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Abstract: An operational and accurate model for estimating global or regional terrestrial latent heat
of evapotranspiration (ET) across different land-cover types from satellite data is crucial. Here, a sim-
plified Priestley–Taylor (SPT) model was developed without surface net radiation (Rn) by combining
incident shortwave radiation (Rs), satellite vegetation index, and air relative humidity (RH). Ground-
measured ET for 2000–2009 collected by 100 global FLUXNET eddy covariance (EC) sites was used
to calibrate and evaluate the SPT model. A series of cross-validations demonstrated the reasonable
performance of the SPT model to estimate seasonal and spatial ET variability. The coefficients of
determination (R2) of the estimated versus observed daily (monthly) ET ranged from 0.42 (0.58)
(p < 0.01) at shrubland (SHR) flux sites to 0.81 (0.86) (p < 0.01) at evergreen broadleaf forest (EBF) flux
sites. The SPT model was applied to estimate agricultural ET at high spatial resolution (16 m) from
Chinese Gaofen (GF)-1 data and monitor long-term (1982–2018) ET variations in the Three-River
Headwaters Region (TRHR) of mainland China using the Global LAnd-Surface Satellite (GLASS)
normalized difference vegetation index (NDVI) product. The proposed SPT model without Rn
provides an alternative model for estimating regional terrestrial ET across different land-cover types.

Keywords: SPT model; GLASS product; NDVI; terrestrial latent heat flux; eddy covariance

1. Introduction

Latent heat of evapotranspiration (ET) observations and simulations are crucial in
monitoring the energy and water cycle among different land-surface ecosystems [1–4].
Especially in typical eco-environmentally vulnerable areas, ET is affected by serious surface
dry status resulting in a food and water resources crisis as well as eco-environment deterio-
ration [5–8]. It is tough to accurately simulate regional ET because of the heterogeneous
surface and complicated biophysical properties [9]. Moreover, at large scale, sparse ground
observations (e.g., eddy covariance flux towers) limit accurate estimation of spatiotemporal
ET distribution.

Satellite remote sensing is the most important approach for acquiring regional wa-
ter fluxes because it has improved regional-scale estimates of land-surface parameters
linked to ET (e.g., surface net radiation, Rn; leaf area index, LAI; normalized difference
vegetation index, NDVI; soil moisture, SM; land-cover types and albedo) [10–12]. Over
the past 40 years, many satellite-derived ET approaches have been developed to simu-
late regional water fluxes [13–19]. Generally, these ET approaches include: (1) statistical
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models developed by building the relationship between ground-measured ET and satellite-
derived biophysical variables using calibration datasets that are considered to be the
behaviors of ET process [2,20–22]; (2) physical models that involve the energy balance
models using thermal land-surface temperature (LST) data [19,23–25], Penman–Monteith
(PM) as well as its simplified version—Priestley–Taylor (PT) models—using optical satellite
vegetation parameters [10,16,17,26,27]; and (3) data assimilation models that assimilate
satellite-derived biophysical variables into distributed hydrologic models for improving
ET estimation [28,29]. Although these models have been successfully applied to monitor
regional terrestrial ET, their estimation results might differ greatly because of differences in
model structures and input parameters [30–32].

As an appealing model, the hybrid PT model (a joint physical and empirical model)
with ideal coefficients calibrated using satellite and ground-measured variables yields
reliable water flux estimates over different large-scale regions. [1,27,30,33,34]. In general,
hybrid PT models use the potential ET (PET) to multiply the combination of ecophysio-
logical constraints (e.g., LAI and NDVI) and meteorological variables for estimating ET.
For instance, Wang et al. [21] incorporated vegetation influence on ET and developed
a simple ET model using ground-observed Rn, air temperature and satellite-derived NDVI
data over Southern Great Plains (SGP) of the US. However, this model cannot include the
effects of SM on ET during drought conditions. Wang and Liang [12] introduced the diurnal
air temperature range (DaTR) for characterizing the impacts of SM on ET to estimate ET.
Recently, Yao et al. [22] proposed a hybrid ET model by replacing SM with air relative
humidity (RH) in the Heihe River (HR) basin over Northwest China.

Although the above hybrid PT models from different parameterization schemes have
higher performance than PM models because of their good universal physical theory, the
fixed parameters of these ET models could lead to large errors when they are applied
uniformly to globally different biomes. In addition, the accuracy of all these models is
highly relied on the results of the estimated Rn. Previous studies highlighted that Rn could
be reliably estimated from incident shortwave radiation (Rs), minimum air temperature
(Tmin), RH and NDVI [35,36]. Therefore, ET may be directly derived from Rs, Ta, Tmin, RH
and NDVI by avoiding Rn estimation while hybrid PT models require further parameter
calibration in different ecosystem types. Yet, there is no similar studies to develop a simpli-
fied PT model with ecophysiological constraints calibrated to measurements from global
EC, satellite-derived NDVI, Rs, and other meteorological observations across different
land-cover types.

