [23,24]. Estimation
of values in places where no samples had been taken was made with the inverse distance
weighting method using the following equation [60]:

z∗j (h) = ∑
zi(

hij + s
)p / ∑

1(
hij + s

)p (6)

where zj*(h) is the estimated precipitation value at desired location j, zi is the measured
sample value at point i, hj is the distance between zj*(h) and zi, s is the smoothing factor,
and p is the weighting power.

3.2.2. Ordinary Kriging

Estimation of precipitation values in places where no samples had been taken was
conducted with the kriging method [60]. The method yields the best nonbiased estimation
of block values. This method also allowed for obtaining the minimum variance in the
process of estimation. The estimator of kriging is a linear equation expressed by the
following formula [60]:

z∗(xo) =
N

∑
i=1

λiz(xi) (7)

where N is the number of measurements, z(xi) is the value measured at point xi, z*(xo) is
the estimated value at the point of estimation xo, and λi is the weights. The weights are
determined from a system of equations after inclusion of the condition of estimator nonbias
and its effectiveness:
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N
∑

j=1
λ jγ

(
xi, xj

)
+ µ = γ(xi, xo) i = 1 · · ·N

N
∑

i=1
λ i = 1

(8)

3.2.3. Ordinary Cokriging (OCK)

Ordinary cokriging is a specific method for the analysis of random fields. It con-
sists in the determination of covariance and reciprocal covariance as well as the cross-
semivariogram function for specific parameters (i.e., precipitation (z1) and soil moisture
(z2)). The main advantage of the method is the possibility of indirect reconstruction of
the spatial variability of precipitation, the measurement of which is difficult and expen-
sive, through field analysis of soil moisture, which is easier to determine with standard
measuring equipment or available from satellite observations.

During the estimation of values at sites where no samples had been taken, xo, can
be made with the help of the estimation method known as the cokriging approach. The
mathematical basis for cokriging is the theorem on the linear relationship of the unknown
estimator z2

*(xo) expressed by the following formula [60]:

z∗2(xo) =
N1

∑
i=1

λ1iz1(x1i) +
N2

∑
j=1

λ2jz2
(
x2j
)

(9)

where λ1i and λ2j are weights associated with z1 and z2. N1 and N2 are the numbers of
neighbours of z1 and z2 included in the estimation at point xo. Cokriging weights are
determined from a system of equations with the inclusion of the condition of estimator
nonbias and its effectiveness:

N1
∑

i=1
λ 1iC11(x1i, x1k) +

N2
∑

j=1
λ 2jC12

(
x1k, x2j

)
− µ1 = C21(xo, x1k) k = 1, N1

N1
∑

i=1
λ 1iC21(x2l , x1i) +

N2
∑

j=1
λ 2jC22

(
x2j, x2l

)
− µ2 = C22(xo, x2l) l = 1, N2

N1
∑

i=1
λ 1i = 0

N2
∑

j=1
λ 2j = 1

(10)

where µ1 and µ2 are Lagrangian factors, and C11, C12, C21, and C22 represent covariance
between the variables. The relationships between the semivariance γ(h) and the covariance
C are expressed by the equation γ(h) = C(0) − C(h). In our study, the cokriging approach
was used to enhance the estimation of spatial precipitation distribution using sparse data
from rain-gauge stations and more densely sampled SMOS SM (as auxiliary variable)
complementing the former.

Cross-validation analysis is used for evaluating effective parameters for IDW, kriging,
and cokriging interpolations. In this analysis, each measured point in the area is individu-
ally removed, and its value is estimated based on neighbouring measurement points. Then
the point is replaced, and the next point is removed and estimated, and so on. Finally, the
estimations are compared with measured values in all points, and statistical parameters
are determined [60].

4. Results
4.1. Statistics of Rain-Gauge Data

Table 1 presents the statistics of quarterly precipitations in 2010–2014. The mean
precipitations were the lowest in quarters I and IV (80 and 150 mm) and considerably greater
in quarters II and III (160 and 350 mm). The higher precipitations in the latter pair exhibited
greater dispersion, as shown by the standard deviations. The coefficient of variability (CV)
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of the precipitations varied from about 30% to 62%. According to the literature [61], the
CV values indicated moderate variability. The distribution of precipitations had a long
and slender shape with positive asymmetries (values of 0.847–2.312) and large values of
kurtosis (0.915–7.626). To meet the required condition of normality (or close to normality)
in geostatistical analysis, the data were subjected to root square transformation, which led
to lower asymmetries (0.218–1.327) and kurtosis (0.362–3.179).

The monthly precipitations in the years 2014–2017 varied largely from 0 to 438 mm,
particularly during the summer (100–438 mm) (Figure 2). The distribution of precipitations
had a slight asymmetry and slightly blurred shape with positive asymmetries (values of
0.0–1.5) and small values of kurtosis (−0.2 to 2.1) and was close to the normal distribution.

