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Abstract: The detection of low stratus and fog (LSF) at dawn remains limited because of their optical
features and weak solar radiation. LSF could be better identified by simultaneous observations of two
geostationary satellites from different viewing angles. The present study developed an advanced dual-
satellite method (DSM) using FY-4A and Himawari-8 for LSF detection at dawn in terms of probability
indices. Optimal thresholds for identifying the LSF from the spectral tests in DSM were determined
by the comparison with ground observations of fog and clear sky in/around Japan between April to
November of 2018. Then the validation of these thresholds was carried out for the same months of
2019. The DSM essentially used two traditional single-satellite tests for daytime such as the 0.65-µm
reflectance (R0.65), and the brightness temperature difference between 3.7 µm and 11 µm (BTD3.7-11);
in addition to four more tests such as Himawari-8 R0.65 and BTD13.5-8.5, the dual-satellite stereoscopic
difference in BTD3.7-11 (∆BTD3.7-11), and that in the Normalized Difference Snow Index (∆NDSI). The
four were found to show very high skill scores (POD: 0.82 ± 0.04; FAR, 0.10 ± 0.04). The radiative
transfer simulation supported optical characteristics of LSF in observations. The LSF probability
indices (average POD: 0.83, FAR: 0.10) were constructed by a statistical combination of the four
to derive the five-class probability values of LSF occurrence in a grid. The indices provided more
details and useful results in LSF spatial distribution, compared to the single satellite observations
(i.e., R0.65 and/or BTD3.7-11) of either LSF or no LSF. The present DSM could apply for remote sensing
of environmental phenomena if the stereoscopic viewing angle between two satellites is appropriate.

Keywords: fog; low stratus; dual satellite method; Himawari-8; Fengyun-4A

1. Introduction

Reliable monitoring of low stratus and fog (LSF) is of vital importance because re-
stricted visibility can cause hazards in transportation and navigation including LSF-related
accidents (e.g., [1,2]). Thick LSF at dawn is a major hazard during the morning rush hours.
The persistence and frequency of LSF on land can be associated with various factors: air
pollution and quality [3–5] and climate variabilities such as Arctic Oscillation [6] and El
Niño/Southern Oscillation [7,8].

According to Yoo et al. [9], 71–76% of fog phenomena in surface synoptic observations
(SYNOP) tend to accompany the low stratus over the Korean Peninsula at summertime
dawn. This indicates that the better the LSF detection, the higher the possibility for fog
detection. Low stratus and fog are often decoupled from the upper part of fog at night.
Thus, low stratus and fog are examined in terms of LSF without individual distinctions
in this study. LSF is also an appropriate term in satellite remote sensing since the distinc-
tion between low stratus and fog is fundamentally difficult without additional ground
information such as surface elevation and cloud base height, etc. [2,3,10–12]. The only
difference between the two weather phenomena is whether their bases are in contact with
the ground [13].
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Since LSF has various scales in space and time [6,14], its detection from both ground
observations and numerical forecast models has intrinsic weaknesses. The observations
cannot reflect spatial distributions of LSFs because of a limited number of stations [15].
The models cannot simulate LSFs as fast as needed due to their long spin-up time [16],
and with inaccuracy due to coarse spatiotemporal resolutions (e.g., [2,17]) and limited
parameterizations of microphysical and turbulent mixing processes (e.g., [1,18]). The most
important measure for continuous monitoring of LSF over a wide area is geostationary
satellites (GEOs). However, it is also regarded that the sensing accuracy in LSF at dawn is
in need of improvement.

Traditional detection methods for LSF from a single satellite utilize thresholds that
come from either various satellite channels or their spectral differences [19]. During the
nighttime, Eyre et al. [20] developed a fog detection method by the difference in brightness
temperature at 3.7 µm and 11 µm (BTD3.7-11) from the Advanced Very High-Resolution
Radiometer (AVHRR), using the principle that 3.7 µm has a lower emissivity for water
droplets than 11 µm. The BTD3.7-11 threshold test for LSF from GEOs has been continuously
used [21–27].

During the daytime, BTD3.7-11 is less useful because the brightness temperature at
~3.7 µm (BT3.7) includes both the solar and earth radiation. Thus, the visible 0.68 µm
reflectance (R0.68) test has been attempted instead (e.g., [28]), based on that a water droplet
has a higher reflectivity than the clear sky. Kim et al. [29] have carried out the daytime
marine fog detection based on the decision tree technique from the Geostationary Ocean
Color Imager (GOCI) and Himawari-8 Advanced Himawari Imager (AHI); although the
hit rate (HR) is 0.66–1.00, there is room for improvement due to the high false alarm ratio
(FAR) and the limited amount of data at three Korean islands (FAR = 0.31–0.33). The visible
technique has obvious drawbacks for distinguishing LSF from mid/high-level clouds.
Thereby, researchers have tried to overcome this hindrance using both visible and infrared
thresholds [14,28,30].

Despite many studies on LSF remote sensing [31,32], the detection accuracy remains
low, particularly at dawn [5,33]. The BTD3.7-11 value at dawn is nearly zero due to rapidly
changing optical features with different signs (i.e., negative to positive) [34]. Like snow,
the R0.67 value at dawn also increases in inaccuracy depending on SZA or surface con-
ditions [33,35]. To address this issue, Yoo et al. [9] and Yang et al. [36] proposed the
dual-satellite method (DSM) that utilizes the observed stereoscopic differences (∆) in R0.67
and BTD3.7-11, between two GEOs (i.e., COMS and FY-2D), defining ∆R0.67 and ∆BTD3.7-11
in this study. Both studies applied DSM to LSF detection at dawn near the Korean Peninsula.
While the ∆R0.67 test for LSF detection was useful in the summertime [9], the advantage of
the ∆BTD3.7-11 test for the detection was emphasized in the springtime [36].

An example of the basic principle of DSM is that the detection of an object is better by
two eyes (or satellites) than a single eye [37]. Since DSM for LSF detection is based on the
bidirectional reflectance function (BRDF) of the two GEOs, it is most useful in summertime
dawn when the stereoscopic differences are maximized under the Viewing Zenith Angle
difference (∆VZA) of ~46.5◦ across the Korean Peninsula [9]. However, the accuracy for LSF
detection highly depended on ∆VZA, season, and satellite-observed channels. Therefore,
new tests are required for the LSF detection improvement, utilizing the additional channels
and high spatiotemporal resolution of the recently advanced imagers of GEOs. The purpose
of this study was to improve the detection accuracy and spatial information of LSF at dawn
near Japan in terms of probability index (PI) by devising additional tests from the advanced
satellites, Feng-Yun-4A (FY-4A; [38,39]) and Himawari-8 [40] to the previous tests [9,36].
Compared to previous GEOs, these two GEOs have many channels in high spatiotemporal
resolution, and they can provide additional independent information. The two GEOs have
∆VZA of ~40.4◦ in the region of interest near the nadir of Himawari-8 (Figure 1). The
selection of the region is reasonable to enhance the signal-to-noise ratio in DSM. Fog in
Japan occurs more frequently during the warm season than the cold season, with high
regional variability [41].
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Figure 1. Viewing zenith angles (VZAs) of two geostationary satellites (Himawari-8 and FY-4A)
available for near-simultaneous observations of the low stratus and fog (LSF) at dawn near Japan.
The VZA difference between the satellites is 40.4◦ at the Himawari-8 nadir point.