In this study, a simplified Priestley–Taylor (SPT) model was developed to estimate
global terrestrial evapotranspiration across different land-cover types by combining Rs,
satellite vegetation index, and air RH. The objectives here were to (1) design the SPT model
to optimize the coefficient using ground-measured ET, satellite-derived NDVI, Rs and
other meteorological observations; (2) validate the SPT model based on a ten-fold cross-
validation method across different land-cover types from global FLUXNET measurements
at 100 flux tower EC sites; and (3) apply the SPT model for estimating agricultural ET at
high spatial resolution from Chinese Gaofen (GF) -1 data and for monitoring long-term
(1982–2018) ET variations in the Three-River Headwaters Region (TRHR) of China.

2. Data and Case Study
2.1. Data for Model Development

EC measurements and corresponding meteorological observations were used to de-
velop and evaluate the ET model. The data were obtained from LathuileFlux, AsiaFlux,
AmeriFlux, ChinaFlux, and Chinese Ecosystem Research Network (CERN) from FLUXNET
network at 100 sites situated in Europe, Asia, and North America, two sites located in
Africa, three sites located in South America and three sites located in Australia (Figure 1).
The climate types of the sites range from arctic to tropical and from dry to humid. The plant
function types for the sites included cropland (CRO, 11 sites), grassland (GRA, 11 sites),
deciduous broadleaf forest (DBF, 11 sites), evergreen broadleaf forest (EBF, 11 sites), de-
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ciduous needleleaf forest (DNF, 4 sites), evergreen needleleaf forest (ENF, 11 sites), mixed
forest (MIF, 11 sites), shrubland (SHR, 11 sites), savanna (SAW, 9 sites), and wetland (WET,
10 sites).
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Figure 1. Map of the 100 FLUXNET sites. CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest; MIF: mixed
forest; DNF: deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR: shrubland; ENF: evergreen
needleleaf forest; WET: wetland.

The observed data contain half-hourly ET, sensible heat flux (H), Rs, Rn, air temper-
ature (Ta), Tmin, RH and wind speed (WS). The daily and monthly variables were also
linearly aggregated from the half-hour means. When the amount of missing daily data was
more than 25% of the observations, the daily values were set as missing. The fixed Bowen
ratio (BR) method designed by Twine et al. [37] was used to revise ET due to the unclosed
energy budget.

ET =
ETori

RBR
(1)

RBR =
ETori + Hori

Rn − G
(2)

where ET is the revised evapotranspiration; ETori and Hori are the original ET and the H
derived from EC observations, respectively; and RBR refers to the energy closure ratio.

To develop the ET model, the MODerate resolution Imaging Spectroradiometer
(MODIS) NDVI products were used and they have a spatial resolution of 1-km and tem-
poral resolution of 8-day. The eight-day NDVI averages were interpolated to daily values
based on the linear interpolation method.

2.2. Case Study for Model Application
2.2.1. Case Study I

To illustrate the performance of the SPT model for estimating agricultural ET at a high
spatial resolution from Chinese GF-1 data, the Huailai agricultural region of China was
selected as a study area (Figure 2). The Huailai agricultural region (~7.8 km2) is situated
between 40.3425◦N–40.3621◦N and 115.7774◦E–115.8188◦E and located in the HR Basin in
northern China. The land cover is dominated by agriculture and presents small portions of
other land-cover types (e.g., forest, grass, water, and barren land). Among the crops grown,
the summer crop is mainly dominated by maize. Two flux tower sites, namely EC1 site
(40.3491◦N, 115.7880◦E) and EC2 site (40.3574◦N, 115.7923◦E), were in the northwestern
parts of this study area. The main plant function type for the two sites is continuous maize
land. EC data measured between 2013 and 2017 also include half-hourly ET, H, Rs, G, Rn,
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Ta, Tmin, RH, VPD (vapor pressure deficit) and WS. The same procedure as for the EC data
for model development was used to process these data.
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Figure 2. Examples of case study areas and locations of the three flux towers. Huailai agricultural
region and the Three-River Headwaters Region (TRHR) of China.

