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Abstract: Extreme weather events cause considerable damage to the livelihoods of smallholder
farmers globally. Whilst index insurance can help farmers cope with the financial consequences
of extreme weather, a major challenge for index insurance is basis risk, where insurance payouts
correlate poorly with actual crop losses. We analyse to what extent the use of crop simulation models
and crop phenology monitoring can reduce basis risk in index insurance. Using a biophysical process-
based crop model (Agricultural Production System sIMulator (APSIM)) applied for rice producers
in Odisha, India, we simulate a synthetic yield dataset to train non-parametric statistical models
to predict rice yields as a function of meteorological and phenological conditions. We find that
the performance of statistical yield models depends on whether meteorological or phenological
conditions are used as predictors and whether one aggregates these predictors by season or crop
growth stage. Validating the preferred statistical model with observed yield data, we find that the
model explains around 54% of the variance in rice yields at the village cluster (Gram Panchayat)
level, outperforming vegetation index-based models that were trained directly on the observed yield
data. Our methods and findings can guide efforts to design smart phenology-based index insurance
and target yield monitoring resources in smallholder farming environments.

Keywords: index insurance; crop yield; APSIM; leaf area index; phenological monitoring

1. Introduction

Agriculture plays a critical role in supporting livelihoods and food security for rural
households across the developing world [1]. Designing strategies to protect farmers against
crop losses caused by adverse weather conditions, such as droughts or floods, has become
a key priority for governments and donors, particularly given expected increases in the
frequency or intensity of extreme weather events in the coming decades due to climate
change [2,3]. One of these strategies is to provide smallholder farmers with agricultural
insurance, which offers financial protection from losses associated with extreme weather.
In recent years, several agricultural insurance programs have been rolled out at scale,
and large amounts of money have been invested in these programs. For instance, in the
monsoon season of 2019, India’s national insurance scheme, the Pradhan Mantri Fahsal
Bima Yojana (PMFBY), covered more than 33.5 million hectares of land through subsidised
crop insurance, with gross insurance premiums amounting to more than USD 3 billion.

In developing countries, amongst different types of insurance frameworks (such
as whole-farm revenue insurance [4,5] and bancassurance [6,7]), index-based insurance
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approaches are the most commonly used within agricultural insurance programmes. Unlike
traditional insurance schemes, which are based on the direct verification of crop yield losses
for each insured field, payouts from index insurance are made on the basis of an empirical
relationship between a proxy index and expected yield losses [8]. Proxies used include
weather indices, satellite vegetation indices or area-yield indices, whereby yields are
measured for a sub-sample of fields through crop cutting experiments (CCEs) to estimate
an average yield over a given region, and payouts are made when these average yields
fall below a threshold that is based on historical yields for the region. Using an objective
observable index in claims settlement helps provide more timely payouts and reduces
costs of loss verification for insurers, making coverage more affordable for farmers and
potentially improving farmers’ willingness to pay for insurance [9]. Uptake has been
generally low, though, in part due to high levels of basis risk, that is, a mismatch between
the index—and thus insurance payouts—and actual yield losses [10].

One component of basis risk is design risk, which arises from limited data availabil-
ity [11]. In particular, the limited availability of observed yield data inhibits the identifica-
tion and definition of reliable weather and vegetation indices that accurately predict yield
losses. Whilst this is not a limitation for area-yield index insurance, high costs of conducting
representative samples of CCEs in heterogeneous smallholder farming environments can
lead to biased estimates of average yields and thus basis risk. Another important driver of
basis risk relates to the temporal specification of the variables used to predict crop yields.
Most index-based insurance schemes trigger payouts based on indices that are defined over
fixed calendar periods, often relating to the average timing of key phenological stages in a
given agricultural system [12–14]. In reality, the timing of a crop’s sensitivity to weather
may vary significantly across fields due to differences in management practices, such as
variety and sowing dates, as well as meteorological conditions, which affect rates of crop
development [15]. Failure to consider this heterogeneity may lead to inaccurate estimation
of yield losses and basis risk [16,17].

In an effort to address these challenges, we analysed to what extent the integration
of crop models and phenological monitoring can help reduce these design and temporal
basis risks, respectively. Biophysical crop simulation models can be leveraged to generate
larger synthetic yield datasets, which can then be used to train weather- or satellite-based
index models [18–20] or support spatial targeting of limited numbers of CCEs that can be
conducted as part of area-yield insurance products. However, to date, this approach has
not been widely applied in the context of index insurance design, with limited evidence
about its performance at spatial scales relevant for insurance applications (e.g., field,
farm or village) or in comparison with index models derived empirically from available
observational yield datasets. Approaches to reduce temporal basis risks have focused
on developed countries, where detailed phenological monitoring networks exist [21]. In
contrast, there has been limited attention on how to embed phenological information in the
design and implementation of index insurance in smallholder environments, for example,
through the use of satellite or in-situ phenology monitoring systems or technologies [22,23].