The Radiative Transfer Model (RTM) simulations of this study which were arranged
and stored in the Look-Up Table (LUT) in advance, were comprehensively used for an ap-
proximate diagnostic check of the LSF optical properties. In Section 2, the data and method
were described. Here spectral properties of newly developed tests were explained. The
results were shown in terms of the LSF and clear-sky classification using optimal thresholds
with radiative transfer simulations in Section 3. The case study for validation was shown
with the PI formulation. Discussion and conclusions were presented in Sections 4 and 5,
respectively.

2. Materials and Methods

To derive and validate the threshold values for LSF detection at dawn near Japan, the
following three datasets were used: geostationary satellite observations from Himawari-8
and FY-4A, ground observations from Meteorological Aerodrome Report (METAR) for the
weather phenomena of fog and clear sky, and the LUT from RTM. For this study, “dawn”
was defined as within 2 h after sunrise (67◦ < SZA < 86◦). The detailed information for the
datasets is described below. For SZA, the average of LSF cases in 2018 was ~79◦ and that of
clear-sky conditions was ~78◦. In 2019, both SZA values were ~80◦. Also, the meanings of
acronyms used in this study are noted in Table A1.

2.1. Satellite Observations

The geostationary satellites of Himawari-8 and FY-4A are located at different lon-
gitudes over the equator, and they show a VZA difference of 40.4◦ near the nadir of
Himawari-8 (Figure 1). The satellite information and application in this study with respect
to the channel are described in Table 1. The primary payloads of FY–4A and Himawari-8
are the Advanced Geostationary Radiation Imager (AGRI; [38,39]) and AHI; [40], respec-
tively. The instruments provided significant advancements in terms of the number of bands,
spatial resolution, and temporal frequency. Their solar and thermal channels are separately
presented in the table. There were two visible (VIS) channels of solar radiation centered at
~0.65 µm and ~1.6 µm. In the 0.65 µm channel, clouds appeared bright due to their high
reflectance, while the signals from the land/sea surface were generally weak. The 1.6 µm
channel was in the infrared (IR) region and allowed distinction between snow/ice-covered
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land and signals from other sources. This channel was sensitive to the cloud phase, and
water clouds reflected more energy in this spectral range than the ice clouds.

Table 1. Information from the dual geostationary satellites of Himawari-8 and FY-4A near Japan, available for near-
simultaneous observations of low stratus and fog (LSF) at dawn during 2018–2019. The meaning of acronyms is explained
in Table A1.

Satellite (Nation, Lon at nadir)

Himawari-8 (Japan, 140.7 ◦E) FY-4A (China, 104.7 ◦E)

Channel
(Abbreviation)

Application of
this Study

Wavelength
(µm)

Central
Wavelength

(µm)

Resolution
at Nadir

(km)

Wavelength
(µm)

Central
Wavelength

(µm)

Resolution
at Nadir

(km)

VIS (R0.65) Fog, cloud 0.63–0.66 0.64 0.5 0.55–0.75 0.65 0.5–1
NIR (R1.6) Cloud, snow 1.60–1.62 1.61 2 1.58–1.64 1.61 2

SWIR (BT3.7) Fog, cloud 3.74–3.96 3.89 2 3.50–4.00 3.75 2

MIR (BT8.5) Cloud-top
phase, SST, LST 8.44–8.76 8.59 2 8.00–9.00 8.50 4

LWIR1 (BT11)
SST, LST,
cloud-top

temperature
11.1–11.3 11.24 2 10.3–11.3 10.80 4

LWIR3 (BT13.5) Cloud, air
temperature 13.2–13.4 13.28 2 13.2–13.8 13.50 4

Of the six channels used, the four non-solar channels were classified as thermal parts.
The 3.7 µm lies in the spectrum of two outgoing energy sources (e.g., solar reflectance and
thermally emitted radiation). This channel is not only sensitive to the cloud phase but also
useful for the detection of water clouds at night. In the region around 8.5 µm, there is a
little water vapor absorption, but it is still in the window region. The IR window channel
around 11 µm is affected primarily by radiation from the Earth’s surface or cloud tops. The
13.3–13.5 µm band is used as cloud masks and cloud-top height.

Level 1B data as digital count values were used to convert the VIS and near-infrared
(NIR) data to visible reflectance and the others (mid-IR, longwave-IR1, longwave-IR2,
longwave-IR3) to brightness temperature. In order to observe the two satellite observa-
tions on the same-sized grid, collocation was performed by interpolating the Himawari-8
observations to FY-4A along with the ground observations shown in Table 2 and Figure 2.
The analysis of this study is not so sensitive to the grid-size of either 4 km by 4 km or
the original pixel (2 km by 2 km), but the data smoothing effect tends to increase in the
former grid. To compare the dual-satellite observations by pixel, the spatial resolution
at the channels noted above was set to 4 km by 4 km. Thus, the Himawari-8 data in a
two-dimensional array of longitude and latitude near Japan (122.5-144E, 23.5-44N) were
interpolated into the FY-4A array. This method keeps the FY-4A accuracy without degra-
dation. The observations for seven variables (BTD13.5-8.5, R0.65, BTD3.7-11, NDSI, ∆R0.65,
∆NDSI, and ∆BTD3.7-11) were analyzed for LSF detection. Additionally, the difference
value between Land Surface Temperature (LST) and 11 µm brightness temperature (BT11)
was used to analyze cloud-top height as an acronym of LST-BT11. In this study, BTD13.5-8.5
was the brightness temperature difference between 13.5 µm and 8.5 µm. Based on the
main weighting function peak in the Satellite Infrared Spectrometer (SIRS-B) channel at
750 cm−1 [42], the peak of AHI at 13.28 µm (753 cm−1) was located near the 850–900 hPa
level. Meanwhile, the 8.5 µm AHI surface channel was used for the analysis of the cloud
phase. Reflectance values (R0.6 and R1.6) were normalized by dividing by cos(SZA) and
set to unity when the values were greater than 1 due to normalization (e.g., large SZA
≥ ~80◦). The difference in values between the two collocated satellites is defined with
Equations (1)–(3) as follows:

∆R0.65 = RFY-4A
0.65 − RHimawari text 8

0.65 (1)
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∆BTD3.7-11 = BTDFY-4A
3.7–11 − BTDHimawari-8

3.7−11 (2)

∆NDSI = NDSIFY-4A − NDSIHimawari-8 (3)

Table 2. Thirty-one meteorological stations of the Automatic Synoptic Observing System (ASOS) near Japan used for the
LSF analysis in this study.

