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Abstract: Following the advancement and progression of urbanization, management problems of the
wildland–urban interface (WUI) have become increasingly serious. WUI regional governance issues
involve many factors including climate, humanities, etc., and have attracted attention and research
from all walks of life. Building research plays a vital part in the WUI area. Building location is closely
related with the planning and management of the WUI area, and the number of buildings is related
to the rescue arrangement. There are two major methods to obtain this building information: one is
to obtain them from relevant agencies, which is slow and lacks timeliness, while the other approach
is to extract them from high-resolution remote sensing images, which is relatively inexpensive and
offers improved timeliness. Inspired by the recent successful application of deep learning, in this
paper, we propose a method for extracting building information from high-resolution remote sensing
images based on deep learning, which is combined with ensemble learning to extract the building
location. Further, we use the idea of image anomaly detection to estimate the number of buildings.
After verification on two datasets, we obtain superior semantic segmentation results and achieve
better building contour extraction and number estimation.

Keywords: deep learning; building extraction; ensemble learning; GAN

1. Introduction

The wildland–urban interface (WUI), a formal land classification specification, first
appeared in the research budget of the US Forest Service in 1978. It is used for urban
areas that need to be strengthened for fire protection [1]. Because the WUI is located at the
boundary between the city and the wasteland, mountain fires caused by climate change
or human factors are likely to affect the residential areas. Moreover, it is not only fire
itself that threatens the city but also precipitation after fires, which may evolve into floods
and debris flows, increasing the harm to residents and local infrastructures [2]. Therefore,
the management of this kind of area cannot be simply considered the same as that for
a wasteland. In recent years, with the acceleration of urbanization and the deepening
of climate change, extreme weather events of forest fires have become more frequent
and serious [3]. With the emergence of several global fires in recent years, researchers
worldwide are very concerned about fires in WUI areas and their prevention.

In China, with the expansion of the urban area, the urban active population continues
to shift to the suburbs and the forest areas. Many areas with WUI characteristics were
objectively formed and have become increasingly large. Due to the lack of relevant manage-
ment practices, some buildings located at the boundary between the city and the wasteland
often suffered losses because of sudden forest fires. In the WUI area, the core issue of
people’s concern is always the safety of property and life. Among many solutions, setting
up related management measures for buildings is an effective method. In foreign countries,
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Manzello et al. conducted research on building specifications about building materials
and structures under the threat of WUI fires [4]. Kowronski et al. propose to delineate
a certain buffer zone around the building domain for fire protection [5]. As determined
from the above studies, scholars have attempted many approaches to protect buildings
from fire damage. However, there are still many deficiencies in the research on obtaining
information about buildings from the WUI area.

Remote sensing methods provide information with a large sensing range and rapid
acquisition speed. Using remote sensing image, we can quickly scan the WUI-related area
to obtain the ground profile and identify fine features of ground objects, satisfying the
objectives of global browsing demands to support all needs of disaster monitoring, rescue
command and post-disaster governance based on detailed information. In recent years,
researchers have used aerial photographs and general surveys of ground personnel to
conduct building damage assessments, and they found that remote sensing methods can
more easily and accurately obtain information regarding roof damage to buildings [6].
For decades, researchers have attempted different methods and combined different remote
sensing data to extract building information. In 2014, Awrangjeb used LIDAR data com-
bined with local DEM data to extract buildings and building roofs [7]. In 2018, Awrangjeb
proposed an improved interpolation method to preserve the geometric features of buildings
in order to better distinguish between buildings and vegetation in LIDAR [8]. Zhang et al.
used UAV data to establish a process for extracting information about damaged buildings
after an earthquake, and the approach can still operate on cloudy and rainy days, providing
great helps for disaster relief [9]. Zhiqiang et al. used high-resolution remote sensing data,
combined with object-oriented segmentation and semantic segmentation, and achieved
good results in building change detection [10]. It is not difficult to determine from recent
studies that the use of remote sensing methods to extract building information for WUI ar-
eas offers both macroscopic and comprehensive advantages. Using high-resolution remote
sensing data to extract information for building clusters in WUI areas can effectively make
a WUI regional building management strategy. However, in many studies, scholars mostly
use handcrafted features to extract buildings, which is inefficient and not accurate enough.

In the past few years, deep learning algorithms have made breakthrough progress
in the field of image processing, and the effects of remote sensing information extraction
have also been greatly improved with the rapid development of artificial intelligence.
There are increasingly more researchers attempting to extract information in combination
with artificial intelligence algorithms. In 2016, Guo et al. used CNN and Adaboost
ensemble learning methods to extract villages in remote sensing images based on Google
images [11]. In 2017, Chen et al. used the RCNN network to improve the problem of
detecting rectangular frames that could not be rotated, and they conducted a building
extraction test on a public dataset [12]. In the same year, Bittner et al. introduced DSM data
and used a fully convolutional network to extract buildings [13]. In 2018, Yang et al. used
convolutional networks to extract buildings on several continents and mapped them into
maps in the United States [14]. In the same year, Li Xiang et al. used the adversarial network
method to obtain the optimal segmentation map of a building [15]. Xu et al. improved the
structure of the UNet network and combined it with the guided filter to extract buildings,
and they conducted experiments on two public datasets, achieving improved results [16].
In 2019, Li et al. comprehensively considered four kinds of neural network structures and
extracted the developed urban areas [17]. In 2020, Wu et al. used a frameless building
instance segmentation scheme to extract suburban buildings [18]. Lu Beiru et al. proposed
a deep learning-related improvement plan for urban buildings [19].