We addressed these knowledge gaps through a case study on rice yield estimation
in the state of Odisha, India, an area of extensive rainfed rice production, where agricul-
ture is highly exposed to risks posed by monsoonal rainfall variability. We demonstrate
how the integration of crop models, phenological monitoring through satellite remote
sensing, and machine learning techniques can support the design and implementation
of smart phenology-based index insurance products at spatial scales relevant for small-
holder communities. Our findings highlight the opportunity for robust and scalable yield
estimation by combining satellite data with machine learning and crop modelling. We
show that this approach can significantly outperform models that rely solely on satellite
imagery. At the same time, our results demonstrate several remaining challenges that need
to be addressed to accurately and reliably estimate yields at plot scales in smallholder
farming environments.
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2. Materials and Methods

In the following subsections, we outline our methodological approach to estimate
rice yields. In Section 2.1, we provide information about the case study area, including
key characteristics of agricultural production in Odisha. In Section 2.2, we describe the
modelling approach used to develop a database of synthetic yield data for our study area,
followed in Section 2.3 by the statistical techniques used to relate simulated yield data to
relevant crop, phenology and weather conditions. In Section 2.4, we discuss the process
for validating statistical models against both synthetic and observed yield data. We also
contrast the performance of our models with estimates of yields derived directly through
regression analysis using satellite vegetation indices.

2.1. Study Area and Observation Data

Our analysis focused on rice yield estimation in the state of Odisha in eastern India
(Figure 1). Agricultural production in Odisha is dominated by small-scale farmers, with
most rice production occurring during the summer monsoon season (Kharif). Rice produc-
tion in the region is mainly rainfed, reflecting the relatively limited access to affordable
and reliable irrigation water supplies in eastern India. Monsoonal rainfall variability is,
therefore, a key production risk for many farmers. For example, the late onset of the
monsoon leads to delays in rice transplanting, resulting in yield losses due to the use of
older seedlings and exposure to end-of-season temperature stress [24]. Similarly, a lack
of access to irrigation limits farmers’ ability to protect crops against dry spells during
the season, which can have damaging impacts on yields if droughts occur around critical
development stages, such as anthesis and grain filling [25].

To support our analysis of alternative yield estimation approaches, observed yield
data were collected through CCEs for a total of 80 paddy rice fields located in two blocks
of Jajpur district, Odisha. Yield data were collected in late 2019, following the end of the
2019 summer monsoon season that was characterised by above-average rainfall and early
starting time. Rice fields were sampled from 20 village clusters (Gram Panchayats; GPs)
as GPs are the primary spatial unit to estimate area-yields in the context of the Indian
Government’s National Crop Insurance Program (PMFBY). In each of the selected GPs,
field staff randomly selected amongst consenting farmers the fields of 5 farmers for seasonal
monitoring. Monitoring was done through smartphone images of the crops, and at the
end of the season, as the crop had reached maturity, field staff collected yield data through
CCEs. Field sizes ranged from 375 to 800 square meters (mean of 630), which are typical of
smallholder farming in eastern India.

2.2. Synthetic Yield Data Generation

Designing index insurance products requires establishing a relationship between crop
yields and one or more predictors (that is, the variables used to operationalise the insurance
‘index’) that can be observed at a lower cost than would be required to manually verify
yields directly through surveys or CCEs. However, the limited availability of in-situ yield
data represents a major barrier to estimating these relationships accurately and reliably.
Resulting biases in the estimated relationships between yields and predictor variables or
indices introduce basis risk. An increase in data availability could help address such basis
risk. We, therefore, analysed whether index performance can be enhanced by relying on
ensemble process-based crop simulations to generate synthetic yield data, representing
yields across a range of potential weather conditions and agricultural management practices
that would be infeasible to observe directly through in-situ data collection.
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Figure 1. The map of the study area with zoom levels at country scale (panel (A)), district scale (panel (B)), sub-district scale
(panels (C,D)), and plot scale (panel (E)).

To develop a database of synthetic yield data, through a process-based crop model—
APSIM (Agricultural Production System sIMulator)—we simulated the response of rice
yields across a range of potential weather conditions and management practices in our
study area. APSIM’s rice module, ORYZA2000, is a dynamic physiological model of rice
development, which has been widely applied for studies of both rainfed and irrigated rice
production systems across south and southeast Asia [26,27]. Thus, the synthetic yield data
go beyond the limited observation data stemming from the CCEs, which will be only used
to validate the statistical models, not to train the statistical models.

APSIM simulations consider a range of plausible weather and management practice
scenarios observed in our study region. Specifically, we varied the parameters in the model
specifying sowing dates (from 15 May to 15 August on one-week intervals), seedling ages
(from 25 to 40 days on 5-day intervals), planting density (100, 150 or 200 plants per square
meter), number of hills (from 30 to 45 hills on 5-hill intervals), and fertiliser amounts (50,
100 or 150 kilograms of urea per hectare) in accordance to information on typical manage-
ment practices drawn from published literature [24,26] and state-level agronomic advisory
documents [28]. We carried out APSIM simulations for each combination of parameter val-
ues (2016 in total) for 100 weather years, resulting in a total of 201,600 unique point-based
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yield simulations. Weather time series used in the crop simulations were developed using a
weather generator (LARS-WG) based on 39 years (1981–2020) of historical observed meteo-
rological data, obtained by averaging time series (including daily minimum and maximum
temperature, total precipitation and solar radiation) from ERA5 v5.1.3, at 0.25◦ × 0.25◦