Fifty-five Chinese GF-1 wide field view (WFV) images for 2013 to 2017 were used to
calculate NDVI for ET estimation. The Chinese GF-1 satellite, launched on 26th April 2013,
has produced 16 m images per 4 days with a continuous swath of approximately 800
km [38]. The GF-1 data have four bands. Band 1 is a blue band with a spectral range of
0.45–0.52 µm. Band 2 is a green band with a spectral range of 0.52–0.59 µm. Band 3 is
a red band with a spectral range of 0.63–0.69 µm. Band 4 is a near-infrared band with
a spectral range of 0.77–0.89 µm. The raw DN (digital number) values were released
by the Chinese GF-1 data and ENVI software was used to conduct radiance calibration,
atmospheric correction, and geometric correction.

2.2.2. Case Study II

The TRHR of China was also selected as another study area to assess the performance
of the SPT model for monitoring long-term (1982–2018) ET variations using the Global
LAnd-Surface Satellite (GLASS) NDVI product from Advanced Very High-Resolution
Radiometer (AVHRR) data [39]. The TRHR (31.63◦N–36.33◦N, 89.52◦E–102.23◦E) is situated
in southern parts of Qinghai Province (QH) of China and belongs to the hinterland of the
Tibetan Plateau (TP) (Figure 2). TRHR is a famous region of the Lantsang, Yellow, and
Yangtze rivers. Grassland (mainly alpine meadow) is the dominant ecosystem type of the
TRHR. One grass flux tower site (Three-River Headwaters, TRH) (34.35◦N, 100.55◦E) was
situated in the eastern parts of this study area. EC data measured between 2016 and 2017
also included half-hourly ET, H, Rs, G, Rn, Ta, Tmin, RH, VPD, and WS. The same procedure
as for the EC data for model development was also used to process these variables.

To simulate the long-term evapotranspiration, the 8-day GLASS NDVI product with
a spatial resolution of 0.05 degrees from 1982–2018 were used [39]. The 8-day NDVI data
were linearly interpolated into daily values. The China Meteorological Forcing Dataset
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(CMFD) for daily Ta, Tmin, Rs, and RH for the period 1982–2018 were also used [40–42].
These meteorological variables (Ta, Tmin, Rs, and RH) were resampled into 0.05◦ from
a 0.1◦ spatial resolution using linear interpolation.

3. Methodology
3.1. Simplified Priestley–Taylor Model

The ET model was developed based on the simplified PT (SPT) model in which Rs
was chosen to substitute available energy (Rn-G) since Rn can be reliably derived from
Rs and other environmental variables [36] and G (soil heat flux) can be calculated using
Rn [8,12,27]. In the SPT model, the ET is calculated as:

ET = ∂f(c)
∆

∆ + γ
Rs (3)

where ∂ refers to PT parameter under wet surface conditions (1.26); ∆ refers to the slope for
saturated vapor pressure (SVP) curve; γ stands for psychrometric constant. f(c) is the envi-
ronmental constraint that is determined by meteorological and satellite variables [10,22].
It is tough to accurately calculate f(c) because of the large uncertainties in the charac-
terization of the dynamics of the ET process using limited satellite and meteorological
variables [4,43]. Because temperature and water are the key environmental constraints for
controlling the evaporation fraction (EF), i.e., the ratio of ET to available energy, a linear
combination of Tmin, NDVI, and RH was introduced to estimate f(c).

f(c) = α0 + α1Tmin + α2NDVI + α3RH (4)

where αi (i = 0, 1, 2, 3) refers to the calibrated empirical coefficient (dimensionless) and
varies among different land-cover types. In this model, Tmin represents the effects of tem-
perature on EF, NDVI characterizes the vegetation transpiration influenced by temperature
and water, and RH takes into account the contribution of SM on EF for a short period.

The merits of the SPT model over many other physical evapotranspiration approaches
are that it (1) improves operability for estimating long-term ET since it only depends on Rs,
Tmin, NDVI and RH; (2) uses a linear combination of Tmin, NDVI and RH to avoid aerody-
namic and surface resistance and to reduce biases of the required forcing datasets [1,27];
and (3) improves the accuracy of estimating ET by taking into account the differences in
the calibrated coefficients of Equation (4) for a variety of land-cover types.

3.2. Cross-Validation

The empirical coefficients of Equation (4) were calibrated using a linear regression
based on the measured data (EC observations and NDVI data) for 100 flux towers. To eval-
uate the estimated ET accuracy, the performance of the SPT model was assessed based on
a ten-fold cross-validation approach that randomly divided the data into ten groups with
about equal numbers for samples [44]. The simulated ET was independently evaluated for
every of the ten groups using the calibrated empirical coefficients of Equation (4) based
on the data of the remaining nine groups. The bias, root-mean-square error (RMSE), coef-
ficients of determination (R2), and p values of the simulated and observed ET were also
used to illustrate the performance of the SPT model [45].