As seen from the above studies, many methods for building research have achieved
good results. However, the following two problems remain in the above research. One
issue is that the dataset used mainly pertains to urban areas, and the relevant methods are
not effective when applied to WUI areas. Regardless of whether the research endeavors for
building extraction occur in Chinese or international industry, they are mostly concentrated
according to the improvement of popular algorithms. The datasets employed are mostly
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from dense urban building areas or international public datasets. However, WUI area
buildings are different from urban buildings: they have a high density of aggregation,
different shapes, and irregular distributions. At the same time, buildings in mountainous
areas are easily blocked by trees, which brings great difficulties to building information
extraction. Another consideration is that research on building information extraction
algorithms is not suitable for practical applications. There are also many omissions and
misclassifications in densely built areas. It often occurs that several buildings are detected
as one building, so it is not sufficiently accurate to directly calculate the number of buildings
using the results of instance segmentation or target detection.

Therefore, in this paper, we propose a method for extraction of building information
and calculating its number based on deep learning. Relevant research was conducted in
the Yaji Mountain National Forest Scenic Area in Pinggu District, Beijing. We chose the
semantic segmentation network with the highest overall extraction accuracy as the basic
information extraction network. We chose the Unet network framework among many
semantic segmentation networks. Considering the complex situations of buildings in the
WUI area, we adjusted many parameters to improve the model and used ensemble learning
to integrate models, thus improving the accuracy of building extraction in WUI. According
to our semantic segmentation results, we evaluated the effects of building segmentation and
further estimated the number of buildings in the research area. To ensure the applicability of
the method, we also conducted experiments on the public WHU building dataset produced
by Wuhan University. The main contributions of our work are summarized as follows:

• A technical method for constructing a dataset in the research area based on high-
resolution remote sensing data is proposed. We use an extraction algorithm that only
requires a small number of samples to extract some buildings, reducing the labor and
time costs required for deep learning sample production.

• We also propose a method of organically combining deep learning and integrated
learning. After researching the WUI region, we have identified data augmentation,
loss function adjustment, and other ways to optimize the model. We trained the net-
work with different parameters to obtain deep learning models with large differences
and then selected from these models. Finally, all selected models were integrated to
predict the final semantic segmentation results.

• To further obtain the number of buildings in the area, in this paper, we use the
generative adversarial network to identify and reconstruct the image of a single
building based on the results of the semantic segmentation of the building. Then, we
separate single buildings and non-single buildings from the semantic segmentation
results and finally estimate the number of buildings in the extracted results by using
the building area.

The full text is organized as follows. Section 2 introduces building information extrac-
tion methods based on comprehensive ensemble learning and UNet semantic segmentation
and application methods based on adversarial neural networks. Section 3 introduces the
remote sensing images used in the experiment, the experimental area, the datasets that we
used and accuracy evaluation methods used in the experiment. Section 4 introduces the
experimental results and analyzes the details. Section 5 summarizes the article and looks
forward to future directions of continuous efforts to improve and perfect this work.

2. Methods

The overall structure of our complete work is shown in Figure 1, which is mainly
composed of three parts. Figure 1a is to quickly construct a sample set through remote
sensing images, Figure 1b is to use the constructed sample set to train to obtain a better
model, and Figure 1c is to use our prediction results for further application. It is described
in detail as follows: The first part includes the rapid construction of sample sets in the
WUI area and some processes of remote sensing image preprocessing. The sample set
construction is shown in Figure 1a, where the overall construction process includes three
steps. First, we preprocess remote sensing images to obtain high-resolution image results
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with geographic coordinates; second, we use machine learning algorithms to distinguish
some of the images that are easy to distinguish; finally, some previous targets are checked
and manually corrected, and the remaining unidentified vector parts are added. Figure 1b
introduces our building semantic information extraction process. In this step, we modify
the parameters of the basic UNet network structure so that the network trains to obtain
different models, and we select the model results that we need through correlation-based
feature selection (CFS) adaptive search. Finally, the selected model prediction results are
integrated to obtain our final semantic segmentation results. Figure 1c introduces our idea
for distinguishing the number of buildings from the results of semantic segmentation. It
mainly consists of two parts. The first part uses the idea of the generative adversarial net-
work (GAN) to make a fuzzy judgment regarding the number of buildings [20], which can
distinguish whether the image includes a single building or multiple buildings. The second
part is a relatively accurate estimation of the number of buildings in the area, which utilizes
the result of the fuzzy judgment in the previous step. We divide the area of the results of
multiple buildings by the regional average of the results of a single building to calculate
the final number of buildings.