resolution, over the 80 plots described in Section 2.1. For each simulation, we defined crop
growth parameters in APSIM according to the dominant local rice cultivar—MTU7029.
MTU7029 (often referred to as Swarna rice) is a long-duration variety, for which param-
eters in APSIM have been calibrated and validated previously by Balwinder-Singh et al.
(2019) [24]. All simulations assumed that rice was transplanted into a clay loam soil—the
dominant soil type for rice production areas in the region based on spatial analysis of
soil texture data provided by SoilGrids [29]—with hydraulic properties determined using
pedotransfer functions [30]. Specifically, the volumetric water contents used in our analysis
for the lower limit, drained upper limit and saturation levels were estimated as 18%, 32.3%
and 46.1%, respectively, with saturated hydraulic conductivity, assumed to be 20 mm/day
and 1 mm/day for the top five and bottom soil layers (out of six), respectively, in line with
APSIM guidelines for ponded transplanted rice simulations [31].

2.3. Statistical Yield Models

The variables that are used as predictors of yields in index insurance can vary in terms
of the underlying type of data (such as various weather variables or indicators of crop
development, such as leaf area index) and the temporal period over which each predictor
is aggregated (for instance, whether one uses the average for the entire growing season
versus the average for a specific phenological stage), along with the spatial scale at which
yields are estimated (plot versus village, GP or district aggregation).

To assess the implications of these choices, we fit 28 alternative statistical models
that vary in terms of the underlying assumptions about which variables and what level of
temporal aggregation were most useful for explaining variations in the synthetic yield data
generated by APSIM, as described in Section 2.2 (Figure 2). Specifically, the 28 alternative
model specifications developed consider different unique combinations of three potential
meteorological and agronomic predictor variables (that is, temperature: T, precipitation: P,
and LAI: L, resulting in seven unique predictor combinations of T, P, L, TP, TL, PL and TPL),
along with four different assumptions about the time period over which each predictor
was aggregated for yield prediction on a given plot.

The four different temporal specifications that we considered in our analysis include
(1) fixed season, FS, representing a typical or ‘normal’ cropping season between August
and November; (2) dynamic season, DS, where variables were aggregated according to
plot-specific information about the start and end date of the crop growing season; (3) fixed
growth stages, FSTG, where variables were aggregated by fixed crop growth stages timings
instead of the timing of the full season; and (4) dynamic growth stages, DSTG, where
variables were aggregated by dynamic crop growth stage timings relying on plot-specific
information about the start and end dates of each stage. In the FSTG and DSTG models, we
divided the rice season into four main stages—transplanting, panicle initiation, flowering
and grain filling—resulting in a total of four unique predictor variables (one per stage) for
each meteorological and agronomic predictor.

For each temporal model specification, predictor variables were aggregated by either
averaging daily values within the period (for minimum and maximum temperature) or by
calculating the cumulative sum (for precipitation) or integration (for LAI) of the variables
over the specified period. Each of the 28 models was fit using random forests (RF) [32],
a cumulative learning algorithm for regression and classification problems based on de-
cision trees and bagging (bootstrap aggregation). Many studies have demonstrated the
effectiveness of the RF model in modelling agricultural biophysical processes, particularly
those that are nonlinear [33–35]. During the training process, RF builds a ‘forest’ from
regression trees that are developed from a bootstrap sample of input datasets. Each boot-
strap sample contains two-thirds of the input dataset, whilst the remaining samples that
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are not included in the training are used to validate the model and assess the importance
of predictor variables. Once the model construction terminates, predictions can be made
by considering the expected value of all individual predictions of regression trees in the
forest. We performed this RF analysis using the randomForest package v 4.6-14 [36] in
R, and considering the default parameters (e.g., number of trees) suggested by package
developers in R environment [37].

Figure 2. Overall procedure of coupling process-based crop models and statistical models to emulate synthetically generated
Agricultural Production System sIMulator (APSIM) crop yields. First, APSIM was used to simulate crop phenology, LAI,
yields and other state variables for a range of potential weather conditions and management practices. Through random
forest analysis, statistical index relationships were then developed relating simulated yields to different combinations of
weather and agronomic predictors varying in their combination and temporal aggregation.

2.4. Validation of Statistical Yield Models

We first compared the ability of each alternative model design to reproduce synthetic
yields simulated by APSIM, focusing on the R-Squared and Root Mean Square Error (RMSE)
of yield estimates in comparison with the actual APSIM simulated yields and the rates at
which an area yield index-based insurance policy would produce false positives (upside
basis events) and false negatives (downside basis events). To generate these measures of
basis risk, we considered a policy that triggers a payout when predicted yields fall below
70% of the potential yield (i.e., 70% of the maximum observed crop yield for the same
management practices) [38]. For all of these analyses (including false positive and false
negative ratios analysis), we initially split 201,600 simulated yield observations into training
and validation samples through a random selection, considering 80% of the observations
as training data and the remaining 20% of the observations as data not used during the
development phase of the statistical models.
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In the simulations, noise was introduced by the parameters that enter the biophysical
crop model, but empirically, these were not the only source of noise. When analyzing
model performance in terms of predicting empirical yields, one should also be concerned
about measurement error. To analyse whether introducing random noise affects the relative
performance of the different RF models, after fitting different RF models to the training
samples, we applied a mean-preserving spread to yields in the validation sample. Specifi-
cally, we added a normally distributed noise term to normalised yields in the validation
sample whilst varying the standard deviation of this noise term between zero (no noise)
and one (noise value with variation equal to the variation of observed yields in the valida-
tion sample). We then graphed the performance of our statistical yield models against the
standard deviation of this random variable.