4.2. Correlation Analysis

As can be seen from Table 2, correlation coefficients between the quarterly average
precipitations and the SMOS satellite soil moisture in the years 2010–2014 for Poland and
neighbouring countries area were in 7 cases significantly positive (R from 0.234 to 0.336)
and in 13 cases unexpectedly insignificant with positive or negative values. Correlation
coefficients between the monthly average precipitations and the SMOS satellite soil mois-
ture in the years 2014–2017 for Poland area were in 31 cases significantly negative (10)
or positive (21) (R from −0.342 to −0.118 and from 0.131 to 0.459) and in the remaining
17 cases insignificant with positive or negative values.

It seems an obvious statement that soil moisture should increase when it rains and
that there is no obstacle in reaching the soil surface. A positive and significant correlation
between rainfall and soil moisture confirms the above statement for both quarterly and
monthly rainfall data. The observed negative significant correlation between rainfall
and soil moisture indicates that there are some factors in the studied areas that disturb
this direction of soil moisture increase with increasing amounts of rainfall. Other factors
changing this direction may be the soil texture and vegetation cover. We should also
take into account the type of rainfall that occurs in a given area, whether it is frontal or
convection rainfall limited to small areas. The type of rainfall will affect how quickly the
water infiltrates into the soil, what part of the rainfall is captured by the vegetation, and
how much water will evaporate from the soil and plant cover. Soil moisture in areas with
coarse-textured soils can be less with more rainfall, and the inverse can be true in areas
with fine-textured soils. Which of these factors and the relationships dominate in the study
area and how they interact translate in turn into a correlation, whether it is significant,
negative, positive, or insignificant.
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Table 1. Summary statistics for quarterly rainfall data of Poland and neighbouring countries.

Quarter of
the Year I 2010 II 2010 III

2010
IV

2010 I 2011 II 2011 III
2011

IV
2011 I 2012 II 2012 III

2012
IV

2012 I 2013 II 2013 III
2013

IV
2013 I 2014 II 2014 III

2014
IV

2014

n 115 115 116 116 116 116 113 116 115 116 116 116 114 114 114 114 114 116 116 110
Mean 104.0 277.1 344.0 148.3 80.6 163.3 261.1 91.7 113.8 185.5 219.4 145.5 141.0 265.5 190.2 106.5 93.8 207.9 275.5 114.1

SD 36.3 140.2 120.6 50.6 29.7 74.9 88.3 53.2 71.1 62.5 86.4 44.1 63.4 82.6 73.6 50.2 31.7 99.1 120.5 42.7
CV (%) 34.9 50.6 35.0 34.1 36.9 45.9 33.8 58.0 62.4 33.7 39.4 30.3 45.0 31.1 38.7 47.1 33.8 47.7 43.7 37.4

Min 29.2 26.7 157 49.3 30.2 46.7 94.8 23.1 11.2 69.6 53.6 69.6 48.5 129.3 37.6 27.2 31 23.8 75.5 55.4
Max 247.8 898.9 894.1 343.5 241.6 530.9 608.1 315.0 444.0 444.3 519.2 290.3 425.2 625.3 402.1 309.9 255.0 673.1 792.9 279.4

Skewness 1.302 1.523 1.998 0.847 1.947 2.045 0.900 1.900 2.312 1.166 1.034 1.071 1.535 1.163 1.042 1.477 1.165 2.081 1.360 1.523
Kurtosis 3.179 3.777 5.415 1.309 7.355 6.048 2.125 3.851 7.525 1.983 1.287 1.309 3.305 2.500 0.915 2.626 4.930 7.626 3.315 2.636

Transformed rainfall data with a square root

Mean 10.1 16.2 18.3 12.0 8.8 12.5 15.9 9.3 10.3 13.4 14.5 11.9 11.6 16.1 13.6 10.1 9.6 14.1 16.2 10.5
SD 1.71 4.00 2.95 2.04 1.53 2.64 2.69 2.44 2.95 2.19 2.82 1.75 2.47 2.43 2.58 2.25 1.61 3.21 3.46 1.85

Skewness 0.524 0.526 1.327 0.282 0.985 1.178 0.239 1.239 1.008 0.679 0.455 0.653 0.888 0.633 0.465 0.853 0.218 0.621 0.575 1.020
Kurtosis 1.578 1.236 2.904 0.368 2.820 2.464 0.660 1.544 2.563 0.518 0.362 0.433 0.932 0.768 0.561 0.771 1.619 3.179 0.850 1.146

n—number of values, SD—standard deviation, CV—coefficient of variation, Min—minimum, Max—maximum.
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Table 2. Linear correlation coefficients between the quarterly and the monthly average rainfall and satellite soil moisture for
Poland and neighbouring countries.

Correlation coefficients between the quarterly average rainfall and satellite soil moisture (P_SM) in the years 2010–2014. Bold, the correlation
coefficients are significant with p < 0.05, n = 76.