Figure 1. Overall structure;The meaning of each part is as follows:(a) Image preprocessing and rapid sample construction;
(b) Multi-model prediction and ensemble learning; (c) Building segmentation and discrimination.

2.1. Construction of a Sample Set

To reduce labor costs, we propose a scheme to simplify the construction of building
samples. The main idea is to extract buildings that can be recognized by the general
machine learning algorithm, these buildings will be converted into a vector. The specific
process results are shown in Figure 2. We use multiple steps including algorithmic rough
extraction, smoothing denoising, corrosion expansion, and edge search vectorization to
obtain our pre-extraction results. In our experiments, we used the maximum likelihood
classification method to perform preliminary building target extraction and then used the
3 × 3 morphological operator to perform multiple corrosion expansion to smooth the
edge of the building. Finally, the obtained raster extraction results are converted to ArcGIS
supported by the Python GDAL library shape vector format:

The quantity of data in a single remote sensing image is too large to be read at one time
for training because of limited computer memory. For example, the image size used in our
experiment is 10,673 × 20,220, but the image size usually used in deep learning training is
approximately 500 × 500 and generally does not exceed 1500 × 1500. Therefore, the image
needs to be segmented before deep learning model training. In addition, controlling the
ratio between positive samples and negative samples to prevent most training samples
from having no target will make our model difficult to fit. Usually, we also need to ensure
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that our target is within the cutting range when performing sample segmentation. Figure 3
shows one of the slice results that we obtained.

(a) Original image (b) Classification (c) Postprocessing (d) Edge tracking result (e) Vector result

Figure 2. This group of images represents the process diagram of the vector pre-extracted by a simple machine learning algo-
rithm, and their respective meanings are expressed as follows: (a) original image, (b) classification result, (c) postprocessing
result, (d) building edge tracking result, and (e) vector result.

(a) Original image (b) Label (c) Overlay

Figure 3. Sample segmentation results.

After completing the labeling and data cutting of actual data, we selected some data
transformation methods to enhance our dataset for the WUI region. Data augmentation can
increase the diversity of data and make the trained models more stable; it is a common data
preprocessing method in the field of deep learning. The existing data augmentation effect is
better in the form of random combination using several conventional data transformation
methods. The data transformation methods selected in this article are color adjustment, data
mirroring, image scale adjustment, rotation, and cropping. In this study, we control whether
the data augmentation is performed and the specific augmentation amplitude by generating
a random number. The specific operations are the following: (1) Convert the original image
to HSV space and generate a random number not less than a given value. This random
number is subtracted or added to the three bands of H, S, and V, and then, the image is
converted to RGB. (2) For random mirroring, generate a random number between 0–1; if
it is greater than the given value, mirror the original image and the corresponding label
horizontally. (3) For random rotation, also randomly generate a random value that is not
less than a given value; rotate the image and label clockwise according to the random value.
The given value that we use here is 60 degrees. (4) Randomly adjust the scale, randomly
generate a scale factor not less than 1 and not greater than the given scale factor, and enlarge
the image and the corresponding label. The scale factor given in our experiment is 1.5.
(5) Given a crop size, randomly crop an area in the rotated image. The crop size given in
this article is 500. The specific content is shown in Figure 4.
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(a) original image (b) HSV (c) flip (d) rotate (e) scale (f) clip

Figure 4. Sample segmentation results.

2.2. UNet Network Structure

In recent years, deep learning has become the most advanced tool for pixel classifi-
cation in remote sensing and other fields. Fully convolutional networks are used as an
effective tool for semantic labeling of high-resolution remote sensing data [16]. In 2015,
Ronneberger et al. proposed the UNet semantic segmentation network for medical image
segmentation, especially for cell segmentation [21]. The UNet network structure follows
the encoding–decoding structure of its predecessors, and on this basis, each upsampling is
fused with the same scale as the number of channels corresponding to the feature extraction
part. This design greatly relieves the space constraint caused by downsampling and the
loss of information improves the accuracy of semantic segmentation. The extraction of
buildings from remote sensing images has certain similarities with the extraction of cells
from medical images. In recent years, it has also been determined that the use of the
UNet network to extract buildings from remote sensing images has achieved better re-
sults [16,22,23]. In this article, the main body still uses the Unet network structure, and the
overall network structure is as shown in Figure 5.

Figure 5. Unet network structure.

2.3. Ensemble Learning

Ensemble learning completes the learning task by combining multiple models. The gen-
eral strategy of ensemble learning is to generate a group of “individual learners” and then
to use a certain strategy to combine them. The model selection of ensemble learning
follows the principle of “good but different”; that is, it will be better to use several models
with higher accuracy and greater model differences for joint prediction. During training,
the convolutional neural network itself saves multiple models according to the different
effects on the validation set. There are natural differences between the models, which
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meets the application conditions of ensemble learning to a certain extent. Second, there are
many parameters and hyperparameters of convolutional neural networks. In the process
of adjusting the training parameters, there is often a model effect without breakthrough,
but the prediction results are very different. These models naturally also conform to the
application of ensemble learning. Therefore, when the accuracy of the model is difficult
to improve, considering that the ensemble learning method has become another effective
approach. The process is roughly shown in Figure 6. Through different parameter adjust-
ments on the basic network, different prediction results are generated. The results are then
integrated according to the voting method to produce the final result.