After identifying the best performing statistical model for emulating APSIM simulated
yields, we sought to evaluate the ability of this model to reproduce observed yields in
our study area. To determine yields for each of the 80 unique fields in our observed yield
dataset (Section 2.1), we obtained weather and crop development observations for the
2019 rice-growing season over our study region. Daily time series of precipitation and
temperature (minimum and maximum) were obtained from the ERA5 reanalysis dataset at
0.25◦ × 0.25◦ resolution [39]. Timing of rice growth stages was determined from normalized
difference vegetation index (NDVI) time series–interpolated from discrete values obtained
from Sentinel-2 satellite imagery (with a spatial resolution of 10 m)–for each of the 80 fields
(with an average plot area of 630 square meters; ~approximately equal to the area of six
Sentinel-2 pixels) in our sample. Specifically, we assumed that the minimum NDVI value
at the inflection point on the rising limb of the curve corresponded with the transplanting
date and that harvest occurred when the NDVI time series equaled 0.25 on the falling
limb in line with standard practices [40–42]. Timing of other growth stage transitions was
determined based on the typical time from transplanting to reach the start of each stage for
Swarna rice: 41 days, 61 days and 75 days for the start of panicle initiation, flowering and
grain filling, respectively.

LAI time series for each field were generated based on spectral band data obtained
from Sentinel-2 and Landsat-8 imagery retrieved through Google Earth Engine [43]. Esti-
mates of LAI were generated for each cloud-free pixel based on spectral band data provided
by Sentinel-2 and Landsat-8 imagery using an inverted radiative transfer model (RTM) [44].
The RTM inversions were developed by running the PROSAIL model 5000 times to gen-
erate synthetic reflectance data for a range of possible combinations of rice canopy, leaf
and soil properties. The canopy, leaf and soil parameters used within the PROSAIL RTM
simulations were drawn from a truncated normal distribution (TND) so that their values
followed a normal distribution and not fall below zero at the same time (except for the solar
zenith angle and relative azimuth angle; Table 1) following parameter ranges reported in
previous applications for rice LAI estimation [45,46]. We used the simulated reflectance
data to develop statistical models between the spectral bands collected by Sentinel-2 and
Landsat-8 to LAI using a procedure similar to the RF approach described previously in
Section 2.3. To develop statistical models for LAI, we split data equally at random between
training and validation. The validated RTM model was subsequently used to convert
observed reflectance on a given field into a discrete estimate of rice LAI for each available
cloud-free observation, which was then converted to a continuous LAI time series for each
field by fitting a double logistic function.

Estimated yields were compared with observed data from CCEs using R2, RMSE, and
Normalised Room Mean Square Error (NRMSE) statistics at two spatial scales: (1) plot
scale (80 observations with an average area of 630 square meters), and (2) GP scale (20 ob-
servations, with an average of 4 plots per GP). As noted previously, the latter equated to
a spatial scale similar to a cluster of nearby villages (with an average area of 48 square
kilometers ranging between 0.2 and 102 square kilometers), which is the lowest level
of governing institutions in India’s administrative structure. Importantly, GPs form the
primarily spatial unit for area-yield insurance within the Indian government’s national
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crop insurance program, which at present relies on data from manual CCEs to verify crop
yield losses and any resulting payouts to farmers. Understanding the performance of our
methods at this scale is, therefore, of particular importance for understanding potential
opportunities and challenges for satellite data and crop models to help reduce costs and
time associated with crop insurance in India.

Table 1. Canopy, leaf and soil parameter ranges and distributions used within the PROSAIL radiative transfer model
(RTM) simulations.

Parameter Name TND Mean TND Std. TND Lower Bound TND Upper Bound

Structure Parameter 1.5 0.3 1.2 2.2
Chlorophyll content (ug/cm2) 45 30 20 90

Brown pigment content 0.25 0.1 0.1 0.5
Dry matter content (g/cm2) 0.05 0.005 0.003 0.011

Dry/Wet soil factor 0.9 0.25 0..3 1.2
Leaf area index (m2/m2) 3.5 4.5 0 10
Leaf angle distribution 60 20 30 80

Hotspot parameter 0.2 0.2 0.1 0.5

Parameter Name Uniform Distribution (minimum value) Uniform Distribution (maximum value)

Solar zenith angle (deg) 15 90
Observer zenith angle (deg) −12 12
Relative azimuth angle (deg) 6 6

3. Results
3.1. Performance of Statistical Models in Emulating APSIM Simulations

We first compared the performance of different model specifications (with varying
predictor variables and varying levels of temporal aggregation for these variables) in terms
of their ability to reproduce the synthetic yield data generated using APSIM and were
perturbated with different noise levels. This is equivalent to selecting the best performing
index for the design of an index insurance product. Figure 3 summarises the performance
(left: R2, right: RMSE) of each candidate model at different noise levels (with the standard
deviation of the random noise term varying from zero to one, to represent cases without
noise and cases with high degrees of noise, respectively) in predicting the validation data
not used in the training phase of the RF models. Later, using an illustrative, synthetic
insurance policy, we evaluated the basis risk of different model specifications by comparing
across models the rates at which this synthetic policy would produce false positives
(downside basis event) and false negatives (upside basis event) if triggered using yields
estimated using our different statistical crop yield model specifications (Figure 4).