P_SM_I 2010 P_SM_II 2010 P_SM_III 2010 P_SM_IV 2010 P_SM_I 2011 P_SM_II 2011 P_SM_III 2011 P_SM_IV 2011
−0.022 0.099 −0.062 0.237 0.234 0.238 0.289 0.335

P_SM_I 2012 P_SM_II 2012 P_SM_III 2012 P_SM_IV 2012 P_SM_I 2013 P_SM_II 2013 P_SM_III 2013 P_SM_IV 2013
0.191 0.184 0.187 0.195 0.038 0.307 0.2 0.196

P_SM_I 2014 P_SM_II 2014 P_SM_III 2014 P_SM_IV 2014
0.021 0.189 0.158 0.336

Correlation coefficients between the monthly average rainfall and satellite soil moisture (P_SM) in the years 2014–2017. Bold, the correlation
coefficients are significant with p < 0.05, n = 391.

Years P_SM
_1

P_SM
_2

P_SM
_3

P_SM
_4

P_SM
_5

P_SM
_6

P_SM
_7

P_SM
_8

P_SM
_9

P_SM
_10

P_SM
_11

P_SM
_12

2014 0.208 −0.028 −0.199 −0.186 −0.333 −0.090 −0.150 −0.063 −0.003 0.072 −0.206 0.131
2015 −0.087 −0.342 0.095 0.049 0.008 0.171 0.141 −0.118 0.309 −0.029 0.053 0.362
2016 −0.147 −0.260 −0.007 0.088 0.037 0.309 0.296 0.459 0.160 −0.155 0.454 0.316
2017 0.360 −0.012 0.200 0.054 0.025 0.210 0.255 0.376 0.203 0.429 0.271 0.441

P—precipitation (mm), SM—soil moisture (m3 m−3), 1–12 months.

4.3. Semivariogram and Cross-Variogram Models

The semivariograms and cross-semivariograms of paired precipitations with the SMOS
satellite soil moisture for each year were calculated (Table 3). The experimental values were
best fitted (R2 > 0.8) mostly to spherical, exponential, and Gaussian models. For quarterly
precipitations and soil moisture, the best model to describe the spatial relationship was the
exponential model. The ranges (A) of spatial dependence in semivariograms for quarterly
precipitations were greater (from 1.26◦ for III 2010 to 6.47◦ for II 2010) with predominant
values below 3 than for quarterly soil moisture contents (from 1.00◦ for I 2010 to 4.08◦ for IV
2013) with predominating values below 2◦ (Table 3). In the case of cross-semivariograms,
the ranges of spatial dependence between rainfall and soil moisture appreciably increased,
reaching a maximum of 8.98◦ with predominant values below 5◦. Anisotropy (Az) varied
for precipitations from 50◦ to 120◦ with predominant values above 100◦, for SMC from 0◦

to 172◦ with predominance below 120◦, and for P_SM from 12◦ to 122◦ with predominance
above 100◦. The ratios C0/(C0 + C) were in most cases (50 out of 60) <0.25, indicating
strong spatial dependence; in the other cases, it was moderate [62] (0.25–0.75). It is worth
noting that the spatial dependences (nugget/sill) were more frequently stronger in OCK
(0.00–0.179) (except one, 0.403) than OK (0.018–0.25).

In the case of semivariograms for monthly precipitations and soil moisture, the best
models to describe the spatial relationship were the spherical and the exponential models.
As for monthly precipitation in the years 2014–2017, the effective ranges (A) of spatial
dependence in semivariograms varied from 2.28◦ for January 2015 to 5.77◦ for October 2015
with predominant values from 3.73◦ to 4.96◦. The corresponding range for soil moisture
contents was from 2.49 for April 2015 to 5.84 for April 2014 with predominant values >4◦. In
the case of cross-semivariograms, the best models to describe the spatial relationship were
the Gaussian models. The effective ranges of spatial dependencies varied from 2.4◦ to 4.79◦

with predominant values above 3.61. The cross-semivariograms of monthly precipitations
and soil moisture were negatively spatially dependent (10 times) and positively spatially
dependent (6 times). Anisotropy (Az) varied for precipitations and soil moisture from 58◦

to 130◦ with predominant values from 58◦ to 95◦ and P_SM from 100◦ to 120◦. The ratios
C0/(C0 + C) were in cases (16 out of 32) <0.25, indicating strong spatial dependence; in the
other cases, it was moderate (0.25–0.75). It is worth noting that the spatial dependences
(nugget/sill) were strong in OCK (0.00–0.068).
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Table 3. Fitted semivariogram models for quarterly rainfall (P) and soil moisture (SM) data used in ordinary kriging interpolation method and cross-semivariogram models between
rainfall and soil moisture (P_SM)—1◦ in the ordinary cokriging method corresponds to about 100 km.