Figure 6. Ensemble structure.

Choosing a suitable model is the most critical step in ensemble learning. The key
to model selection is the evaluation of a single model and a combination of different
models. The accuracy evaluation method of the model is shown in Section 3.2. Through
Formulas (5)–(7), we select a series of initial models with improved accuracy. Then, we
use Formula (1) to calculate the correlation coefficient r of the model, and the correlation
number r is used to measure the correlation between the two models. The weaker the
model correlation is, the closer the value is to 0. However, there is a natural contradiction
between diversity and accuracy. Generally, the model trained by the network has higher
accuracy, so the correlation coefficient value r is generally close to 1. The meanings of the
parameters in Formula (1) are shown in Table 1, a represents the number of positions where
the two models have positive result in the image, b and c represent that the two prediction
results are 1 positive and 1 negative, and d represents that the two prediction results are
both negative.

rij =
a · d − b · c√

(a + c) · (a + b) · (b + d) · (d + c)
(1)

We then obtain the results of multiple models as displayed in the table, and the differ-
ence matrix of the model is shown in Table 2. To select the best model combination, we use
CFS (correlation based feature selection). The core of the feature search is to use a heuristic
search method to search the model with the largest difference [24]. After obtaining the
correlation matrix of all models, we evaluate the value of each model or model combination
by calculating the heuristic equation metric, and then, we can obtain our optimal model by
forward search. The calculation method for the metric is shown in Formula (2), where k
represents the k-th model, rcp represents the correlation coefficient between the predicted
results of the model and the real situation, and rpp represents the correlation coefficient
between the models.
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Table 1. This is the contingency table of the results of classifiers Pi and Pj.

Pj = 0 Pj = 1

Pi = 0 a b
Pi = 1 c d

Finally, these selected models are integrated by using the classical voting method in
ensemble learning. For our problem, the value of a pixel in the prediction result can be
regarded as the probability of buildings in the image. Therefore, we sum the probability
values of the outputs of these models and divide them by the number of models to obtain
a probability average of the overall prediction results. If the probability is greater than 0.5,
it is considered a building.

Metrics =
k · rcp√

k + k · (k − 1) · rpp

(2)

rcp =
1
N

N

∑
k=1

rcpk (3)

rpp =
1
N

N

∑
j=1,k=1,j<k

rpj pk (4)

Table 2. This is the correlation coefficient matrix of several models.

P1 P2 ... Class

P1 r11 r12 ... rc1
P2 r21 r22 ... rc2
... ... ... ... ...
Pn rn1 rn2 ... rcn

2.4. Single Building Detection and Number Statistics

Traditional semantic segmentation can only be done in the previous step, but such
results are limited in the practical applications of buildings. After obtaining the semantic
segmentation results of the buildings, we only acquire the approximate distribution of the
buildings, whereas most practical applications are for a specific building. Therefore, we
combine the nearby pixels and convert our semantic segmentation results into instance
results to achieve our object-level applications. In the experiment, we used the Unicom
domain function (named cv::connectedComponents) provided by OpenCV to aggregate
pixels to extract different objects. The specific effect is shown in Figure 7, where Figure 7a
is the original image, Figure 7b is the semantic segmentation result, and Figure 7c is the
result of the semantic segmentation instantiated by the OpenCV algorithm.

In our object-level results, there are not only some results with one building but also
some results with multiple buildings. Because of the dense distribution of buildings in
the WUI area, in our semantic segmentation results, the phenomenon that the predicted
pixels are classified as a building is particularly common in our study area. We distinguish
between single buildings and non-single buildings by referring to the idea of abnormal
image detection [20]. We use the images of individual buildings in our original training
data to train the network and then use the trained network model to predict the extraction
results of our semantic segmentation. The result of this anomaly detection adversarial
network is called GanalyNet in [20], which uses the GAN to reconstruct images. The fake
image “Fake Image” is reconstructed through the encoding–decoding structure, and then,
an encoder is used to encode the real image and the generated image into a 100 × 1 vector,
and the difference between the vectors (real image and fake image) is compared to determine
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whether the image is abnormal. The specific structure is shown in Figure 8, the green vector
is the encoding vector before image reconstruction, and the red is the encoding vector
after reconstruction. The reconstruction loss of the image can be calculated by the formula
in the upper right corner. Two curves in the lower right corner shows the difference in
reconstruction loss of different image types.

(a) Original image (b) Prediction (c) Objects

Figure 7. Results of different objects.

Figure 8. Image encoding difference extraction graph.