Station
Number

Station
in Japan Lat (◦N) Lon (◦E) Height

(m)
Station
Number

Station
in Japan Lat (◦N) Lon (◦E) Height

(m)

1 AKENO
(JASDF) 34.53 136.67 9 17 KUMAMOTO

(CIV/JAS) 32.84 130.86 196

2 AKITA
AIRPORT 39.62 140.22 96 18 KUSHIRO

AIRPORT 43.04 144.19 98

3 AOMORI
AIRPORT 40.73 140.69 201 19 MATSUYAMA

AIRPORT 33.83 132.70 7

4 ASAHIKAWA
AIRPORT 43.67 142.45 211 20 MIYAZAKI

AIRPORT 31.88 131.45 9

5 CHITOSE 42.77 141.69 30 21 NEW
HIROSHIMA 34.44 132.92 6

6 FUKUI
AIRPORT 36.14 136.22 8 22 NEW TOKYO

INTL AIRPORT 35.77 140.39 44

7 FUKUOKA/
ITAZUKE 33.58 130.45 12 23 OKAYAMA

AIRPORT 34.76 133.86 242

8 FUKUSHIMA
ARPT 37.23 140.43 375 24 OMINATO

(JASDF) 41.23 141.13 10

9 HACHINOHE
(JMSDF) 40.55 141.47 49 25 SAGA

AIRPORT 33.15 130.30 5

10 HAKODATE
AIRPORT 41.77 140.82 36 26 SENDAI

AIRPORT 38.14 140.92 5

11 HYAKURI
(JASDF) 36.18 140.41 35 27 SHIMOFUSA

(JMSDF 35.80 140.01 33

12 IZUMO
AIRPORT 35.41 132.89 5 28 TAKAMATSU

AIRPORT 34.22 134.02 188

13 KAGOSHIMA
AIRPORT 31.80 130.72 275 29 TOKUSHIMA

(JMSDF) 34.13 134.61 11

15 KANSAI INTL 34.43 135.23 8 30 Yonaguni 24.47 122.98 19

15 KISARAZU
(JGSDF) 35.40 139.91 6 Island station

in South Korea

16 KOCHI
AIRPORT 33.55 133.67 10 31 Ulleung 37.48 130.90 223

NDSI [43] was calculated from the visible reflectance values of 0.65 µm and 1.6 µm as
shown in Equation (4).

NDSI =
R0.65 − R1.6

R0.65 + R1.6
(4)

Four variables (BTD13.5-8.5, R0.65, BTD3.7-11, and NDSI) were obtained from a single
satellite’s (i.e., Himawari-8 only) observations, while three variables (∆R0.65, ∆NDSI, and
∆BTD3.7-11) were derived from both satellites. Also, LST data were given from ground
observations.

The NDSI index has been widely used to distinguish between snow and clouds since
snow has a lower reflectance at 1.6 µm [43]. The studies [14,44] presented the NDSI values
for various surface conditions (e.g., water clouds, ice clouds, and vegetation,) to eliminate
snow pixels, which have relatively large R0.65 values. Wu and Li [45] determined both
the NDSI and R0.67 thresholds for daytime sea fog detection using MODIS data. In their
study, the NDSI was used for LSF detection over inland China to divide vegetation and
clouds during the warm season, because vegetation has larger R1.6 and smaller R0.65 than
clouds. Ryu and Hong [46] proposed a regression-based method for sea fog detection from
a combination of NDSI and reflectance in the AHI green band (0.51 µm).
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located in Japan except for the 31st Ulleung station in South Korea.

The BTD13.5-8.5 value which is the difference in brightness temperature between 13.5
and 8.5 µm was used to detect higher ice clouds [47,48], because the 13.5 µm channel
belongs to a CO2 absorption band that affects atmospheric transmission for the calculation
of cloud altitudes. Thus, this value is sensitive to atmospheric altitude. This result indicates
that the BTD13.5-8.5 value can be utilized as an indicator to classify LSF among the weather
phenomena of clear sky, LSF, and high clouds.

2.2. Ground Observations

In this study, ground observation data from METAR were regarded as the ground
truth for LSF and clear-sky cases from March to November in 2018 and 2019. The METAR
is a weather status report designed for aviation based on information from an Automatic
Weather Station (AWS), such as visibility, cloud amount, cloud base height present weather,
ambient temperature, and relative humidity at hourly intervals. Figure 2 shows the
locations of METAR stations in Japan including the “Ulleung” island station in South
Korea. The information for a total of 31 stations over the study region is also described
in Table 2. The LSF occurrences were selected only in cases where the current weather
conditions were reported as “FG” (i.e., fog). In METAR data, fog appears in various forms
depending on accompanying weather phenomena and full or partial spatial covering. Only
cases of “FG” that covered the entire observation area without precipitation were selected
in this study. The clear-sky cases as a contrast group of LSF cases were adopted under
conditions with the abbreviation “CAVOK” or cloud amount with “FEW” (1 to 2 oktas).
CAVOK stands for Ceiling (or clouds) And Visibility OK, indicating no clouds below
1500 m or the highest minimum sector altitude and no cumulonimbus or towering cumulus
at any level, with a visibility of 10 km or more and no significant weather change [49]. The
total observation numbers for LSF and clear-sky occurrences used in this study were 347
and 229 during 2018 and 2019, respectively.

Weather maps (i.e., SYNOP chart) provided by the Korea Meteorological Admin-
istration (KMA) were used to verify the presence of LSF and upper cloud information
detected by satellites and to obtain extensive information on air pressure patterns and wet
areas. However, since the weather maps were produced at three-hour intervals, a direct
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comparative analysis was not possible due to the ordinary rapid generation and dissipation
of fog. Therefore, weather map analysis was performed only when the map time coincided
with the ground or satellite observation time. If there was a time difference between fog
occurrence time and weather map, the BT11 distribution, which is approximately related to
cloud top temperature, was used instead.

2.3. Radiative Transfer Model

Optical characteristics of LSF can be estimated using the RTM simulation with satellite
observations (e.g., [50]). In this study, the Santo Barbara DISORT (SBDART) of a plane-
parallel radiative transfer model was used [51] and the LUT was calculated from RTM in
advance for estimation. The cloud model in the SBDART yielded a radiance value relating
to cloud optical properties (e.g., Fog Optical Thickness, FOT; Cloud Optical Thickness,
COT; Effective Radius, ER) based on the Mie theory. This allowed us to understand satellite-
observed spectral values in the LSF environment and their optical difference between the
two satellites. In addition, the simulation provided insight into the effects of higher clouds
over the LSF layer.