Bias =
1
N

N

∑
i=1

(Si − Mi) (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Mi)
2 (6)



Remote Sens. 2021, 13, 902 6 of 19

R2 =

[ 1
N

N
∑

i=1
(Si − S)(Mi − M)]2

1
N

N
∑

i=1
(Si − S)2 1

N

N
∑

i=1
(Mi − M)

2
(7)

where N is the number of samples, Si is the simulated ET for sample i, Mi is the ground-
observed ET for sample i, S is the averaged S and M is the averaged M.

To assess the performance of the SPT model to simulate the spatial and temporal
variations in ET, the ET variability was validated, including (1) seasonal variation and,
(2) spatial (among-site) variation, and (3) annual anomalies, using estimated and ground-
measured data. The seasonal (daily and monthly) estimated and ground-measured ET was
first validated. The spatial (among-site) variation was then validated by comparing the
average ET of the estimated and ground-measured ET at every site for the whole period.
Finally, the annual ET anomaly for each site was calculated by removing the multiyear
average from the annual ET values.

To facilitate comparisons with other ET models, the dataset was randomly stratified
into two different groups for about equal numbers for samples, and entire sites were
assigned to each group [44]. Daily ET was validated using datasets from one group using
the calibrated parameters of Equation (4) based on data from another group.

3.3. Comparison to the PT-JPL Model

The revised Priestley–Taylor (PT) model from the Jet Propulsion Laboratory (PT-JPL)
was developed based on the original PT equation by introducing ecophysiological con-
straints (NDVI and LAI) and atmospheric constraints (RH and VPD) to estimate terrestrial
ET [1,10]. The validation for 16 global EC sites illustrates that the PT-JPL model accounts for
90% of ET variations, and comparisons with multiple models indicate that this model is the
most promising ET method model [30,46]. An obvious difference between the SPT model
and PT-JPL is that the SPT model uses ground measurements to calibrate the coefficients of
the ecophysiological constraints to develop f(c) for different land-cover types.

4. Results
4.1. Model Parameterization

Long-term (2000–2009) ground measurements and the corresponding NDVI datasets
for different land-cover types were analyzed at 100 flux tower sites to detect the driving
variables for determining terrestrial ET. Table 1 illustrates the correlation coefficients (r)
between ET and Rs, Tmin, RH, and MODIS NDVI for different land-cover types. For
all land-cover types, Rs presented the highest R2 with ET (0.20 ≤ R2 ≤ 0.56) and Tmin
presented the second highest (0.17 ≤ R2 ≤ 0.53), demonstrating that both Rs and Tmin are
the dominant variables driving terrestrial ET. The NDVI was also highly correlated with
ET, with R2 varying from 0.16 to 0.50 for most land-cover types (except for WET), which
illustrates that the NDVI is an important variable controlling the variation of terrestrial
ET. The NDVI characterizes vegetation amounts and reflects vegetation transpiration by
coupling CO2 assimilation with vegetation photosynthesis [47]. The R2 values between
RH and ET were relatively low (less than 0.11) for all land-cover types due to the seasonal
variability of RH.
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Table 1. Correlation coefficients between the daily ET and daily Rs (rET, Rs), Tmin (rET, Tmin), NDVI
(rET, NDVI), and RH (rET, RH). CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest; MIF:
mixed forest; DNF: deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR:
shrubland; ENF: evergreen needleleaf forest; WET: wetland.

Land-Cover Types RET, Rs RET, Tmin RET, NDVI RET, RH

CRO 0.66 0.61 0.60 0.03
GRA 0.49 0.51 0.50 0.04
WET 0.73 0.53 0.48 0.01
SAW 0.45 0.56 0.55 0.33
SHR 0.54 0.41 0.40 0.09
DNF 0.51 0.72 0.71 0.15
DBF 0.75 0.73 0.67 0.05
ENF 0.73 0.65 0.48 0.02
EBF 0.57 0.62 0.45 0.07
MIF 0.71 0.61 0.57 0.02

To parameterize f(c) of the SPT model, correlation coefficients (r) between ground-
measured f(c) and the corresponding Tmin, RH, and MODIS NDVI from all EC sites
covering different terrestrial biomes were analyzed. Table 2 summarizes the f(c) correlation
coefficients with Tmin, RH, and MODIS NDVI for different land-cover types. For most
land-cover types, ground-measured f(c) illustrated the highest correlations with the NDVI
(0.12 ≤ R2 ≤ 0.46), Tmin (0.11 ≤ R2 ≤ 0.32), and RH (0.10 ≤ R2 ≤ 0.30). However, for the
WET sites, f(c) had no correlation with the NDVI because the surface water supply was
saturated and water evaporation mainly occurred in wetlands. Similarly, there were no
obvious correlations between f(c) and Tmin for the SHR, CRO, and GRA sites, which might
partially be attributed to the lower sensitivity of surface conductivity to Tmin in crops,
grasses and shrubs [4,48].