The essence of our building discrimination method is anomalous image detection.
The network training only uses images containing a single building. Therefore, when
inputting an image containing a single building to determine the reconstruction loss, the re-
construction error is small, but when the input containing images of multiple buildings is
used for judgment, the reconstruction error is large. Therefore, by comparing the generated
vector difference, whether the input image is a picture containing a single building can be
judged. As shown in Figure 8, the entire confrontation network is composed of a generator
and a discriminator. The discriminator is a simple two-class network, and the generator
adopts an encoding–decoding–re-encoding structure. Figure 8 presents the specific details
to the reader. There are two key points in the whole structure. One key point is the down-
sampling during structure encoding. To fully preserve the position information and texture
details, the downsampling mainly uses the convolution function with step size. The second
key point is the design of the loss function. Here, there are two main loss functions related
to the generator part: encoding vector loss and reconstruction loss. Among them, recon-
struction loss is the most important and controls the fitting of the entire network. Generally,
its loss accounts for the entire network loss of more than 90 percent. The vector loss is our
criterion for anomaly discrimination. The larger the value is, the greater the possibility of
anomalies. In our application, the greater the value is, the greater the probability that the
image contains more than one building.
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To produce the final statistics regarding the number of buildings in the WUI area,
we estimate the number of buildings in different areas using the building results that we
have extracted. The specific method is to obtain the average value of the area of a single
building in different regions by a statistical method and then to divide the area of the
buildings in an image with multiple buildings that we judged by this average value. In this
way, the number of buildings included in an image with more than one building can be
obtained, and the number of buildings that we estimate is ultimately obtained.

3. Dataset and Evaluation Metrics
3.1. Dataset

Because this article mainly studies the emergency events in the WUI area, to ensure
that the monitoring area can obtain the data as soon as possible, we used the domestic
remote sensing data SuperView-1 for the experiment, for which the spatial resolution of
the panchromatic band of the data is 0.5 m, and the spatial resolution of the multispectral
band is 1 m, including R, G, B, and NIR bands. This paper used the fusion result of
0.5 m resolution to carry out follow-up experiments. The main area of the experiment
was Yaji Mountain which is located in Liujiadian, Pinggu District, Beijing, and is a famous
Taoist holy land in North China. On 30 March 2019, there was a forest fire in this area, so
the study of this event has important significance for similar WUI areas in the country.
The specific situation of the field is shown in Figure 9. There are two scenes of SuperView-1
data. Figure 9a shows the data of one scene in summer. The red frame in the picture
shows our test area. Figure 9a shows the data of a winter scene, which is geographically
located to the east of Figure 9b. Among them, the summer data test area includes a total
of 1558 buildings, and the training area includes 2114 buildings. The winter data are
actually used as a supplement to the training data. The winter data include a total of
16,154 buildings. The data in the training area and the test area were partitioned into the
size of 512 × 512 to produce our final sample set, which is called the YJS (which is named
“Yaji Shan” in Chinese Pinyin) dataset in the following experiments.

(a) Summer (b) Winter

Figure 9. These are the two images of SV-1. The left image is 10,803 × 13,786 and shows the main
area around Yaji Mountain, where the red box marks the test area, and the other indicates the training
area; the right 10,673 × 20,220 image is located east of the left image and is a winter image used as a
supplement to the training data.
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To enhance the credibility of our plan, in addition to the research area dataset, we
conducted experiments on the public dataset WHU, which is an open source dataset.
The original images are from the New Zealand land information service network, and the
image coverage is located in New Christchurch, New Zealand (http://study.rsgis.whu.
edu.cn/pages/download/building_dataset.html; WHU building Dataset, access on 18
February 2021.). By sampling most of the aerial images (including 187,000 buildings) to a
ground resolution of 0.3 m, the samples to be used are divided into three parts: training
set (130,500 buildings), verification set (14,500 buildings), and test set (42,000 buildings).
The final dataset results include 4736 images of the training set, 2016 images of the test set,
and 1036 images of the verification set; Figure 10 shows the slicing results of one image.

(a) Origin (b) Label

Figure 10. Sample of the WHU data.

3.2. Evaluation

When using remote sensing data to analyze ground features, our targets are generally
relatively sparse within the entire remote sensing image. With traditional overall accuracy
(OA), our true target situation will be covered by substantial background, which cannot
reflect the actual situation of our targets very well. Therefore, this paper uses the F1
score to evaluate our building extraction results. The F1 score is the reconciled average
value of the recall rate and accuracy rate according to the specific formulas as shown in
Formulas (5)–(7):

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1_score =
2 × Precision × Recall

Precision + Recall
(7)

where TP denotes true positive, FP denotes false positive, and FN denotes false negative.
These indicators are calculated using each tiled pixel-based confusion matrix or cumulative
confusion matrix and are explained as follows. If the real situation in a region is a building
and the prediction is also a building, then the pixels are marked as TP. If the real pixel is a
building but the prediction is not a building, then the pixels are marked as FN. If the real
pixel is not a building but is predicted to be a building, then the pixel is of type FP.