Semivariogram_P
C0/(C0 + C)

Semivariogram_SM
C0/(C0 + C)

Cross-semivariogram_P_SM

Year Quarter Model C0 C0 + C A (◦) Az (◦) Model C0 C0 + C A (◦) Az (◦) Model C0 C0 + C C0/(C0 + C) A (◦) Az (◦)

2010 I Exp. 0.641 3.11 0.206 1.50 116 Exp. 0.00001 0.00335 0.003 1.00 105 Exp. 0.000 1.500 0.000 4.01 33
II Exp. 1.263 18.24 0.069 6.47 50 Exp. 0.00000 0.00176 0.001 1.62 58 Exp. −0.002 −0.016 0.125 3.46 12
III Exp. 0.900 8.73 0.103 1.26 113 Exp. 0.00003 0.00168 0.017 1.54 66 Exp. 0.000 −0.016 0.000 8.11 12
IV Exp. 0.540 4.16 0.130 2.00 70 Exp. 0.00013 0.00205 0.063 1.88 116 Exp. 0.000 0.011 0.000 5.58 63

2011 I Exp. 0.327 2.39 0.137 1.29 117 Exp. 0.00098 0.00327 0.298 2.73 97 Exp. 0.000 0.017 0.000 4.35 107
II Exp. 2.680 7.29 0.367 2.82 69 Exp. 0.00007 0.00114 0.060 1.73 124 Exp. 0.000 0.019 0.000 3.16 115
III Exp. 1.440 7.16 0.201 1.53 113 Exp. 0.00000 0.00131 0.002 1.70 41 Exp. 0.004 0.022 0.179 2.08 105
IV Exp. 0.100 5.48 0.018 1.49 120 Exp. 0.00013 0.00119 0.113 2.39 58 Gaus. 0.005 0.040 0.122 6.20 105

2012 I Exp. 1.230 9.34 0.132 1.30 120 Exp. 0.00078 0.00371 0.209 2.03 58 Exp. 0.000 0.039 0.003 7.05 105
II Exp. 0.192 4.73 0.041 1.85 112 Exp. 0.00011 0.00108 0.106 1.63 154 Exp. 0.001 0.024 0.045 8.98 113
III Exp. 1.374 8.19 0.168 5.20 26 Exp. 0.00091 0.00142 0.642 2.73 0 Exp. 0.004 0.019 0.196 3.65 112
IV Exp. 0.312 3.17 0.098 1.42 106 Exp. 0.00092 0.00135 0.684 3.85 170 Exp. 0.000 −0.002 0.000 3.69 115

2013 I Exp. 1.220 6.39 0.191 2.53 69 Exp. 0.00047 0.00290 0.163 1.81 131 Exp. 0.000 −0.025 0.000 2.30 45
II Exp. 1.690 6.75 0.250 6.12 76 Exp. 0.00000 0.00222 0.000 2.10 146 Exp. 0.000 0.008 0.013 2.67 122
III Exp. 2.534 7.32 0.346 3.28 105 Exp. 0.00057 0.00091 0.621 1.87 1 Exp. 0.008 0.019 0.403 5.04 112
IV Exp. 0.420 5.13 0.082 1.64 105 Exp. 0.00088 0.00154 0.570 4.08 172 Exp. 0.002 0.011 0.152 1.58 116

2014 I Exp. 0.493 2.76 0.179 2.53 150 Exp. 0.00000 0.00127 0.001 1.49 86 Exp. 0.000 −0.006 0.000 5.88 112
II Exp. 1.420 10.70 0.133 1.64 108 Exp. 0.00000 0.00095 0.001 1.59 145 Exp. 0.000 0.012 0.000 2.91 114
III Exp. 2.119 12.39 0.171 5.73 108 Exp. 0.00078 0.00120 0.650 2.54 65 Exp. 0.000 0.016 0.000 2.34 117
IV Exp. 0.374 3.42 0.109 1.62 108 Exp. 0.00092 0.00184 0.498 1.73 145 Exp. 0.000 0.017 0.000 4.79 112

Max 2.680 18.24 0.367 6.47 150 0.0010 0.0037 0.684 4.08 172.0 0.008 1.500 0.403 8.98 122
Min 0.100 2.39 0.018 1.26 26 0.0000 0.0009 0.000 1.00 0.0 −0.002 −0.025 0.000 1.58 12

1 Exp. 12.1 135.6 0.089 4.29 130 Exp. 0.00143 0.00340 0.421 3.46 101 Gaus. 0.000 0.115 0.001 2.40 103
4 Exp. 101.9 308.3 0.331 4.96 93 Sph. 0.00097 0.00320 0.303 5.84 103 Gaus. −0.001 −0.290 0.003 4.00 68
7 Sph. 290.0 3422.0 0.085 4.66 93 Sph. 0.00119 0.00311 0.382 5.23 103 Gaus. −0.001 −0.723 0.001 4.11 73

10 Sph. 1.0 626.0 0.002 5.77 110 Exp. 0.00087 0.00278 0.313 4.47 81 Gaus. −0.001 −0.067 0.015 3.87 73
2015 1 Sph. 29.0 434.0 0.067 2.28 86 Exp. 0.00160 0.00429 0.373 4.25 64 Gaus. −0.001 −0.166 0.007 4.49 100

4 Exp. 86.7 173.6 0.499 3.86 86 Exp. 0.00049 0.00252 0.194 2.49 62 Gaus. −0.001 −0.111 0.009 4.48 87
7 Exp. 231.5 551.9 0.419 2.67 71 Exp. 0.00103 0.00419 0.246 4.57 69 Gaus. 0.001 0.284 0.004 3.94 87