From inspection of Figures 3 and 4, several findings emerge. As expected, the model
accuracies in terms of R2 and RMSE statistics, as well as false positive and false negative
frequencies for all model combinations and temporal disaggregation levels, decreased as we
introduced more noise to yields in the validation datasets (in addition to the noise in APSIM
simulated crop yields stemming from different weather realisations and management
practices). However, the relative performance of models according to their error statistics
used in this study (R2 and RMSE as well as false positive and false negative frequencies) did
not change by adding random noise to the validation datasets. This implies the efficiency of
our validation efforts in picking the most suitable statistical model for crop yield estimation.

Moreover, the models more accurately reproduced the heterogeneity in APSIM-
simulated rice yields when considering greater temporal disaggregation of predictor
variables (i.e., moving from top to bottom in both columns of Figure 3). The greatest
improvement in model performance–observed for all standard deviations considered when
introducing random noise—was found when including predictor variables disaggregated
by crop growth stage (DSTG models). Across potential models, the RMSE error reduced by
4% to 46% (with an average of 24%) and 2% to 24% (with an average of 11%) when input
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variables were aggregated by fixed and dynamic growth stage (as opposed to the fixed
and dynamic seasonal, FS and DS, models), respectively. Moreover, the reduction in RMSE
from aggregating predictor variables using dynamic instead of fixed growth stages reduced
RMSE values by 3% to 52%, with an average reduction of 24% across models considering
different combinations of temperature, precipitation and leaf area index predictors.

Figure 3. Performance of statistical models in emulating synthetic APSIM point-scale simulated rice yields at different
noise levels (horizontal axis). Panels are labelled with the temporal aggregation of predictors, and colours of line plots in
each panel denote the different model predictor variables considered in each model specification. The vertical axis shows
either R2 (left) or RMSE (right) for out-of-sample validation based on a retained 20% of the 201,600 unique APSIM yield
simulations perturbated by different noise levels. T: Temperature, P: Precipitation, L: LAI, FS: Fixed Season, DS: Dynamic
Season, FSTG: Fixed Crop Growth Stage, DSTG: Dynamic Crop Growth Stage.

Another noticeable trend from examining Figure 3 is that model performance im-
proved by integrating multiple weather and crop predictor variables, regardless of the
magnitude of the mean-preserving spread that we applied by introducing random noise to
yields in the validation sample. A comparison of alternative model configurations using
unseen validation datasets in Figure 3 (i.e., comparing seven continuous lines shown with
different colours) shows that the best model performance—in terms of both R2 and RMSE
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at different noise levels—was achieved when combining temperature, precipitation and
leaf area index predictors. Reliance on a single variable alone appeared to reduce the
capacity of our models to capture the variability in crop yields simulated by APSIM accu-
rately. Leaf area index alone was found to be the least robust individual predictor of yields,
with models based on temperature, precipitation or a combination of these two variables
generating significantly more accurate yield estimates. For example, for dynamic stage
model specifications, on average (i.e., across all of the considered noise levels), the RMSE
of models considering only leaf area index as a predictor was 1147 kg/ha compared with
993 kg/ha for models including only weather predictors (temperature and precipitation),
an increase in RMSE of approximately 15% when only using leaf area index as a predictor
of yields.

In the context of agricultural index insurance, it is important that methods of yield
estimation minimise risks to farmers and insurers associated with either false negative or
false positive events. Considering a hypothetical insurance contract where payouts are
triggered if estimated yields fall below 70% of yield potential (defined as the maximum
yield across perturbated simulated weather scenarios and management practices), we
found that performance of different model specifications in terms of false negative and false
positive events showed broadly comparable trends that were visible over R2 and RMSE
statistics (Figure 4). A decreasing trend of false negative and false positive frequencies was
observed when moving from FS to DSTG aggregation of yield predictors (moving from left
to right columns in Figure 4).

Similarly, reductions in false positive and negative were also found for statistical
models that considered both weather and LAI information simultaneously (TPL model
configuration variation shown with brown colour; Figure 4) as opposed to model types that
used only weather variables as predictors (T, P and TP model configurations shown with
red, blue and purple colours, respectively; Figure 4). Overall, we found that the total basis
risk (average of summation of false positive and false negative risks across all of the con-
sidered noise levels) associated with conventional contracts (i.e., fixed season or fixed stage
weather index contracts) could be potentially decreased by 16% by implementing yield
estimation methods that utilised phenology specific information on both meteorological
and crop growth conditions.