4. Results

In this article, we use the above methods to conduct experiments. To predict the study
area through the network, we can acquire the results of two parts. The first part is the
semantic segmentation. By adjusting the model structure and training parameters, we
obtain the prediction models under different conditions and then use the idea of ensemble
learning to obtain the final result of our semantic segmentation. The second part is the
reprocessing result of the semantic segmentation result, including the processing of the

http://study.rsgis.whu.edu.cn/pages/download/building_ dataset.html
http://study.rsgis.whu.edu.cn/pages/download/building_ dataset.html
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connectivity result, the identification of the number of buildings in the image, and the
estimation of the number of buildings. The overall extraction results are shown in Figure 11.
We show our testing on the YJS dataset and WHU dataset. Figure 11a–e display the testing
process of the WHU dataset, and Figure 11f–j present the results on the YJS dataset.

(a) Origin (b) Label (c) Prediction (d) Object Mask (e) Count Mask

(f) Origin (g) Label (h) Prediction (i) Object Mask (j) Count Mask

Figure 11. General situation results.

Subsequently, this article introduces the basic situation of each part of our experiment.
In Section 4.1, this article introduces the evaluation of several basic network frameworks
and the reason for finally choosing the Unet framework as the basic structure. In Section 4.2,
we introduce our application of integrated learning to improve semantic segmentation
accuracy. In Section 4.3, this article introduces the entire experimental process of further
extracting the number of buildings based on the semantic segmentation results. Finally,
in Section 4.4, we briefly introduce the experimental situation using our building number
estimation. In addition, Some more detailed parameter settings can be seen in Table 3.

Table 3. Network parameter adjustment diagram.

Hyperparameters Setting Details

Basic NetWork

[3 × 3 conv, BatchNorm, Relu, 64] × 3
[3 × 3 conv, BatchNorm, Relu, 128 ] × 3, Maxpool
[3 × 3 conv, BatchNorm, Relu, 256] × 3, Maxpool
[3 × 3 conv, BatchNorm, Relu, 512] × 3, Maxpool

Upsample, Concat (1 × 1 conv, 256), [3 × 3 conv, BatchNorm, Relu, 256] × 3
Upsample, Concat (1 × 1 conv, 128), [3 × 3 conv, BatchNorm, Relu, 128] × 3

Upsample, Concat (1 × 1 conv, 64), [3 × 3 conv, BatchNorm, Relu, 64] × 3
Upsample, Concat (1 × 1 conv, 64), [3 × 3 conv, BatchNorm, Relu, 64] × 3

1 × 1 conv, 2

Data Augmentation

RandomHSV (0, 0, 0); Flip (1); Rotate (0); Scale (1); Clip (512) [Default]
RandomHSV (30, 30, 30); Flip (1); Rotate (0); Scale (1); Clip (512)
RandomHSV (0, 0, 0); Flip (1); Rotate (30); Scale (1.2); Clip (500)

RandomHSV (30, 30, 30); Flip (1); Rotate (30); Scale (1.2); Clip (500)

Loss Funtion ratio Adjustment

CrossEntropLoss (1:1) [Default]
CrossEntropLoss (1:0.5)
CrossEntropLoss (1:4.5)

Other Hyperparameters
Batchsize, 4
Epoch, 200

Base Learning Rate, 0.001
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4.1. Basic Network Structure

In the evaluation of basic network structure, we evaluated the classification effects of
DeepLab V3, FCN, and UNET on the WHU dataset and YJS dataset. By optimizing the
same parameters for different network structures, we have obtained the optimal extraction
structure for each frame structure in the building extraction task. After comparison, first,
the UNet network structure has achieved the best prediction results on both datasets.
Second, the effects of the network model on different datasets are also different. On the
publicly available WHU training dataset, the results achieved by several models are rela-
tively small, while the difference is large for the YJS dataset that we produced. The specific
results are shown in Table 4.

Table 4. Demographic prediction performance comparison by three evaluation metrics.Bald repre-
sents best record and is the network structure we finally adopted.

Method
WHU YJS

Precision Recall F1-Measure Precision Recall F1-Measure

FCN 0.938 0.946 0.942 0.890 0.722 0.797
DeepLabv3 0.946 0.936 0.940 0.797 0.800 0.799

UNet 0.945 0.946 0.947 0.864 0.809 0.835

In addition to the choice of the basic network framework, we used more solutions to
optimize the extraction results. After conducting continuous model adjustment research,
we optimized the model results in terms of data augmentation, loss function, and sample
adjustment of the dataset. Experiments have proven that the adjustment of these parame-
ters brings better extraction effects to the model during building extraction tasks for WUI
areas. The specific experimental accuracy is shown in Table 5. The data augmentation
mainly includes geometric augmentation and optical transformation. The results are shown
in M1–M3 of the table. The loss function transformation is mainly performed to adjust the
proportions of positive and negative samples in the loss function. The results are shown
in M4–M6 of the table. The adjustment of the samples in the final sample set is mainly
performed to adjust the proportion of a single sample. The results are shown in M7–M9.

Table 5. The results of model classification under different training conditions. F1-Measure that is
most suitable for overall accuracy evaluation has been bolded.