10 Exp. 4.6 173.0 0.027 3.50 72 Exp. 0.00070 0.00273 0.256 4.77 58 Gaus. 0.000 −0.129 0.001 3.02 105
2016 1 Exp. 28.9 112.5 0.257 3.99 115 Sph. 0.00246 0.00863 0.285 5.46 95 Gaus. 0.000 −0.190 0.001 3.46 90

4 Exp. 1.0 478.7 0.002 4.87 90 Exp. 0.00080 0.00224 0.357 5.16 66 Gaus. −0.001 −0.181 0.006 3.38 110
7 Exp. 145.0 2386.0 0.061 2.97 65 Exp. 0.00117 0.00383 0.305 4.66 74 Gaus. 0.000 0.359 0.000 3.61 120

10 Exp. 320.0 1095.0 0.292 4.53 73 Exp. 0.00090 0.00345 0.261 4.98 78 Gaus. −0.084 −1.240 0.068 4.28 120
2017 1 Exp. 0.0 210.0 0.000 3.73 77 Sph. 0.00127 0.00813 0.156 5.05 84 Gaus. 0.026 0.550 0.047 4.18 120

4 Sph. 1.0 1603.0 0.001 4.35 83 Exp. 0.00104 0.00299 0.348 4.00 106 Gaus. −0.001 −0.512 0.002 3.32 115
7 Exp. 392.0 1592.0 0.246 4.17 60 Exp. 0.00090 0.00252 0.357 4.65 90 Gaus. 0.001 0.572 0.002 3.88 115

10 Exp. 125.0 1239.0 0.101 3.75 90 Exp. 0.00075 0.00389 0.193 4.62 90 Gaus. 0.001 0.648 0.002 4.79 120

Max 392.0 3422.0 0.499 5.77 130 0.0025 0.0086 0.421 5.84 106.0 0.026 0.648 0.068 4.79 120
Min 0.0 112.5 0.000 2.28 60 0.0005 0.0022 0.156 2.49 58.0 −0.084 −1.240 0.000 2.40 68

Exp.—exponential model, Gaus.—Gaussian model, Sph.—the spherical model, C0—nugget variance, C0 + C—sill, A—effective range, Az—anisotropy.
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4.4. Comparison of the Interpolation Methods and Cross-Validation

The precipitation estimated with the use of the IDW, OK, and OCK methods was
validated with the measured precipitation. The linear regression equation—y = ax + b, SE—
standard error, R2—coefficient of determination, and SE Pre.—standard error prediction
were calculated to compare the accuracy of each interpolator (Table 4). In the case of
quarterly precipitation in the years 2010–2014, the ranges of regression coefficients (a), SE,
SE Pre. (predicted), and R2 for IDW and OK were 0.552–1.428, 0.082–0.927, 29.1–108.9,
0.039–0.599 and 0.610–1.517, 0.072–0.339, 28.7–110.1, 0.040–0.634, respectively (Table 4).
These values indicate a slightly better accuracy of OK than IDW. In turn, OCK indicates
that the directional coefficients (a) of regression equations are above 1, up to 1.44, with
small SEs (<0.032) and SE Pre. (<23) and with high values of R2 (>0.94). The R2 values for
IDW and OK, which are the lowest in quarter I in most years (in 3 of 5 years), correspond
with the lowest precipitation, but are similar in all the quarters in the case of OCK (Table 4).
The appreciably lower SE and SE Pre. values along with the higher R2 for OCK than IDW
and OK clearly indicate better performance of the former.

As for monthly precipitation in the years 2014–2017, the ranges of regression co-
efficients (a), SE, SE Pre. (predicted), and R2 for IDW and OK were 0.989–1.129, 0.022–
0.067, 6.2–29.5, 0.352–0.844 and 0.927–1.086, 0.020–0.064, 5.6–29.5, 0.348–0.865, respectively
(Table 4). As for OCK, the values of regression coefficients (a) (1.018–1.283) were similar
to those in IDW and OK, whereas those of SE (<0.031) and SE Pre. (<16) were lower, and
R2 (0.810–0.995) was in most cases considerably larger. The above data indicate better
performance of OCK than IDW and OK, similarly as with quarterly precipitation.

Irrespective of the type of interpolation method used, the values of R2 were larger, and
those of SE and SE Pre. were lower for monthly than for quarterly precipitations (Table 4).
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Table 4. Performance of inverse distance weighting (IDW), ordinary kriging (OK), and ordinary cokriging (OCK) for estimation of quarterly rainfall in Poland and neighbouring countries.

IDW Kriging (OK) Cokriging (OCK)

Year Quarter a SE R2 b SE Pre. a SE R2 b SE Pre. a SE R2 b SE Pre.