The Spectral Response Function (SRF) difference between the two satellites was less
significant than that of the VZA [9]. Therefore, the values at the central wavelength
of each channel (https://www.data.jma.go.jp accessed on 3 June 2019 for Himawari-8;
http://satellite.nsmc.org.cn accessed on 5 June 2019 for FY-4A) were used instead of the
SRF integrated over its entire wavelength range, of which the calculation process was
time-consuming. Table A2 shows the input variables used for the RTM run in this study
with their acronyms. The LUT was set up for five conditions similar to those in the study
by [36] (their Figure A1). LSF1 at 0–1 km and 0–2 km without higher clouds above the LSF
layer shown in Cases A and B. Cases C to E were with LSF2 accompanying the clouds.
Case C and D were the clouds at 4–6 km above the 2 km fog layer, composed of either
water particles or ice, respectively. Also, in Case E, clouds of ice particles exist 8–10 km
above LSF1. We obtained simulated values from the LUT based on the input data of three
sun or satellite orbit angles (SZA, VZA, and RAA) for each LSF case.

2.4. Formulation of Probability Index (PI)

Figure 3 shows the flow diagram for LSF detection near Japan at dawn during the
period from March to November of 2018–2019, based on the near-simultaneous satellite
observations of Himawari-8 and FY-4A. After collocating 31 ground station sites onto
satellite observation grids, satellite data were collected when fog occurred at the ground
stations. The optimal thresholds of eight satellite-derived variables were derived from
iteration processes to discriminate between LSF and clear-sky cases based on a skill-score
test. The variables were BTD13.5-8.5, ∆NDSI, R0.65, ∆BTD3.7-11, LST-BT11, ∆R0.65, BTD3.7-11,
and NDSI. Using the top four skill-score variables, a total of 16 cases could be extracted
from their statistical combinations (Tables 3 and 4). In addition, the weights were given and
merged into a total of five classes for the probability of LSF occurrence for the 16 cases. To
calculate PI in real time, calculation of five PI classes and the AP (i.e., assigned probability)
value in each class were conducted using the long-term data of the other training period
(i.e., the 2018 control period in this current study). The introduction of the AP values
is necessary to quantify the LSF occurrence by its probability. The magnitude order of
AP was set based on the top four “POD minus FAR” values in the skill score test of the
pre-processing. “POD minus FAR” could comprehensively explain both POD and FAR.
This “PI formulation” is explained in detail in Section 3.3.

https://www.data.jma.go.jp
http://satellite.nsmc.org.cn
http://satellite.nsmc.org.cn
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Figure 3. Flow diagram for LSF detection in terms of probability index (PI) near Japan at dawn during
the period of March to November of 2018–2019, based on near-simultaneous satellite observations of
Himawari-8 and FY-4A. The meaning of the acronyms in the diagram is explained in Table A1.

Table 3. Statistical verification of eight threshold values for LSF detection at dawn near Japan from
the contingency table during the period of March to November of 2018, using the Himawari-8 and
FY-4A satellites. POD: Probability of Detection, CSI: Critical Success Index, HSS: Heidke Skill Scores,
PC: Percentage Correct, FAR: False Alarm Ratio.

Satellite-Derived Threshold
Skill Score

POD CSI HSS PC FAR POD-FAR

−24 K < BTD13.5-8.5 < −10 K 0.881 0.833 0.785 0.895 0.061 0.820
−0.1 < ∆NDSI < 0.3 0.881 0.829 0.778 0.892 0.066 0.815
0.19 < R0.65 < 0.52 0.847 0.819 0.774 0.888 0.039 0.808

7 K < ∆BTD3.7-11 < 19 K 0.847 0.805 0.753 0.878 0.057 0.790
4.5 K < LST-BT11 < 37.5 K 0.699 0.575 0.372 0.692 0.236 0.463

0.29 < ∆R0.65 < 0.55 0.460 0.436 0.337 0.644 0.110 0.350
3 K < BTD3.7-11 < 15 K 0.466 0.391 0.167 0.566 0.293 0.173
−0.18 < NDSI < 0.20 0.330 0.309 0.200 0.559 0.171 0.159

Utilizing these climatological values during the training period, a threshold test of
the real-time dual satellite observations was carried out and provided the PI class (or no
fog) in a spatial grid. The AP as a function of PI class (i.e., Classobs) was equivalent to the
PIobs value, indicating the LSF probability from the real-time dual satellite observations.
Fog detection methods from simultaneous observations of multiple satellites have been
developed in two previous studies [9,36]. We analyzed various channel information ob-
tained from advanced satellites and tried to present the probability index of fog occurrence
more precisely in this study compared to previous studies. Table 5 shows a summary of
the DSM differences between previous and the present studies.
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Table 4. Five LSF classes derived from 16 cases of the four variables (A: BTD13.5-8.5, B: ∆NDSI, C: R0.65, D: ∆BTD3.7-11) based
on the threshold test for detection of either LSF or clear-sky phenomena. For instance, Case 1, which passed the test for
LSF detection by all four variables, corresponds to the “very high” probability of Class 1 in terms of the probability set
“P(A∩ B∩ C∩ D)”. The superscript “c” in AC, which consists of the elements that are not in A in set theory, means the
complement of a set A.

Assigned
Probability
for 16 Cases

LSF Class (Possibility of Occurrence)

1 (Very High) 2 (High) 3 (Medium) 4 (Low) 5 (None)

1 P(A∩ B∩ C∩ D)

0.75 P
(

A∩ B∩ C∩ DC
)

0.75 P
(

A∩ B∩ D∩ CC
)

0.75 P
(

A∩ C∩ D∩ BC
)

0.75 P
(

B∩ C∩ D∩ AC
)

0.5 P
(

A∩ B∩ CC ∩ DC
)

0.5 P
(

A∩ C∩ BC ∩ DC
)

0.5 P
(

A∩ D∩ BC ∩ CC
)

0.5 P
(

B∩ C∩ AC ∩ DC
)

0.5 P
(

B∩ D∩ AC ∩ CC
)

0.5 P
(

C∩ D∩ AC ∩ BC
)

0.25 P
(

A∩ BC ∩ CC ∩ DC
)

0.25 P
(

B∩ AC ∩ CC ∩ DC
)

0.25 P
(

C∩ AC ∩ BC ∩ DC
)

0.25 P
(

D∩ AC ∩ BC ∩ CC
)

0 P
(

AC ∩ BC ∩ CC ∩ DC
)

Table 5. Comparison of the results of this study with those of two previous studies of the Dual Satellite Method (DSM) for
LSF detection at dawn [9,36].

Details
DSM Study

Yoo et al. (2018) [9] Yang et al. (2019) [36] This Study

Geostationary satellites
(Number of channels)

COMS (6) and
FY-2D (6)

COMS (6) and
FY-2D (6)

Himawari-8 (16) and
FY-4A (14)

Main research area South Korea South Korea Japan
Spatial grid resolution ~4 km ~4 km ~4 km

Satellite viewing zenith angle (VZA)
difference at nadir 46.5◦ 46.5◦ 40.4◦

Period 2013–2016 2013–2016 2018–2019
Season June to August April to August March to November

DSM variable ∆R0.67 ∆R0.67 and ∆BTD3.7-11 ∆BTD3.7-11 and ∆NDSI
Additional variable Suggests R0.67 R0.67 BTD13.5-8.5 and R0.65

Probability index of LSF No Yes Yes
Number of variables for PI calculation None Three Four

Number of LSF occurrence classes 3 or 4 8 5 extensible to 16 *

* The maximum class will be available based on the probability combination of the four variables (Table 4) if the long-term dataset of the
LSF and clear-sky occurrences is given in the future.