Table 2. Correlation coefficients (r) between the daily f(c) and daily Tmin (rfc, Tmin), NDVI (rfc, NDVI),
and RH (rfc, RH). CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest; MIF: mixed forest;
DNF: deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR: shrubland;
ENF: evergreen needleleaf forest; WET: wetland.

Land-Cover Types Rfc, Tmin Rfc, NDVI Rfc, RH

CRO 0.09 0.49 0.39
GRA 0.06 0.52 0.51
WET 0.34 0.04 0.41
SAW 0.55 0.68 0.55
SHR 0.09 0.45 0.44
DNF 0.51 0.61 0.52
DBF 0.57 0.54 0.33
ENF 0.34 0.42 0.41
EBF 0.41 0.35 0.33
MIF 0.35 0.43 0.34

4.2. Model Validation and Comparison

The SPT model was validated using ten-fold cross-validation. Validations of the
simulated and observed daily (monthly) ET at all sites illustrated the good performance of
the SPT model for estimating seasonal ET variability (Figure 3). For different land-cover
types, the performance of the SPT model differs greatly. The R2 of the estimated versus
observed daily (monthly) ET ranged from 0.42 (0.58) (p < 0.01) at all SHR tower sites to
0.81 (0.86) (p < 0.01) at all EBF tower sites. The RMSE varied from 15.8 (11.7) W/m2 at all
EBF tower sites to 28.2 (23.9) W/m2 at all DBF tower sites. Figure 3 also demonstrates
the good ability of the SPT model for estimating the spatial variation. The RMSE of the
site-averaged estimated ET varied from 6.7 W/m2 at all EBF tower sites to 18.2 W/m2 at
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all CRO tower sites, and R2 (99% confidence) varied from 0.22 at all SHR tower sites to
0.97 at all EBF tower sites. Overall, the SPT model accurately captured seasonal and spatial
variations in ET. The SPT model also accurately yielded long-term variations in ET at all
sites. The R2 (99% confidence) of the estimated and observed annual ET anomalies varied
from 0.20 at all SHR tower sites and 0.77 at all MIF tower sites, and the largest RMSE was
less than 12 W/m2 at all DNF tower sites, which was partially because of missing observed
ET datasets caused by worse climatological conditions [18,46].
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Figure 3. Estimated terrestrial ET (y axis, W/m2) from the SPT model versus ground-observed ET (x axis, W/m2) for
a series of cross-validation. CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest; MIF: mixed forest; DNF:
deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR: shrubland; ENF: evergreen needleleaf
forest; WET: wetland.

The estimated daily ET using the SPT model was also compared with those for the
PT-JPL model. Table 3 shows the statistics (R2, RMSE and bias) of the comparison between
the estimated and ground-observed daily ET from the first group of data using the second
group of samples to calibrate the SPT model. For the forest EC sites, the RMSE for the
estimated daily ET using the SPT model and PT-JPL model was 22.3 W/m2 and 31.2 W/m2,
respectively. R2 of the estimated daily ET using the SPT model was higher than that
for the PT-JPL model. For the crop, grass, and wetland sites, the SPT model had better
performance than the PT-JPL model, with RMSEs less than 30 W/m2 and R2 values more
than 0.85 (p < 0.01). For the SAW and SHR sites, the R2 of the estimated ET using the
SPT model was much higher and the RMSE was less than 25 W/m2 compared with the
PT-JPL model. Overall, the R2 for the SPT model increased by about 0.05 (p < 0.01) and the
RMSE decreased by about 9 W/m2 at most forest flux tower sites. Similarly, the R2 for the
SPT model increased by about 0.10 (p < 0.01) and the RMSE decreased by about 3 W/m2

at the CRO, GRA, WET, SAW, and SHR sites. This improvement over PT-JPL and other
PT models is to calibrate the SPT model using ET ground measurements, with which the
ground-measured ET was also used for validation. It is clear that the SPT model has better
performance for estimating ET than that of the PT-JPL model. Therefore, compared with
other PT models, the proposed SPT model has provided a better fit to EC observations.
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Table 3. Summary of a series of statistics (bias, RMSE, and R2) of the comparison between the ground-measured and
estimated average daily ET using the two ET models of the first group. The second group samples were considered to
be training datasets to calibrate coefficients of the proposed ET model. CRO: cropland; GRA: grassland; DBF: deciduous
broadleaf forest; MIF: mixed forest; DNF: deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR:
shrubland; ENF: evergreen needleleaf forest; WET: wetland.