2010 I 0.552 0.230 0.048 47.9 35.4 0.610 0.248 0.051 42.4 36.4 1.441 0.029 0.957 −43.4 7.5
II 1.062 0.082 0.599 −19.7 88.7 1.011 0.072 0.634 −1.3 87.8 1.066 0.009 0.992 −16.7 12.7
III 0.983 0.194 0.183 2.3 108.9 1.030 0.216 0.166 −14.4 110.1 1.318 0.019 0.977 −108.8 18.3
IV 0.996 0.159 0.256 6.6 43.6 1.000 0.165 0.244 7.2 44.0 1.229 0.019 0.974 −31.0 8.2

2011 I 0.651 0.302 0.039 29.6 29.3 0.734 0.339 0.040 23.7 29.3 1.428 0.019 0.980 −32.6 4.2
II 1.206 0.151 0.358 −33.8 60.0 1.252 0.150 0.379 −39.4 59.0 1.386 0.032 0.944 −60.3 17.6
III 1.393 0.209 0.285 −103.9 74.6 1.517 0.258 0.237 −136.8 77.1 1.371 0.020 0.978 −95.7 13.1
IV 1.129 0.195 0.227 −6.6 46.7 1.140 0.217 0.195 −6.3 47.7 1.216 0.012 0.989 −17.5 5.6

2012 I 1.051 0.296 0.104 −0.5 67.9 1.100 0.325 0.095 −4.4 68.3 1.428 0.020 0.980 −43.4 10.2
II 1.257 0.196 0.267 −44.2 53.8 1.206 0.210 0.226 −33.3 55.2 1.188 0.011 0.991 −33.2 6.0
III 1.114 0.132 0.386 −22.4 67.7 0.983 0.115 0.391 7.7 67.4 1.162 0.019 0.970 −33.2 15.0
IV 1.102 0.181 0.245 −11.1 38.3 1.119 0.200 0.200 −12.0 39.0 1.266 0.016 0.981 −36.6 6.1

2013 I 1.029 0.162 0.268 1.4 54.5 1.039 0.160 0.278 1.2 54.1 1.259 0.024 0.960 −33.3 12.7
II 1.226 0.155 0.357 −61.4 66.2 1.119 0.133 0.387 −29.6 64.7 1.241 0.024 0.960 −62.3 16.6
III 1.428 0.203 0.306 −73.7 61.4 1.388 0.192 0.317 −64.3 60.8 1.435 0.030 0.953 −76.8 16.0
IV 1.102 0.180 0.251 −6.4 43.4 1.142 0.190 0.243 −9.0 43.7 1.240 0.015 0.985 −23.1 6.2

2014 I 0.755 0.165 0.157 23.5 29.1 0.796 0.161 0.179 19.9 28.7 1.260 0.024 0.960 −23.3 6.3
II 1.062 0.184 0.227 −12.9 87.1 1.132 0.195 0.229 −26.6 87.0 1.290 0.018 0.977 −57.6 15.0
III 1.099 0.092 0.557 −29.7 80.2 1.016 0.082 0.574 −3.8 78.6 1.129 0.020 0.965 −33.6 22.5
IV 0.927 0.927 0.127 12.2 39.9 0.928 0.246 0.117 13.0 40.1 1.306 0.018 0.981 −32.4 5.9

Max 1.428 0.927 0.599 47.9 108.9 1.517 0.339 0.634 42.4 110.1 1.441 0.032 0.992 −16.7 22.5
Min 0.552 0.082 0.039 −103.9 29.1 0.610 0.072 0.040 −136.8 28.7 1.066 0.009 0.944 −108.8 4.2

1 1.046 0.039 0.640 −2.1 6.7 0.930 0.037 0.612 3.2 7.1 1.077 0.011 0.964 −3.5 2.2
4 1.021 0.048 0.538 −0.9 11.4 1.004 0.047 0.571 −0.2 10.9 1.162 0.023 0.864 −6.9 6.2
7 1.013 0.036 0.665 −1.45 29.5 0.970 0.034 0.675 2.3 29 1.087 0.018 0.901 −7.4 16.0
10 1.03 0.026 0.793 −1.08 9.6 0.947 0.024 0.797 1.8 9.5 1.026 0.005 0.992 −1.0 1.9

2015 1 1.058 0.042 0.636 −3 12.1 0.927 0.038 0.619 3.8 12.4 1.088 0.014 0.941 −4.9 4.9
4 1.129 0.054 0.534 −3.6 9.0 1.086 0.049 0.559 −2.5 8.7 1.222 0.028 0.824 −6.8 5.5
7 0.989 0.067 0.352 0.6 18.3 0.929 0.064 0.348 6.1 18.3 1.283 0.031 0.810 −20.5 9.9
10 1.07 0.029 0.777 −2.5 6.2 1.013 0.024 0.815 −0.5 5.6 1.053 0.009 0.971 −1.9 2.3

2016 1 1.087 0.057 0.497 −2.9 7.3 1.004 0.050 0.525 0.0 7.1 1.213 0.019 0.915 −7.8 2.9
4 1.018 0.025 0.807 −0.6 9.1 0.983 0.022 0.828 0.8 8.6 1.029 0.004 0.993 −1.2 1.7
7 1.034 0.043 0.595 −5.7 29.3 0.939 0.039 0.589 7.5 29.5 1.103 0.009 0.974 −13.6 7.5
10 1.05 0.036 0.678 −5.3 18.6 1.051 0.032 0.734 −5.4 16.9 1.146 0.016 0.924 −15.6 9.0