The maximum number of PI class (i.e., 16) will be available based on the probability
of the four variables if the long-term dataset of LSF and clear-sky occurrences is given in
the future (Table 4).
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3. Results

The processes for deriving the optimal thresholds and their verification will be dis-
cussed in Sections 3.1 and 3.2, based on two-year observations and the RTM simulation.
These sections explain the selection of optimal parameters for fog detection. The process of
developing PI and its application to case studies to address the PI merits in LSF detection
are presented in Section 3.3.

3.1. OptimalLSF Thresholds from the 2018 Control Data

To derive optimal LSF thresholds, the average values with standard deviation (±1σ)
of satellite observations were investigated for LSF and clear-sky cases at dawn during
the control (or training) period of 2018 (Figure 4). The seven satellite-observed values
(BTD13.5-8.5, R0.65, ∆NDSI, ∆BTD3.7-11, NDSI, ∆R0.65, and BTD3.7-11) and the values of LST-
BT11 with ground observations of land surface temperature were analyzed to determine
the range of each variable in LSF and clear-sky conditions. With the separation of LSF from
the clear sky, the LSF threshold can be relatively reliable for LSF detection. Separation
without overlap of the weather phenomena was noted for R0.65, which was traditionally
utilized for fog detection. In addition to the two variables (∆NDSI and ∆BTD3.7-11) derived
from the dual-satellites of Himawari-8 and FY-4A, LSF and clear sky were distinct in the
BTD13.5-8.5 available from Himawari-8 only. This result suggests that the threshold values
derived from dual satellites (∆NDSI and ∆BTD3.7-11) can be worthy for LSF detection in
addition to single satellite observations (BTD13.5-8.5 and R0.65). However, other thresholds
(LST-BT11, BTD3.7-11, ∆R0.65, and NDSI) have uncertainties for LSF detection due to mixed
information that cannot discriminate between LSF and clear sky.
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Figure 4. Average values of eight satellite-observed variables with their standard deviation (±1σ) for two weather conditions
(black for LSF and red for clear sky) at dawn during the control period of 2018 near Japan. (a) Brightness temperatures
(BTD13.5-8.5, ∆BTD3.7-11, BTD3.7-11, and LST-BT11). (b) Reflectances (or NDSI) of ∆NDSI, NDSI, R0.65, and ∆R0.65.

Using the data for the control period of 2018, the optimal thresholds were derived
through the iteration process. The lower boundary value (i.e., Thlower in Table 6) that
distinguished LSF and clear sky was obtained through iteration, while the upper boundary
value (i.e., Thupper) was adjusted to the +1 σ range of the average value to avoid middle or
high cloud contamination. The results of statistical verification for each threshold variable
are shown in the contingency table and the index definition (Table A3), based on the five
skill score indices (HSS, CSI, POD, PC, and FAR) shown in Table 3. HSS can be an overall
skill indicator of detection accuracy [52], although the difference between POD and FAR
(i.e., POD minus FAR) was analyzed in this study as an important indicator of detection
accuracy. The difference values were higher in magnitude order for BTD13.5-8.5, ∆NDSI,
R0.65, and ∆BTD3.7-11. In these four variables, the skill scores of POD minus FAR (0.79–0.82)
were roughly the same, within a 3% difference. Meanwhile, the POD minus FAR values for
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the other four variables did not exceed 0.47. Therefore, the threshold values of the top four
variables were more useful for LSF detection than were those of the other four thresholds.

Table 6. Satellite-derived PI distributions of five classes weighted at 0.25 intervals for detection of
LSF and clear-sky cases in 2019.

LSF
Class

Assigned
Probability

Thlower < LSF < Thupper
Either Clear Sky < Thlower or

Clear Sky > Thupper

Number of
Actual

Occurrences

Sum of
Detection

Probability

Number of
Actual

Occurrences

Sum of
Detection

Probability

1 1 99 99.00 79 79.00
2 0.75 43 32.25 8 6.00
3 0.5 21 10.50 12 6.00
4 0.25 2 0.50 11 2.75
5 0 6 0.00 0 0.00

Total 171 140.25 110 93.75

Figure 5 shows scatter plots of the top four variables (BTD13.5-8.5, ∆BTD3.7-11, ∆NDSI,
and R0.65) with respect to LST-BT11 for the weather phenomena of LSF (red circle) and
clear sky (blue triangle) near Japan at dawn during 2018. The value of LST-BT11 tended
to be higher under middle/high clouds than in LSF/clear-sky conditions. The weather
phenomena of LSF and clear sky were categorized well using the top four variables, with
high verification scores of POD minus FAR.
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Figure 5. Scatter diagrams of (a) BTD13.5-8.5, (b) ∆BTD3.7-11, (c) ∆NDSI, and (d) R0.65 with respect to LST-BT11 for the
weather phenomena of LSF (red circle) and clear sky (blue triangle) at dawn during 2018 near Japan. The values in the
ordinate of the gray-shaded bands indicate the LSF threshold ranges for each variable. The satellite-observed value of
one positive standard deviation (i.e., +1σ; upper boundary) for LSF detection is used to remove the middle or high-level
clouds without accompanying LSF, except for ∆NDSI. The negative value of -1σ (lower boundary) is needed for ∆NDSI of
Figure 5c based on the results shown in Figure 4b.
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To theoretically support these observational results, RTM simulation was performed
considering various optical characteristics (e.g., altitude and optical thickness of the fog
layer, altitude and optical thickness of upper clouds, effective radii of fog/cloud particles)
in Table A2, and the results were shown in Figure 6. The figure shows the simulation
results in the domains of a) BTD13.5-8.5 vs. LST-BT11, b) ∆BTD3.7-11 vs. LST-BT11, c) ∆NDSI
vs. LST-BT11, and d) R0.65 vs. LST-BT11. The average values of the Himawari-8 angles
(i.e., SZA = 79.5◦, RAA = 74.5◦, and VZA = 41.5◦) for 176 LSF cases during 2018 were
used as RTM input. The satellite-observed mean values are included in the figure for LSF
(black asterisk) and clear sky (gray-cross). The clear-sky values from the observations
and simulations (pink asterisk) are depicted using black circles to show the approximate
agreement between them. Five colors (yellow, blue, red, navy, and green) denote the
heights (FH or CH: 1, 2, 4–6, 8–10 km) of the fog and upper cloud layers with respect
to effective radii (ER: 2, 4, 8, 16 µm) and water/ice phase. The RTM details are given in
Table A2.
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Figure 6. RTM LSF simulation in the domain of (a) BTD13.5-8.5 vs. LST-BT11, (b) ∆BTD3.7-11 vs.
LST-BT11, (c) ∆NDSI vs. LST-BT11, and (d) R0.67 vs. LST-BT11 at dawn during 2018 near Japan under
the different LSF conditions. The yellow and blue symbols in the figures denote the fog layer at
0–1 km and 0–2 km without higher clouds. Middle clouds of water/ice at 4–6 km height are shown
in red and navy, respectively. Green asterisk means higher cloud (8–10 km) above the 0–2 km fog
layer. The average values of the Himawari-8 angles (i.e., SZA, RAA, and VZA) for 176 LSF cases
were used as RTM input. The RTM conditions are described in Table A2. The satellite-observed mean
values are shown for LSF (black asterisk) and clear sky (gray-cross). The clear-sky values from the
observations and simulations (pink asterisk) are depicted in black circles. Some simulated data out
of range in the domain were not shown for a comparison with the observations of Figure 5.
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The DSM variables (i.e., ∆NDSI and ∆BTD3.7-11), as well as BTD13.5-8.5 and R0.65 from
the single satellite observations (i.e., Himawari-8 only), had a significant tendency to
separate LSF and clear sky at dawn (Figure 6a–d) due to the unique satellite orbit in space
(i.e., VZA difference between the two satellites). The distributions of observed mean values
for the two meteorological phenomena (LSF and clear sky) were consistent within the
ordinate range of the simulation. The difference in “LST-BT11” between observations
(5.49 K) and simulations (0.82 K) for clear-sky conditions could be explained in terms of the
effect of water vapor and optically thin clouds during the warm season [53]. Considering
that the LST-BT11 value is 19.7 K for LSF and 5.5 K for clear sky, the average LSF top height
is 2–2.5 km, consistent with that of [11].