This reduction in basis risk diminishes, however, as we introduced more noise to
the reference datasets during validation. It is important to keep in mind that measured
basis risk in insurance contracts will be higher—and basis risk reductions more difficult
to realise—when analyzing model performance using empirically observed yields, which
will inevitably include more noise than the simulated yields in our validation datasets.

3.2. Performance of Statistical Models in Estimating Crop Yields at Plot and GP Levels

For application in the context of agricultural insurance, it is important to assess the abil-
ity of statistical models to reproduce not only synthetic yields simulated by APSIM but also
observed yield in real-world smallholder farming environments. We, therefore, evaluated
the ability of our best performing ‘index’ (i.e., model specification considering temperature,
precipitation and LAI predictors disaggregated by growth stage; see Sections 2.4 and 3.1)
against observed yields from CCEs conducted in the Jajpur district in the state of Odisha in
eastern India, at the plot level (80 observation points) and averaged by GP level (20 obser-
vation points). It is noteworthy that we did not aim to identify the best-performing model
using the observed yield data because of limitations in observed yield data availability.
Specifically, a lack of sufficient variation across space and time to reliably estimate our sta-
tistical yield models, whilst this is the exact same challenge in index design that motivated
our use of crop simulation models.
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Figure 4. The frequency of basis risk in terms of false positive (%), false negative (%), and total summation (%) of them
(shown in top, centre and bottom rows, respectively) associated with different model combinations (shown by different
colours), heterogeneity levels (shown in different panels differing by columns), and introduced noise levels (horizontal axis)
considered in this study. T: Temperature, P: Precipitation, L: LAI, FS: Fixed Season, DS: Dynamic Season, FSTG: Fixed Crop
Growth Stage, DSTG: Dynamic Crop Growth Stage.

We find that our statistical model, developed based on the synthetic yield data simu-
lated using APSIM, explained around 54% of the variance in observed rice yields at GP
level, with an RMSE of 546.27 kg/ha (Figure 5b and Table 2). Performance of yield estima-
tion at plot level was lower, with our model able to explain approximately 26% of observed
yield variability with an RMSE of 860.1 kg/ha (Figure 5a and Table 2). Moreover, the
analysis of false positive and false negative ratios of the estimated crop yields demonstrates
that our model could estimate crop yields with 22.5% and 20% of false positive ratios and
12.5% and 0% false negative ratios at plot and GP levels, respectively. Model accuracy was
lower when predicting observed yields than when predicting APSIM simulated yields,
likely due to constraints imposed by the spatial resolution of weather data, gaps in LAI
time series caused by cloud cover, and uncertainties in the underlying radiative transfer
model used to translate spectral data obtained from Sentinel-2 and Landsat-8 into estimates
of rice LAI during the season. However, an R2 of 0.54 for GP-level yields suggests that such
an approach may offer a useful tool for the design of index insurance products at this scale,
for example, in the context of supporting area-yield index insurance products within the
Indian Government’s PMFBY crop insurance program.
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Figure 5. Scatterplot comparing estimated and observed rice yields (kg/ha) at (a) plot, and (b) Gram Panchayat (GP)
spatial scales.

3.3. Comparison of Statistical Models Developed Based on Vegetation Indices and Process-Based
Crop Model Simulations

As previously highlighted, a common challenge when developing and designing
index insurance products is the limited availability of yield observation datasets to train
underlying models that quantify yield losses based on proxy data. To evaluate the value
provided by using crop models to generate larger synthetic yield training datasets, we
compared the performance of our models reported in Section 3.2 with plot and GP level
yield estimates derived using statistical vegetation index (VI)-based models developed by
using observed yield data from CCEs. This is a common approach underlying the design
of many existing index insurance products in India and other parts of the world [47–49],
and, as such, understanding what, if any, improvements in accuracy are obtained from
using crop models alongside satellite data is critical to understand the value-added from
more complex approaches.

We considered two alternative potential VI-based yield models, using as predictors the
average values of either NDVI or EVI. In each case, the used predictor was disaggregated
by averaging over the four main rice crop growth stages to match the best performing
model stemming from Section 3.2. We developed each statistical VI model using the RF
approach, with VI values for each field and growth stage calculated using spectral bands
data and observations of growth stage timings obtained from Sentinel-2 and Landsat-8 for
each field, as described in Section 2.3. Note that we trained these alternative models by
using a bootstrap approach (1000 times) and validated them through a k-fold validation
scheme by considering 5-folds with 16 observations in each of them to minimise risks of
overfitting, which could occur if all yield data were used in training and validation. We did
not include weather data as an additional predictor in these models, given that the coarse
resolution of available gridded weather products means that there was an insufficient
spatial variation to adequately capture the effects of spatial weather heterogeneity in model
training. Moreover, it is common for index insurance products to typically consider only
vegetation indices or only weather data as predictors, with relatively few attempts to date
to combine these predictors in index insurance contracts.

Similar to the trends observed in the previous analysis of statistical yield models that
were derived based on APSIM simulated yield data, we found an improvement in the per-
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formance of VI-based models when aggregating yield estimation from plot to the GP level
(Table 2). However, comparing the performance of VI and crop model derived yield esti-
mates at the same spatial scale, predictions by our crop model approach far outperformed
the predictions from both VI models. For example, at GP scales, our preferred model cap-
tured 54% of observed yield variability, whilst VI-based models captured on average only
39% of yield variability (36% and 42% for the NDVI- and EVI-based model, respectively).
VI-based models are also associated with larger RMSEs; on average, RMSEs were 12%
higher than in the statistical yield model that we estimated from APSIM simulations.