2017 1 1.052 0.035 0.759 −1.1 6.9 0.973 0.033 0.756 0.8 7.0 1.039 0.005 0.983 −1.1 1.1
4 1.027 0.022 0.844 −2.5 13.8 0.982 0.020 0.865 1.1 12.8 1.018 0.004 0.995 −1.2 2.5
7 1.019 0.038 0.644 −2.3 23.9 0.993 0.034 0.674 0.7 22.9 1.130 0.016 0.929 −15.2 10.7
10 1.09 0.041 0.645 −9.1 19.5 0.996 0.035 0.672 0.7 18.7 1.101 0.010 0.967 −10.8 5.9

Max 1.129 0.067 0.844 0.6 29.5 1.086 0.064 0.865 7.5 29.5 1.283 0.031 0.995 −1.0 16.0
Min 0.989 0.022 0.352 −9.1 6.2 0.927 0.020 0.348 −5.4 5.6 1.018 0.004 0.810 −20.5 1.1

linear equation—y = ax + b, SE—standard error, R2—coefficient of determination, SE Pre.—standard error prediction.
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4.5. Maps of Precipitations

Figure 3 presents example spatial distributions of quarterly precipitations derived from
the OCK approach, which gave the best estimation among the three tested methods. They
include the years 2010 and 2012 among the 5 years analysed (2010–2014). The precipitations
(in all years) were lower than 450 mm in quarters I and IV and below 900 mm in quarters II
and III. The precipitations recorded in the mountainous measuring points were even two
times greater than the estimated values (Figure 1) representing averages of both the high
precipitation in the mountains and the lower precipitation in the neighbouring flat areas.
In general, the variation in precipitation in the quarters is represented (characterized) by
3–4 and 10–13 colours, respectively, in the flat and less hilly areas with lower diversification
of altitude and in the more mountainous areas with greater diversification (Figure 1C).
Generally, this differentiation was mostly latitudinal and was reflected in the greater values
of anisotropy (about 100◦) (0◦ corresponds to anisotropy along the meridian) (Table 3).
A targeted growth in anisotropy from quarters II to III from the northwest to the southeast
was observed in all years, except 2013, when precipitations of snow were abundant in
quarter II (especially in April). The increases in precipitation from quarters IV to I (in all
years) were not so pronounced or targeted.

Figure 3 also presents the spatial distribution of monthly precipitations derived from
the OCK method. Example distributions include the years 2014 and 2016 among the 4 years
analysed (2014–2017). Variation of the monthly precipitation in Poland was generally
smaller in winter and spring and much greater in summer and autumn (Figures 2 and 3).
As in the case of quarterly precipitations, the orientation of monthly precipitations was
generally mostly latitudinal and was reflected in the greater values of anisotropy with
predominant values above 90◦. An anisotropy shift was observed from the northwest to
the southeast to the west and the east from January to early October. Return to the previous
orientation occurred in January of the following year, and the reorientation of anisotropy
was repeated in the following years.
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Figure 3. Spatial distribution of quarterly rainfall (2D maps) in Poland and neighbouring countries estimated by the or- 451 
dinary cokriging interpolation method in 2010 and 2012 year. Note that the same colours represent twice higher precipi- 452 
tation values in quarters II and III (0–900 mm) than in quarters I and IV (0–450 mm) (1° = approx. 100 km). Maps were 453 
created using Gamma Design Software GS+10 [60]. 454 
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Figure 3. Spatial distribution of monthly rainfall (2D maps) in Poland estimated by the ordinary cokriging interpolation
method for selected months in the years 2014 and 2016 (1◦ = approximately 100 km). Maps were created using Gamma
Design Software GS+10 [60].

5. Discussion

Interpolation methods are increasingly being used and improved as tools to enhance
estimation of the spatial precipitation distribution, as the availability of accurate obser-
vation data is limited. This study showed that the spatial prediction of quarterly pre-
cipitation data in Poland and near-border areas was more accurate when the ordinary
cokriging (OCK) method was used with rain-gauge data (P) as the main variable and the
satellite-derived soil moisture surface (SMOS SM) as an auxiliary variable (coefficients
of determination R2 = 0.944–0.992 between the measured and estimated precipitations),
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compared with both ordinary kriging (OK) (R2 = 0.040–0.634) and inverse distance weight-
ing (IDW) (R2 = 0.039–0.599) using only the rain-gauge data. The greater suitability of the
OCK method was supported by the smaller values of nugget and standard error prediction
(SE Pre.) and the larger range of influence of the cross-semivariogram model than that of
the direct (single) semivariogram for the above variables. As for monthly precipitation in
the years 2014–2017, the performance of OCK (R2 = 0.810–0.995) was considerably higher
than that of IDW (R2 = 0.352–0.844) and OK (R2 = 0.348–0.865), similarly as with quarterly
precipitation. The performance of all interpolation methods was better for monthly than
for quarterly precipitations as shown by larger R2 and lower SE and SE Pre. values.