However, the simulated values of ∆BTD3.7-11 on the abscissa were somewhat out of
range with the average of its observations (Figure 6b). According to the simulation, the
upper clouds above the fog layer could cause errors in the LSF detection of satellite obser-
vations. The upper clouds generally show relatively large values of LST-BT11, compared
to the lower clouds. Overall, the simulations were in good agreement with fog detection
in DSM.

3.2. Verification of Satellite-Observed Thresholds during the Experimental Period of 2019

The eight LSF threshold values derived from the control period of 2018 for LSF
detection at dawn were applied to the experimental data during 2019. Figure 7 shows
statistical verification for the threshold values of eight satellite-observed variables in terms
of a) POD minus FAR, b) POD, c) FAR, and d) CSI. The verification was performed based on
the total ground-observations of 171 fog and 110 clear-sky occurrences at dawn near Japan.
The thresholds of the top four variables (BTD13.5-8.5, R0.65, ∆NDSI, and ∆BTD3.7-11) in the
verification skill-scores were substantially better than those of the other four variables.
The “POD minus FAR” scores of the top four variables during the experimental period
were lower by ~5% than those during the training period (Table 3). In particular, the
“∆NDSI” threshold was most sensitive to the interannual dependence of threshold accuracy.
However, more long-term data seemed to be required to estimate interannual variability in
view of the two years of data in this study.

Figure 8 presents the “±1σ” range of LSF and clear-sky cases for each variable in the
same way as Figure 4 so that the biennial changes in satellite-observed variables under
the weather phenomena were obtained from a comparison of the results shown in the
two Figures. Since the threshold values were optimized for the training period data,
statistical verification results decreased slightly (Figure 7 and Table 3). However, there were
no significant differences in skill scores for the top four variables (BTD13.5-8.5, ∆BTD3.7-11,
∆NDSI, and R0.65) between the two years. In addition, the interannual change of NDSI
among the entire eight variables was noticeable. Although the skill scores of NDSI itself
were not good, ∆NDSI showed excellent results due to the DSM advantage. This result was
due to not only the large VZA difference between the two satellites but also to the relatively
long optical path of FY-4A, which was viewed from outside of the nadir. Therefore, the
DSM was likely to cancel the noise error and amplify the signal for LSF detection. This
tendency was similar to that of the ∆BTD3.7-11 case in a previous study [36].

3.3. PI development and Case Study

The probability index of LSF was developed to present fog occurrence as a probability
concept rather than an alternative one (either no fog or fog), using the top four variables
that showed excellent results (POD ~0.8; POD minus FAR ~0.7) during the experimental
period. In Table 4, five LSF classes were derived from 16 probability sets of the variables
based on the threshold test for detection of either LSF or clear-sky phenomenon. For
instance, Case 1, which passed the test for LSF detection by all four variables, corresponded
to Class 1 in terms of the set “P(A∩ B∩ C∩ D)” with an assigned probability of 1.0. For
Class 1, in which all four variables passed their own thresholds, the probability of LSF
occurrence was classified as “very high”. In the same way, three threshold values among
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the four variables were achieved for those in Class 2. In addition, any combination of the
three variables was classified as a “high” possibility of LSF occurrence. In this regard, the
number of cases that passed the threshold test for the four satellite-observed variables (i.e.,
BTD13.5-8.5 in gray rectangle, ∆NDSI in orange, ∆BTD3.7-11 in blue, and R0.65 in green) was
shown in the detection of a) LSF and b) clear sky in the so-called Venn diagram shown in
Figure 9. In other words, the zones of red (Class 1 for the occurrence possibility of the two
weather phenomena), yellow (Class 2), blue (Class 3), and white (Class 4) were defined
and were also explained in the Table.
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Figure 7. Statistical verification of (a) POD minus FAR, (b) POD, (c) FAR, and (d) CSI with respect to the LSF threshold
values of eight satellite-observed variables during the experimental period of 2019. The verification was performed based
on the total ground-observations of 171 fog and 110 clear-sky occurrences at dawn near Japan.
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Figure 8. (a) Same as Figure 4a except for the period of 2019. (b) Same as Figure 4b except for the period of 2019.
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Figure 9. The number of cases that have passed the threshold test of the four satellite-observed variables (i.e., BTD13.5-8.5 in
gray rectangle, ∆NDSI in orange, ∆BTD3.7-11 in blue, and R0.65 in green) for detection of (a) LSF and (b) clear sky at dawn
during 2019 near Japan. The zones of red (Class 1 for the possibility of the weather phenomena), yellow (Class 2), blue
(Class 3), and white (Class 4) are defined in Table 4.

When the LSF class in Table 4 was determined for a total of 171 LSF cases during
the experimental period of 2019, 99 passed all four thresholds (i.e., Class 1). In addition,
43 cases passed three thresholds (i.e., Class 2). These results are described in detail in
Table 6. Satellite-derived PI distributions of the five classes in the Table were weighted at
0.25 probability intervals for detection of LSF and clear-sky cases in 2019, and detection
was quantitatively presented in five steps rather than two (i.e., yes or no). The probability
values were also shown in terms of “assigned probability” in Table 4. If the PI results
were evaluated for LSF cases during 2019, the 171 fog occurrences represented a detection
score of 140.25. In clear-sky conditions, the score was 93.75 of 110 (Table 6). This indicated
excellent detection of realistic PI values in the spatial distribution, rather than either “fog” or
“no fog” from the traditional method. In other words, when LSF detection was performed
using a single threshold, the existence of LSF was generally classified with a probability
of either 0 or 1. Meanwhile, the PI in this study showed five classified probability values
based on the four satellite-observed variables in DSM, for useful and reliable LSF detection.