M1 M2 M3 M4 M5 M6 M7 M8 M9

Precision 0.881 0.861 0.856 0.786 0.811 0.805 0.871 0.849 0.849
Recall 0.794 0.817 0.820 0.894 0.870 0.881 0.787 0.809 0.821

F1-Measure 0.835 0.838 0.838 0.837 0.840 0.841 0.827 0.819 0.835
M1, M2, M3: The model is obtained by image augmentation with different parameters; M4, M5, M6: The model is
obtained by adjusting the loss weights of positive and negative samples of the loss function; M7, M8, M9: These
models are obtained by adjusting the weight of each training sample in the sample set.

4.2. Ensemble Learning

After the model is fully fit, it is difficult to improve the accuracy through a single
adjustment. At this time, the accuracy of the model no longer changes greatly through
adjustment of the parameters and structure of the model, but rather exhibits small fluctua-
tions in precision, as shown in Figure 12. However, although the accuracy of the model
has not changed much, the degree of difference in the prediction of the model has changed
greatly. The integration of the different models in a certain method can effectively improve
the prediction effect of the model. Numerous models can be obtained in the process of
neural network training, but how to choose the most suitable ensemble model from these
models is a difficult point. Therefore, this paper uses a heuristic search to predict the
ensemble of these models.
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Figure 12. Model results.

After the model is trained, we next need to select the model. The key to selecting a
model is to calculate the model difference degree. We also need to calculate the model
difference degrees between different models for the final prediction to select a suitable
model for integrated prediction. We calculated the model difference between the nine
models; see Table 6 for details. The larger the value is, the smaller the model difference is,
and the smaller the value is, the greater the difference is between the models. The maximum
value is 1, indicating that the models are exactly the same. It can be expected that the
values on the diagonal will all be 1 and that the matrix will be symmetrically distributed.
Therefore, in this article, the values on the diagonal and the repeated half are not repeated
in the table. We can obviously see that if we group according to different parameter
adjustments, we can divide the nine models into three groups. The model differences of the
same group are smaller, whereas the differences of different groups are obviously greater.
This phenomenon illustrates the effectiveness of our adjustment to the model.

Table 6. Evaluation of model difference.

M1 M2 M3 M4 M5 M6 M7 M8 M9 Class

M1 0 0 0 0 0 0 0 0 0 0.819
M2 0.927 0 0 0 0 0 0 0 0 0.819
M3 0.873 0.874 0. 0 0 0 0 0 0 0.816
M4 0.862 0.873 0.857 0 0 0 0 0 0 0.819
M5 0.87 0.877 0.866 0.93 0 0 0 0 0 0.82
M6 0.867 0.871 0.869 0.913 0.91 0 0 0 0 0.822
M7 0.862 0.863 0.858 0.86 0.868 0.855 0 0 0 0.808
M8 0.857 0.853 0.861 0.854 0.856 0.856 0.896 0 0 0.807
M9 0.871 0.867 0.87 0.868 0.867 0.87 0.892 0.907 0 0.813

M1, M2, M3: The model is obtained by image augmentation with different parameters; M4, M5, M6: The model is
obtained by adjusting the loss weights of positive and negative samples of the loss function; M7, M8, M9: These
models are obtained by adjusting the weight of each training sample in the sample set; Class: This item is the
difference between the predicted result and the real situation. The closer the value is to one, the better the
prediction effect. See Section 2.3 for the specific calculation method.

Afterwards, we screened the model through the method. The specific method is to
first select the M6 with the highest model accuracy, calculate the metric, and then add
the model M5 with the second-best accuracy and calculate the metric again. If the metric
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is greater than the former, then M5 joins the model group; consideration continues until
the metric value of the model group no longer improves regardless of what model is
added, the iteration stops, and the final model result is obtained. Here, we obtain the final
model result as M1, M5, M6, and M9. The comparative prediction of the model is shown
in Table 6.

By observing our prediction results, we can determine that as shown in Table 7,
the multimodel integrated learning effect is significantly better than the single-model
prediction result. Through the integration of the models, the overall F1 accuracy of our
prediction has been significantly improved. Second, through our solution for adaptive
model selection, we can see that using a few models can achieve the experimental results
and calculations of all models integrated together and that the accuracy is slightly opti-
mized. Therefore, even without careful model selection, a good result can be achieved by
simply performing joint predictions on the models generated during the training process.
However, by filtering the model, we can obtain a faster prediction speed and a more
stable expected effect. Subsequently, the analysis of the results of semantic segmentation is
complete. Below, we introduce the extraction and number statistics of a single building in
our experiment.

Table 7. Analysis of results.F1-Measure that is most suitable for overall accuracy evaluation has
been bolded.