Land-Cover Types
Bias (W/m2) RMSE (W/m2) R2

PT-JPL SPT PT-JPL SPT PT-JPL SPT

CRO 9.3 8.9 26.2 22.9 0.67 0.77
GRA 6.3 5.6 16.4 13.8 0.71 0.77
WET 8.87 8.5 17.2 14.1 0.69 0.80
SAW 5.1 11.3 22.6 19.5 0.70 0.74
SHR 12..1 11.1 20.6 18.8 0.67 0.68
DNF 20.1 9.5 31.0 22.7 0.57 0.62
DBF 22.1 20.1 33.7 25.6 0.72 0.77
ENF 16.4 5.1 34.3 19.7 0.51 0.58
EBF 20.4 7.8 38.8 24.7 0.51 0.61
MIF 20.6 14.1 32.1 23.4 0.69 0.74
All 15.6 13.8 33.3 23.8 0.60 0.71

The ET validation for each land-cover types agreed, in general, with results docu-
mented in the literature [30,34,49]. Ershadi et al. [30] evaluated four ET models using
ground-measured ET from 20 FLUXNET tower sites and found that the best model is
PT-JPL model with the RMSE of 66 W/m2. Vinukollu et al. [34] assessed three process-
based ET models from 12 flux tower sites across the US and reported that these models
yielded monthly ET with mean correlation of 0.54–0.57. Yebra et al. [49] compared esti-
mates of ET produced with six different vegetation indices from the MODIS and three
contrasting estimation approaches using ground-measured ET at 16 FLUXNET sites and
documented that the PM-Gs (surface conductance) approach provided the lowest RMSE
(average RMSE = 38 W/m2), and highest R2 (average R2 = 0.72). The validation accuracy
of the estimated ET using the SPT model is higher than the above reported results.

To estimate the regional terrestrial ET, the parameters of Equation (4) were recalibrated
based on ground-observed meteorological datasets and the MODIS NDVI datasets from
all 100 EC flux tower sites. Table 4 demonstrates the Equation (4) coefficients for different
land-cover types using a linear regression from MODIS NDVI, ground-observed Ta, Tmin,
and RH. The SPT model is sufficiently representative to estimate regional ET due to the
different terrestrial biomes and their locations of 100 EC sites.

Table 4. Coefficients (dimensionless) from global land-cover type-derived optimization of Equation (4) based on the MODIS
NDVI data and ground-measured meteorology. CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest; MIF:
mixed forest; DNF: deciduous needleleaf forest; SAW: savanna; EBF: evergreen broadleaf forest; SHR: shrubland; ENF:
evergreen needleleaf forest; WET: wetland.

Land-Cover Types α0 α1 α2 α3

CRO −0.1736 0.0001 0.4532 0.5653
GRA −0.1493 0.0001 0.5026 0.4329
WET 0.3503 0.0033 0.0001 0.1486
SAW −0.2212 0.0036 0.6473 0.3040
SHR −0.0992 0.0001 0.4725 0.3478
DNF −0.2358 0.0081 0.2257 0.7298
DBF −0.0604 0.0096 0.3006 0.3407
ENF −0.1566 0.0030 0.2446 0.5524
EBF −0.0605 0.0072 0.2412 0.3516
MIF −0.0917 0.0066 0.3670 0.3013
All −0.1760 0.0063 0.4219 0.4471
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4.3. Model Application
4.3.1. Case I: Estimating Agricultural ET at High Spatial Resolution from Chinese
GF-1 Data

The calibrated SPT model was applied to estimate agricultural ET of the Huailai region
of China at high spatial resolution derived from GF-1 data during 2013–2017. Figure 4
illustrates the good correspondence between the estimated and ground-observed daily
ET at the EC1 and EC2 sites. RMSE of estimated versus observed ET was 23.6 W/m2

and 24.4 W/m2, while that for the bias was −11.6 W/m2 and −1.2 W/m2. In addition,
the R2 (99% confidence) was 0.84 and 0.81 at the EC1 and EC2 sites, respectively. These
good results indicate that the ET estimation of the SPT model is reliable in the Huailai
agricultural region of China.
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Figure 4. Comparison of the observed and estimated daily ET based on the SPT model at the EC1
and EC2 sites.