The PI in the case study was applied to two foggy scenes at dawn near Japan
(128–145 E, 30–45 N) to compare the results with those of the conventional method (i.e.,
using a single threshold value of either R0.65 or BTD3.7-11) in the LSF spatial distribution.
Figure 10 shows the fog probability distribution at dawn (06:00 LST) on July 9, 2019, near
Japan using the detection methods of a) R0.65 threshold, b) BTD3.7-11 threshold, and c) LSF
PI in this study. The BT11 distribution for approximate cloud-top temperature and the
SYNOP map for station-observed fog occurrences were shown in Figure 10d,e, respectively.
Fog occurrences (pink triangles in Figure 10a–d) were reported (station numbers 20, 26,
and 31 in Table 2) at three stations by ASOS (automated surface observing system).

The R0.65 threshold successfully detected two of the three fog occurrences at a detection
rate of 0.66 (Figure 10a); the rate was 0.33 with the BTD3.7-11 threshold (Figure 10b). The
PI produced by combining the four variables using dual-satellite observations showed a
probability of 0.66, higher than that in the BTD3.7-11 case but similar to that in the R0.65 case.
Although PI accuracy was the same as that of the R0.65, it provided LSF spatial distribution
in terms of probability in five classes. To examine the LSF-related information over the
study area, the BT11 distribution and the weather map chart were analyzed simultaneously
(Figure 10d,e). The BT11 was useful to estimate the approximate cloud top temperature. In
addition, the map allowed the identification of the distributions of foggy and humid areas
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and lower or upper clouds. The BT11 values were either high (≥ ~290 K) or low (≤ ~230 K)
in areas where PI indicated no or low probability of fog due to almost clear-sky or optically
thin cloud conditions. In Figure 10c, the LSF PI values indicated that the LSF occurrences
were “very high” or “high” in areas where fog actually occurred on the weather map (pink
triangle). For areas at station numbers 20 and 31 where fog detection failed using R0.65
or BTD3.7-11, PI indicated a relatively low probability of fog but was the only method to
generally succeed in the detection (PI = 0.75).
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fog occurrences at the stations (in Table 2; 6, 16, and 27). The time difference between the 

Figure 10. Spatial distributions of fog probability at dawn (06:00 LST) on 9 July 2019, near Japan from detection methods of
(a) R0.65 threshold, (b) BTD3.7-11 threshold, and (c) LSF PI in this study. (d) BT11 distribution for cloud-top temperatures,
and (e) SYNOP map for station-observed fog occurrences. Fog occurrences at the stations (pink triangles in Figure 9a,b)
were reported by ASOS.

Figure 11 is the same as Figure 10 except for 05:30 LST on 4 July 2019, and without a
SYNOP map (not available at the time). According to the ASOS report, there were three fog
occurrences at the stations (in Table 2; 6, 16, and 27). The time difference between the fog
occurrence on the report and that on the weather map was greater than 30 minutes, so the
low cloud and fog areas were analyzed with the distribution of BT11 without the map. The
PI and R0.65 successfully detected all three fog occurrences, showing a detection probability
of one. However, the BTD3.7-11 threshold detected only one of the three, a probability of
0.33, only successful at station 6. These results show that PI was able to detect fog more
accurately than BTD3.7-11 and was more realistic (or natural) and excellent than R0.65 in the
LSF spatial distribution. In particular, detailed information on the LSF PI in five classes was
useful for aviation and navigation. So far, it has been difficult to identify the occurrence
of sea fog in the open ocean despite its frequent occurrence due to the limited number of
ground observations. The spatial PI distribution of LSF over a large area could be useful to
monitor fog phenomena over an extensive region including the ocean in almost real-time.



Remote Sens. 2021, 13, 1042 17 of 22

Remote Sens. 2021, 13, 1042 17 of 22 
 

 

fog occurrence on the report and that on the weather map was greater than 30 minutes, so 

the low cloud and fog areas were analyzed with the distribution of BT11 without the map. 

The PI and R0.65 successfully detected all three fog occurrences, showing a detection 

probability of one. However, the BTD3.7-11 threshold detected only one of the three, a 

probability of 0.33, only successful at station 6. These results show that PI was able to 

detect fog more accurately than BTD3.7-11 and was more realistic (or natural) and excellent 

than R0.65 in the LSF spatial distribution. In particular, detailed information on the LSF PI 

in five classes was useful for aviation and navigation. So far, it has been difficult to identify 

the occurrence of sea fog in the open ocean despite its frequent occurrence due to the 

limited number of ground observations. The spatial PI distribution of LSF over a large 

area could be useful to monitor fog phenomena over an extensive region including the 

ocean in almost real-time. 

 

Figure 11. (a) Same as Figure 10a except for the date and time (05:30 LST on 4 July 2019), (b) Same 

as Figure 10b except for the date and time. (c) Same as Figure 10c except for the date and time. (d) 

Same as Figure 10d except for the date and time, and no SYNOP map (not available at the time). 

4. Discussion 

The DSM used in this study is applicable to LSF (or fog) detection based on advanced 

satellite observations, including GEO-KOMPSAT-2A (GK2A; [54]) in the future, for real-

time monitoring. Further improvement in nowcasting and forecasting (e.g., advective fog) 

can be expected. The Advanced Meteorological Imager (AMI) data of GK2A will be useful 

for the LSF analysis over the Korean Peninsula because of its nadir point. The DSM from 

FY-4A and Himawari-8 were applied to the LSF detection near Japan at dawn due to the 

Himawari-8 nadir. Similarly, the method can be utilized for the detection over the inland 

Figure 11. (a) Same as Figure 10a except for the date and time (05:30 LST on 4 July 2019), (b) Same as Figure 10b except for
the date and time. (c) Same as Figure 10c except for the date and time. (d) Same as Figure 10d except for the date and time,
and no SYNOP map (not available at the time).

4. Discussion

The DSM used in this study is applicable to LSF (or fog) detection based on advanced
satellite observations, including GEO-KOMPSAT-2A (GK2A; [54]) in the future, for real-
time monitoring. Further improvement in nowcasting and forecasting (e.g., advective fog)
can be expected. The Advanced Meteorological Imager (AMI) data of GK2A will be useful
for the LSF analysis over the Korean Peninsula because of its nadir point. The DSM from
FY-4A and Himawari-8 were applied to the LSF detection near Japan at dawn due to the
Himawari-8 nadir. Similarly, the method can be utilized for the detection over the inland
region of China under the FY-4A nadir at dusk, although LSF generally occurs at dusk less
than at dawn due to daytime solar heating.