Comparison of the present results and those from previous experiments indicates
that the suitability of a given auxiliary variable depends on the topographic conditions
of the studied areas. For example, in mountainous catchments of Australia at 25 to
1903 m a.s.l. [20] and the Calabria region in Italy [29] at <500 to 2266 m a.s.l., inclusion of
elevation data as an auxiliary variable in the OCK method improved the prediction of the
spatial distribution of orographically induced precipitations. However, this was not the
case for the less hilly areas at 35 to 693 m a.s.l. in Belgium [33], where the OK and IDW
methods performed better. Significant improvement of forecasting the spatial distribution
of precipitations using OCK vs. OK and IDW observed in our study area with variable to-
pography, including mountains, plateaus, plains, and valleys, may result from the fact that
the topsoil (surface)-measured SMOS SM is sensitive to both small and large precipitation
events in various topographic conditions. The suitability of satellite-derived SM data for
improvement of prediction of spatial precipitation distribution based on rain-gauge data
can be enhanced by their global availability [50,63,64]. The present analysis indicates that
satellite-based remote sensing spatiotemporal soil moisture data can be a valuable source
of an auxiliary variable for the cokriging and/or other multivariate (kriging) methods
for better estimation of precipitations in various regions of the world. The performance
of multivariate methods in the estimation of precipitation can be highlighted by recent
attempts indicating that the spatial resolution of SMOS SM data can be increased by dis-
aggregation of soil moisture from large to small pixels [65]. Additionally, it is possible to
assess plant available water at a 0–50 cm depth based on the SMOS topsoil moisture using
the Soil Water Index (SWI) and the exponential filter method as a proxy for the soil mois-
ture in the root zone [47,63,66]. Furthermore, a combination of the previously developed
approaches using satellite-derived soil moisture to improve satellite-based precipitation
prediction [50,67] with the approach proposed in this study using satellite-derived soil
moisture to improve rain-gauge-based precipitation prediction may have the considerable
potential for upgrading precipitation prediction in future studies.

Improvement of precipitation predictability by the combination of ground rain-gauge
data with satellite-derived soil moisture data can be particularly advantageous in transi-
tional climate zones under the influence of, for example, dry and wet climates [68], where
they may reduce the strength of the positive soil moisture–precipitation feedback or cause
even reversed feedback [53,69]. This may result from, for example, dissimilar evapotran-
spiration [70] and/or surface albedo [71] as well as the related net radiation influencing
the amount and intensity of precipitation. In the area of the present study, the relatively
low strength of the soil moisture–precipitation feedback can be affected by the transitional
climate zone between the oceanic climate dominating in the north and west and the con-
tinental climate in the south and east of the area [72]. Additionally, the predictability of
precipitations in the study area can be influenced by the spatial variability of the soil cover
including coarse-textured permeable soils [73] that exhibit lower water holding capacity
and heat capacity [74–76] compared with fine-textured soils. This effect can be associated
with different warming-up and evaporation rates of the soils. Furthermore, coarse-textured
soils display greater sensitivity to different precipitation amounts than other soils [14]. In
connection with this, potential water deficits in the study area result mostly from the lack
of water in the proper place [77] observed especially in the central part of the study area
with soil cover dominated by coarse-textured soil [73]. Therefore, the accurate prediction
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of spatial distribution of precipitation obtained with the OCK method is anticipated to be
beneficial in spatial planning and managing hydrological issues and soil water resources at
various time frames [32].

6. Summary and Conclusions

The spatial distribution of quarterly (years 2010–2014) and monthly precipitations
(years 2014–2017) was estimated in Poland and near-border zones of neighbouring coun-
tries using inverse distance weighting interpolation (IDW) and ordinary kriging (OK) based
on precipitation data from rain-gauge stations. The methods were compared for the first
time with ordinary cokriging (OCK) incorporating rain-gauge data (main variable) and
soil moisture data from SMOS satellite measurements (auxiliary variable). In comparison
with the IDW and OK methods, OCK was identified as a much better interpolator of the
spatial precipitation distribution, as shown by the predominantly larger coefficients of
determination (0.944–0.992 vs. 0.039–0.634) for quarterly precipitations than those for
monthly precipitations (0.810–0.995 vs. 0.348–0.865) and by geostatistical measures includ-
ing the nugget, standard error prediction, and range values. Therefore, we recommend the
OCK approach for the generation of the most accurate (continuous) map of precipitations.
The performance of all interpolation methods was better for monthly than for quarterly
precipitations. This study emphasizes that combining rain-gauge precipitation data and
satellite-based SMOS soil moisture products has a positive impact on the performance of
spatial prediction of precipitations. The SMOS data products cover areas of different eleva-
tions and precipitations and thus partially reflect the topography effects on soil moisture.
Since they are available globally, satellite-derived SM data have the potential to be used as
an auxiliary variable in multivariate methods to enhance the estimation of precipitations in
different regions of the world.
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