Figure 5 shows the spatial distribution of the estimated daily ET of the Huailai agri-
cultural region of China using the SPT model for three days in 2017. For DOY 133 (spring),
the simulated ET using the SPT model was relatively lower than that for summer, with
ET values from 0 to 50 W/m2. For DOY 190 (summer), the estimated ET achieved the
maximum range of 0–130 W/m2, with the relatively highest ET values in crop and forest
regions and the smallest values in urban regions in the middle part of the domain. For DOY
255 (fall), the estimated ET ranged from 0 to 80 W/m2, and the highest values occurred
in the wetland regions of the top left part of the study area, which was consistent with
the spatial patterns in the spring. Overall, the estimated ET tended towards high values
during the period of summer because high vegetation coverage occurred in this region,
while low ET values occurred in late fall after crops were harvested and other grass and
forest declined. Few previous studies have focused on regional LE estimation at relatively
high spatial resolutions using GF-1 data [46]. The SPT model successfully acquires finer
spatial resolution ET using GF-1 NDVI data.
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4.3.2. Case II: Monitoring Long-Term ET Variations in the Three-River Headwaters Region
of China

The SPT model driven by CMFD meteorological data and GLASS NDVI products
was also applied to generate the daily terrestrial ET of TRHR of China at a 0.05◦ spatial
resolution between 1982 and 2018. This daily ET product was also validated based on
ground-observed EC data collected from one TRH grass site. Figure 6 demonstrates the
statistical comparison between the estimated and ground-observed ET at the TRH site.
The R2 for the TRH site was approximately 0.67 at the 99% level of confidence, the bias
was 2.0 W/m2 and the RMSE was 14.9 W/m2. The slightly positive bias may be caused
by the limitations of the SPT model and the unclosed energy balance problem in EC data.
However, Seguin et al. [50] pointed out that the ET estimation accuracy for application can
be accepted as less than 50 W/m2. The accuracy of the results meets this basic requirement.
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Figure 7 presents the spatial pattern of the multiyear (between 1982 and 2018) averaged
annual ET in the TRHR. A large ET occurred in the eastern areas of the TRHR, while a
small ET occurred across the western regions in the TRHR. The average annual ET of
TRHR was 200 mm/year. Overall, the estimated annual ET anomalies of TRHR showed
a significantly increasing trend of 0.3 W/m2 per decade (p < 0.05) from 1982–2018, and
they coincided with widespread regional grass greening [51] (Figure 8). Regionally, the
ET in the western areas of the TRHR accounted for more than 75% of the variation in the
whole regional ET, and the positive annual ET in this region was mainly attributed to the
regional vegetation (mainly grass) greening caused by global warning (0.065 ◦C/decade).
The pattern of rising ET matched by an increasing NDVI indicated that increases in the
NDVI (vegetation greening) represented the main contributor to the increasing ET trend
over the western areas of the TRHR between 1982 and 2018. In contrast, the large-scale
droughts characterized by the decreasing RH led to the regional ET decline in the eastern
areas of the TRHR (Figure 9). More than 70% of the eastern region of the TRHR had positive
correlations between annual ET and RH. The strong consistency of the patterns in terrestrial
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ET and RH trends illustrated that large-scale droughts were the main mechanism leading
to the decreasing ET trend in the eastern areas of the TRHR from 1982–2018.
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5. Discussion
5.1. Model Performance

Model validation at 100 global EC sites demonstrated that the proposed SPT model for
estimating terrestrial ET was reliable across different terrestrial biomes. However, the SPT
model had large differences in estimating ET across different land-cover types under the
same environmental conditions. For example, the SPT model accounted for more than 75%
of the ET variability for DBF, which may be associated with the strong seasonal variations
in vegetation LAI in these biomes and the sensitivity of the NDVI to red reflectance and LAI
changes [27,49,52]. In contrast, the SPT model only explained 50% of the ET variability for
SHR and ENF because vegetation seasonal changes were weak and the NDVI yielded a poor
performance for modeling vegetation transpiration [22,52,53]. This finding is consistent
with previous studies documenting that the vegetation conductance of both ENF is half
that of DBF [4,53]. In the SPT model, environmental factors, including Tmin, NDVI and RH,
are considered to be the important regulators for downscaling the potential ET to actual ET.
However, at the CRO, GRA, and SHR sites, Table 1 shows that the contribution of Tmin
to f(c) is limited because the short vegetation is mainly controlled by water availability
rather than Tmin [4,26]. Similarly, NDVI has no influence on f(c) at WET sites because the
wetland is saturated with water [4,19]. The SPT model explains their differences using the
same environmental factors with different calibration coefficients.

Although the SPT model only uses a simple linear formulation to parameterize f(c),
it has lower errors in the inputs and has a better performance than that of the PT-JPL model.
Importantly, the SPT model avoids Rn estimation directly using the Rs product as an
important input and considers the differences in the f(c) calculation at different land-cover
types, while the PT-JPL model ignores the classifications among land-cover types [10,27].