Various applications of the DSM in the meteorological and environmental fields are
possible to observe fog targets in a three-dimensional structure from a stereoscopic view,
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similar to observations with two eyes [37]. Thus, this method can be applied to any
worldwide region where simultaneous observations by two geostationary-orbit satellites
are available without additional expense. However, the difference in VZA between the
two satellites is required to be between 40◦ and 50◦ to achieve optimal LSF detection. For
this reason, the detection accuracy of ∆R0.65, which had been excellent in the COMS and
FY-2D (VZA difference ~46.5◦) [9], was significantly reduced in this study. It seems that
∆R0.65 is more sensitive to both VZA and seasonality than to the top-four variables in this
study. Here the variables of ∆NDSI and ∆BTD3.7-11 were newly utilized for LSF detection
in terms of PI, despite the decrease in VZA, with the BTD13.5-8.5 from the spectral difference
of Himawari-8 only.

The RTM simulation of this study may have some limitations in the diverse weather
conditions of multilayer, broken, or mixed-phase clouds [9]. Also, errors in the LSF
detection due to the higher (or upper) clouds above the LSF layer have been discussed in
detail, based on the simulation [9,36]. However, the adverse issues may not be so critical
for the LSF (under ~2.5km height) in relatively stable atmospheric conditions, considering
the ratio (13–20%) of satellite-observed multi-layer cloudy pixels to all cloudy pixels [55]
and the vertical properties of ice-over-water clouds [56]. In addition, for a comparison of
the two GEO data in this study, the coarse-grid averaging of Himawari-8 observations from
2 km-by-2 km to 4 km-by-4 km may miss the detection of optically thin LSF phenomena in
a small horizontal scale less than 4 km, particularly in the tests of BTD13.5-8.5 and R0.65.

5. Conclusions

In this study, the dual-satellite method was applied to advanced satellites (Himawari-8
and FY-4A), and newly developed thresholds with additional channels and LSF spatial
distribution in terms of PI were provided to improve its detection in Japan at dawn.
In addition, the optical characteristics of LSF were estimated using the LUT from the
RTM simulation under various conditions and were consistent with satellite-derived
observations. The PI of LSF in the DSM was derived by combining the major threshold
components (i.e., BTD13.5-8.5, ∆NDSI, ∆BTD3.7-11, and R0.65) based on the top-four “POD
minus FAR” scores (≥ 79%) among the eight variables.

The case study was carried out to address the PI merits of the LSF spatial distribution.
The PI values in this study were similar to R0.65 simply based on the success rate of
fog detection due to the use of R0.65 as one of the four equally-weighted variables for
constructing the PI. Thus, the fog detection rate calculated from PI was expected to be
similar to that from R0.65. However, the spatial distributions revealed the advantages of PI.
Since multi-stage fog detection was possible in PI over a wide area, the LSF distribution in
the DSM could be presented in more detail than that of the conventional methods of R0.65
and/or BTD3.7-11. More specifically, R0.65 only reported two classes of either presence or
absence of fog, whereas PI presented fog occurrence probability as five classes. The classes
can be increased to a maximum of 16 if a long-term dataset is available in the future, as
shown in the statistical combination (Table 4). In this case, different probability weights
would be assigned with respect to the variables. Thus, the LSF PI can be used as more
practical and useful information for navigation and aviation. In particular, we believe that
LSF PI is valuable for open oceanic areas where ground observations are limited in view of
both accuracy and spatial distribution.
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Appendix A

Table A1. List of acronyms used in this study.

Acronyms Original Words (or Details) Acronyms Original Words (or Details)

AGRI Advanced Geostationary Radiation Imager GK2A GEO-KOMPSAT-2A
AHI Advanced Himawari Imager GOCI Geostationary Ocean Color Imager
AP assigned probability HR hit rate

ASOS automated surface observing system HSS PI estimated from satellite-observed
scene

AVHRR Advanced Very High-Resolution Radiometer IR infrared
AWS automatic weather station KMA Korea Meteorological Administration
BRDF bidirectional reflectance function LSF low stratus and fog
BT11 brightness temperature at ~11 µm LUT look-up table
BT3.7 brightness temperature at ~3.7 µm METAR METeorological Aerodrome Report

BTD13.5-8.5 difference between BT13.5 and BT8.5 MODIS Moderate Resolution Imaging
Spectroradiometer

BTD3.7-11 difference between BT3.7 and BT11 NDSI normalized difference snow index
CAVOK Ceiling (or clouds) And Visibility OK PC percentage correct

CH cloud height PI probability index
COMS Korean Communication, Ocean, and Meteorological Satellite POD probability of detection
COT cloud optical thickness R0.65 reflectance at ~0.65 µm
CSI global telecommunications system RAA relative azimuth angle

DSM dual satellite method RTM radiative transfer model
ER effective radius SIRS-B Satellite Infrared Spectrometer

FAR false alarm ratio SRF spectral response function
FG fog SYNOP surface synoptic observations
FH fog height SZA solar zenith angle

FOT fog optical thickness THLOWER lower threshold
FY-2D Chinese FengYun-2D THUPPER upper threshold
FY-4A Chinese FengYun-4A VIS visible
GEO geostationary-orbit satellite VZA satellite viewing zenith angle

Table A2. Input variables of SBDART for the LUT product.

Input variable Contents
atmospheric profile Mid-latitude summer, US62
wavelength (λ):three channels of VIS, SWIR, & IR1 for COMS & FY-2D 0.55–0.90, 3.5–4.0, 10.3–11.3 µm
solar zenith angle (SZA) 0 ≤ SZA ≤ 80◦ at 10◦ intervals, and 85◦

surface type Ocean, Vegetation
fog height (FH) Water fog at 0–1 km or 0–2 km
upper cloud height (CH) above the fog layer Water/ice cloud (4–6 km), Ice cloud (8–10 km)
fog optical thickness (FOT) 0, 0.5, 1, 2, 4, 8, 16, 32, 64
cloud optical thickness (COT) 0, 4, 8, 16, 32
effective radius of fog (FER) 4, 8, 16, 32 µm
effective radius of cloud (CER) 2, 4, 8, 16 µm
flux computation stream 32
vertical resolution 1 km
viewing zenith angle (VZA) 0 ≤ VZA ≤ 90◦ at 10◦ intervals
relative azimuth angle (RAA) 0 ≤ RAA ≤ 180◦ at 30◦ intervals
boundary layer aerosol type Urban
vertical optical depth of boundary layer aerosolsnominally at 0.55 µm 0.2
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Table A3. Contingency Table and definitions for the statistical skill test.

SYNOP

LSF Clear sky

Satellite observation
LSF a b

Clear sky c d

POD = a
a+c CSI = a

a+b+c FAR = b
a+b HSS = 2(ad−bc)

(a+c)(c+d)+(a+b)(b+d) PC = a+d
a+b+c+d

POD-FAR = a
a+c −

b
a+b
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