M6 M1–9 M1, 5, 6, 9

Precision 0.805 0.868 0.856
Recall 0.881 0.846 0.861

F1-Measure 0.841 0.857 0.859

4.3. Single Building Extraction

Single building extraction is a solution discussed in this article for the needs of building
number estimation. It adopts postprocessing on the existing semantic segmentation results,
objectifies the semantic segmentation results, and judges whether the segmentation result
object is a single building. The following is the analysis of the process of our experiment.
After obtaining our semantic segmentation results, we target the pixels in the prediction
results to output pictures, which can be roughly divided into the two situations shown in
Figure 13 below. Figure 13a shows the result of a single building image, while Figure 13b
shows the result of multiple buildings. Among them, the image of a single building is
better obtained from the original sample drawn by our method, but multiple buildings
often appear in the later segmentation process and are difficult to obtain, and there is
serious sample imbalance.

(a) Single Building (b) Multiple Buildings

Figure 13. Different objects.

The main strategy we adopted is to design an image reconstruction network for the
image of a single building. One of the intermediate vectors is used as the core vector for
our feature extraction. Our final single building discrimination is based on the difference
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between the vectors generated before and after reconstruction. To make a distinction,
Figure 14 shows the vector difference produced by two different types of building images.
The green line indicates that there is only one building in an image, while the red line
denotes that there are multiple buildings in an image, In the figure, the horizontal axis rep-
resents the value of the reconstruction error, and the vertical axis represents the proportion
of the error value.

Figure 14. Statistical results of building discriminant errors.

We can clearly observe that the average error of a single building in the generation
process is smaller. Through the statistical analysis of the above process, we can obtain
the segmentation threshold of a single building to distinguish whether our segmentation
object is a single building, and the specific classification accuracy can be found in Table 8.
After analysis of the two datasets, we can determine whether the result contained in the
judgment image is a single building with better overall accuracy. The comparison of the
two datasets shows that the results on the WHU dataset are significantly better, which
indicates a certain relationship with the characteristics of the buildings in the WHU dataset.

Table 8. Demographic prediction performance comparison by three evaluation metrics.The results of
the test areas in the two data sets are shown in bold.

Dataset
YJS WHU

Precision Recall F1-Measure Precision Recall F1-Measure

Val 0.831 0.979 0.900 0.942 0.922 0.931
Test 0.938 0.880 0.908 0.964 0.939 0.952

4.4. Estimated Number of Buildings

After detecting a non-single building, to further analyze the actual situation of the
building, we used the area of the individual buildings near this area to estimate the number
of buildings within a certain range. The estimated situation is shown in Figure 15 and Table 9.
We conducted experimental analysis in four areas according to the difference between the
density of buildings and the dataset. As shown in Figure 15h, it is easier to produce multiple
buildings divided into one patch in a dense area. As shown in Figure 15l, some extremely
small buildings are sometimes judged as abnormal. In general, we have achieved better
results on the WHU dataset with sparse buildings. In the YJS dataset, although the dense
buildings have led to a serious building merger phenomenon, we still have a good building
estimation effect, as shown in Table 9.
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(a) Origin (b) Prediction (c) Mask(22) (d) Count(27)

(e) Origin (f) Prediction (g) Mask(157) (h) Count(169)

(i) Origin (j) Prediction (k) Mask(56) (l) Count(57)

(m) Origin (n) Prediction (o) Mask(10) (p) Count(13)

Figure 15. The building counting analysis of four regions, where A is the relatively sparse area of
buildings in the Yaji Mountain region, B is the relatively dense area of buildings in the Yaji Mountain
region, C is the relatively sparse area of buildings in the WHU dataset, and D is the relatively dense
area of buildings in the WHU dataset.

Table 9. The results of model classification under different training conditions.

Experiment Region Dataset Density Real Number Simple Several Forecast Number

Region A YJS Sparse1 22 13 5 27
Region B YJS Dense 157 54 47 169
Region C WHU Sparse 56 54 3 57
Region D WHU Dense 10 11 2 13

This table records the count status of two buildings with different densities in two datasets. Real Number: Distribution of the true number
of buildings in the area; Simple: The number of single buildings in the area of the building prediction result patch; Several: These models
are obtained by adjusting the weight of each training sample in the sample set; Forecast Number: These models are obtained by adjusting
the weight of each training sample in the sample set.
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5. Conclusions

We proposed a method for calculating the number of buildings based on deep learning.
Different from traditional deep learning schemes, we start from the results of semantic
segmentation, judge whether structures are separate buildings, and then further estimate
the number of buildings. Through the open WHU dataset and the Yajishan area dataset
that we constructed at Wuhan University, we conducted experiments for four different
areas. Through experimental verification, we proved the validity of our counting method.

In addition, we proposed a method of combining ensemble learning and deep learning
semantic segmentation. Based on the UNet structure, when it is difficult to improve the
extraction effect through the traditional structure of deep learning, we use the idea of CRF
adaptive model selection to select several methods. The model performs integrated predic-
tion, which further improves the classification effect. Although the current implementation
of the entire scheme are still too cumbersome and the end-to-end process design has not
been achieved, we can further improve our buildings in the future through further develop-
ment and utilization of the convolution structure of deep learning and improvement of the
loss function. The accuracy of segmentation will also enable exploration of more effective
network structures to achieve the integration of deep learning and integrated learning and
the integration of semantic segmentation results for building counting.
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