Table 2. Accuracy assessment of statistical models developed based on vegetation indices and process-based crop model
simulations. CCE: Crop Cutting Experiments, GP: Gram Panchayat, Std: Standard Deviation.

Model
Plot Level GP Level

R2 (Std.) RMSE (Std.) NRMSE (Std.) R2 (Std.) RMSE (Std.) NRMSE (Std.)

NDVI 0.11 (0.03) 990.82 (36.09) 0.24 (0.01) 0.36 (0.07) 633.45 (47.05) 0.16 (0.01)
EVI 0.11 (0.03) 1000.20 (35.44) 0.24 (0.01) 0.42 (0.09) 590.49 (47.63) 0.15 (0.01)

Crop Model 0.26 (0) 860.08 (0) 0.21 (0) 0.54 (0) 546.27 (0) 0.14 (0)

Moreover, VI-based models are also associated with higher levels of uncertainty de-
pending on which data are included in model training (for instance, we found a 47.63 stan-
dard deviation of RMSE values of 1000 bootstrap EVI based yield estimations at the GP
scale). Where the total number of yield observation data is limited, as is the case here, and
is common in almost all smallholder environments, this result suggested that the use of
APSIM or other crop models can play an important role in improving the accuracy and
robustness of yield-index relationships necessary for designing index insurance products
relative to satellite vegetation indices alone.

4. Discussion

Relative to other forms of insurance and risk financing, index insurance schemes can
provide a relatively low-cost and easy-to-implement solution to protect smallholder farmers
against production risks posed by extreme weather events and climate change [50,51].
However, the value of these products for farmers and insurers is strongly predicated on
the ability to base insurance payouts on index relationships that reliably and accurately
quantify crop yield losses at disaggregated spatial and temporal scales [10].

We show that combining crop modelling and satellite-based crop phenology measure-
ments can provide a scalable solution for deriving the relationship between yields and
proxy indices at spatial scales relevant for agricultural insurance. Our findings highlight
that accounting for field-level heterogeneity in crop phenology and combining multiple
types of predictor variables, including both weather and leaf area indices, can significantly
enhance model accuracy, in particular when aggregating to spatial units larger than an
individual plot; which is common for area-yield index insurance in smallholder farming
systems, such as those in our study area [52]. It is also important to note in this regard
that in the crop model simulations, we did not use the information of conducted CCEs
(the CCEs information were used as an empirical validation), and we only used publicly
available information on typical ranges of cropping practices and varieties to generate
synthetic yield training data; we did not measure these variables to implement crop models
at the plot level, which adds to the scalability of this approach. Our focus on rice in Odisha
is a specific use case, but one could apply this approach in any other region, and for any
other crop, by using a biophysical crop simulation model for the targeted crop, training a
statistical yield model using the data arising from these simulations, and using this model,
combined with actual weather data and data from remote sensing imagery on growth
stages and LAI, to predict yields empirically in that region.

Our findings do not support a finding from previous research combining earth ob-
servation data and crop models: that yields can be estimated using either a single (peak
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or aggregated total) value of LAI for the season or multiple LAI predictors that relate
to specific satellite image dates but are not directly correlated with crop growth stage
timings [53–55]. Due to the lack of variation across space and time of our field level ob-
servations, we were unable to validate all model combinations and aggregation levels
with field measurements. Nonetheless, the comparison of models derived from simulated
data in terms of their ability to capture heterogeneity in simulated yields suggests that
disaggregating predictor variables by crop development stages enhanced the accuracy
of predicted yields relative to simpler seasonal aggregation. This will be true, especially
when heterogeneity in phenology between fields and seasons is large due to differences
in farm management practices, crop varietal choices, and weather conditions. We also
found that insurance index performance can be improved further by combining LAI and
weather predictor variables, which we attribute to the ability of weather data (in particular
temperature predictors) to capture crop yield losses associated with deficient grain filling
or pollination that would not be fully captured by changes in LAI alone [56].

Although the value of phenology data for improving yield estimation and index
insurance has been demonstrated previously [21,57,58], these studies were focused on
developed countries where extensive and longstanding phenological monitoring networks
exist. We show that it is possible to replicate some of these improvements in yield esti-
mation accuracy, and we highlight for smallholder environments the potential to reduce
basis risk in index insurance using satellite-derived information on the timing of key de-
velopment phases. The value of phenological information was largest when considering
not only heterogeneity in the timing of the start and onset of the crop growing season
but also in the timing of specific individual growth stages. This result is consistent with
evidence suggesting that the effects of extreme weather on yields of rice and other crops
are strongly dependent on the timing of shocks during the season, with the potential for
larger yield losses if weather-related shocks occur during critical growth periods, such
as anthesis [25,59]. Critically, only adjusting the seasonal time period for index insurance
contracts, for example, to account for potential impacts of delayed transplanting of rice in
years for with late monsoon onset [24], would fail to exploit the true value of phenological
information for yield estimation.