The simulation accuracy of the proposed model is affected by the errors in EC obser-
vations, the biases of forcing data, the scaling effects of different data and the structure of
the model. Generally, EC observations have a bias of approximately 10–25% [54]; however,
the EC technique is considered a good method to measure ET. Furthermore, EC suffers
from energy imbalance problems because it does not capture large eddies, and the annual
RBR for approximately 200 global FLUXNET sites is only 0.8 [55]. Although the fixed BR
method was used to correct the ET, the uncertainty from EC observations remains indis-
tinct [37,54]. Additionally, errors in meteorological variables (Tmin, Ta and RH) will also
lead to errors in ET estimation. Recent studies have presented errors for CMFD datasets
compared to ground observations [40–42]. Thus, the biases of meteorological data will
reduce the accuracy of ET estimations.

Generally, the footprints of EC observations are less than 300 m [9]. However, the
spatial resolutions of the MODIS (~1 km), GLASS (~5 km) and GF-1 (~16 m) NDVI products
do not match the footprints of the EC observations. The mismatch among these datasets
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will cause large errors in the ET estimates. The structure of the SPT model also affects the
ET simulation errors because the SPT model does not include SM and only uses RH to
characterize moisture constraints, which may cause large uncertainties in ET estimation in
semiarid and arid regions [16,22].

5.2. Implication for Regional Water Resources Assessment

Accurately quantifying the regional terrestrial ET is important for agricultural wa-
ter resource management. Especially for agricultural regions, satellites with high spatial
resolution (e.g., GF-1) have provided spatially and temporally frequent terrestrial obser-
vations for estimating field ET. Compared with LST, the NDVI changes slowly under
a relatively short period to characterize SM conditions. However, the NDVI cannot reflect
soil evaporation for bare soil [56]. Here, RH was used as a substitute for SM to estimate soil
evaporation. Bouchet [57] reported a complementary theory that surface SM is associated
with the atmospheric evaporation demand. Subsequently, Fisher et al. [10] developed a SM
metric (RHVPD) to calculate soil evaporation. Similarly, Yan and Shugart [58] also found
that RH is a better indicator than SM to estimate terrestrial ET, especially for late crop
harvest periods. This good theoretical hypothesis illustrates the ability of the proposed
SPT model to accurately estimate agricultural ET and has provided a usefully diagnostic
assessment for field water consumption.

Monitoring long-term ET variations in ecologically fragile regions is critical for un-
derstanding regional hydrological dynamics and performing water resource assessments.
In this study, the proposed SPT model has provided evidence for vegetation greening
caused by global warming, which is important for controlling long-term ET variations
in the TRHR of China. Previous studies have reported that climatic change (Ta and RH
variations) has increased vegetation greening in northern high latitudes [59,60]. Similarly,
the increase in ET is caused by the greening of vegetation, which is consistent with previ-
ous studies [2,61]. The results in this study also support this conclusion (Figures 8 and 9).
Other mechanisms that account for increasing ET seem to be less important due to the
weak correlations between ET changes and other meteorological variables [62,63]. Further
studies should highlight the combinations of satellite ET and ground measurements to
investigate the impacts of human activities on hydrological processes.

6. Conclusions

A simplified Priestley–Taylor (SPT) ET model was developed to estimate global
terrestrial ET across multiple biomes by combining incident shortwave radiation, a satellite
vegetation index, and air relative humidity. The model coefficients of the environmental
parameters are calibrated using the satellite-derived NDVI and ground-observed Ta, Tmin,
RH, and ET. The proposed model was also validated based on a ten-fold cross-validation
method across different plant function types using global FLUXNET observations from
100 global EC sites.

The validation results showed that the SPT model accurately captures seasonal and
spatial variations in ET. For multiple biomes, the performance of the simplified PT model
differed greatly. The R2 of the estimated versus observed daily (monthly) ET ranged
from 0.42 (0.58) (p < 0.01) at all shrubland (SHR) flux tower sites to 0.81 (0.86) (p < 0.01)
at all EBF flux tower sites. The RMSE of the site-averaged estimated ET varied from
6.7 W/m2 at all EBF flux tower sites to 18.2 W/m2 at all cropland (CRO) flux tower sites.
The performance of the SPT model was good for simulating interannual ET variation, with
an R2 of approximately 0.48 (p < 0.01). When compared with the PT-JPL model, the SPT
model performed better at different regional scales. The SPT model was also applied to
estimate agricultural ET at high spatial resolution from Chinese GF-1 data and to monitor
long-term (1982–2018) ET variations in the TRHR of China. The SPT model presented here
provides a bridge between EC flux data and regional applications.
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