Whilst our results suggest potential benefits of using crop model simulations to
support the design of agricultural index insurance products, several approaches could
be used to improve the accuracy of yield estimation at the plot level, which would aid
both the design of plot-level index insurance and the accuracy of larger-scale area-yield
index insurance. For example, in this study, we relied on a relatively simple satellite-based
method for estimating intra-seasonal crop phenology. Integration of in-situ imagery, for
example, taken by farmers through smartphones at regular intervals during the season [22],
could help to reduce uncertainties in satellite-derived growth stage timings whilst also
providing a supplementary source of information to help to validate fitted LAI time series.
Such data would be especially valuable for crops grown during the rainy season, a period
where substantial gaps in satellite imagery often occur due to high levels of cloud cover. In
addition, in-situ imagery could provide a mechanism for detecting crop damage that may
be difficult to reliably correlate with weather or vegetation indices, for example, mechanical
damage to crops caused by flooding, wind and hailstorms or pests and diseases [60]. These
factors are a potentially important driver of errors in plot-level yield estimation, suggesting
that integration of in-situ imagery should contribute to reducing basis risk, especially at
these finer spatial scales.

A further factor that may explain the larger errors in yield estimations observed in our
analysis at the plot versus GP scales is the coarse resolution of weather data available in
our study region. The ERA-5 reanalysis dataset used in this study has a spatial resolution
of 0.25 × 0.25 degrees (approximately 25 km × 25 km), which is sufficient to capture
heterogeneity in weather conditions between GPs but not between individual plots within
a GP. Given the important role of weather data in yield estimation (Section 3.1), this
suggests that the provision of finer resolution weather data could play an important role in
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supporting reductions in basis risk of index insurance products. However, the development
and validation of fine-scale weather data products remain challenging in many smallholder
environments due to the limited density and completeness of in-situ weather records [61],
in contrast to more extensive monitoring networks found in regions such as Europe and
North America [8].

Finally, a key finding from our analysis is that the use of crop models provides added
value for yield estimation beyond the use of statistical models based solely on satellite
vegetation indices. Nevertheless, it is important to note that whilst our analysis considered
two of the most commonly used vegetation indices for index insurance and yield estimation
(NDVI and EVI), alternative types and combinations could have been used. For example,
studies by Enenkel et al. (2018) [12] and Mollmann et al. (2020) [62] showed that developing
more complex statistical models using multiple types of vegetation indices from different
satellite datasets (e.g., Sentinel-1 or Sentinel-2) can yield more robust crop yield information.
Hence, future research should seek to evaluate a broader range of vegetation index models
to explore further the added value provided by the integration of crop models alongside
satellite and other data sources. Moreover, future analyses should also consider how
trade-offs between the two types of methods are affected by the amount and completeness
of observational yield data and satellite imagery used to train statistical VI-based models.
We hypothesise that the added value of crop models will be highest in environments where
observational yield datasets are smaller, where satellite imagery is strongly affected by
cloud cover, and where small plot sizes pose a challenge for remote sensing with currently
available resolutions of satellite imagery; each of these are common characteristics of
smallholder farming environments that are the focus of this study.

5. Conclusions

Index-based insurance provides a potential solution to transfer risks caused by crop
failure away from smallholder farmers, providing farmers with a timely payout in the
event of a poor harvest without the need for expensive manual verification of yields as in
the case of traditional indemnity insurance. However, basis risk, that is, a poor correlation
between actual yield losses and losses estimated based on the insurance index, remains a
key challenge to scaling index insurance, reducing farmers’ willingness to pay for insurance
products and their ability to adapt to climate variability and change. In this study, we
evaluated the potential to improve the accuracy of index insurance by combining process-
based crop models, satellite-derived phenological metrics, and geospatial weather data to
design index insurance products, focusing on a case study of rainfed rice production in the
state of Odisha in eastern India.

We showed that when accounting for field-level heterogeneity in crop development
and timing of extreme weather events, it is possible to reliably estimate rice yields without
the need for extensive observational yield training datasets and without having to apply
real-time data-demanding plot-level crop simulations. Our analysis demonstrated that
yield estimation is improved by considering both agronomic (i.e., leaf area index) and
meteorological (i.e., temperature and precipitation) drivers of yield variability. Performance
also increased when aggregating individual plot-level estimates to the village or GP-level
scales, suggesting that approaches proposed in this paper may have value in reducing
reliance on the time and resource-intensive CCEs that are typically used to support the
assessment of losses in area-yield index insurance products in India.

Our findings further showed that the accuracy of yield estimation by our preferred
crop model and satellite information approach significantly outperformed models based
solely on satellite vegetation indices and was consistent with existing research using crop
models and satellite data for yield estimation in India, even though these studies have
typically focused on crops such as wheat where satellite imagery is much less affected
by cloud cover. Overall, our results highlighted the potential of technologies, such as
crop modelling and satellite remote sensing, to support smart phenology-driven index
insurance contracts, with potential for further improvements in yield estimation accuracy
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as high-resolution satellite and in-situ crop monitoring becomes increasingly viable in
smallholder environments.
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