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Abstract: The tropospheric delay is one of the main error sources that degrades the accuracy of
Global Navigation Satellite Systems (GNSS) Single Point Positioning (SPP). Although an empirical
model is usually applied for correction and thereby to improve the positioning accuracy, the residual
tropospheric delay is still drowned in measurement noise, and cannot be further compensated
by parameter estimation. How much this type of residual error would sway the SPP positioning
solutions on a global scale are still unclear. In this paper, the biases on SPP solutions introduced
by the residual tropospheric delay when using nine conventionally Zenith Tropospheric Delay
(ZTD) models are analyzed and discussed, including Saastamoinen+norm/Global Pressure and
Temperature (GPT)/GPT2/GPT2w/GPT3, University of New Brunswick (UNB)3/UNB3m, European
Geostationary Navigation Overlay System (EGNOS) and Vienna Mapping Functions (VMF)3 models.
The accuracies of the nine ZTD models, as well as the SPP biases caused by the residual ZTD
(dZTD) after model correction are evaluated using International GNSS Service (IGS)-ZTD products
from around 400 globally distributed monitoring stations. The seasonal, latitudinal, and altitudinal
discrepancies are analyzed respectively. The results show that the SPP solution biases caused by the
dZTD mainly occur on the vertical direction, nearly to decimeter level, and significant discrepancies
are observed among different models at different geographical locations. This study provides
references for the refinement and applications of the nine ZTD models for SPP users.

Keywords: residual tropospheric delay; model corrections; SPP solution; vertical influence

1. Introduction

Due to the high operational efficiency and algorithm simplicity, pseudorange-based
Single Point Positioning (SPP) is still the most popular Global Navigation Satellite Systems
(GNSS) positioning technology for custom-grade navigation where meter-level positioning
accuracy is sufficient [1]. Compared with Precise Point Positioning (PPP) and Network
Real Time Kinematic (NRTK), SPP does not restricted to convergence time and reference
stations. One of the major error sources that degrades the SPP accuracy is the signal trans-
mission delay caused by the troposphere [2]. The so-called tropospheric delay varies from
about 2 m at the zenith to 20 m at lower elevation angles between receiver and satellite [3].
Typically, an empirical model is applied to mitigate the tropospheric delay and therewith
to improve the positioning accuracy [4,5]. Usually, the residual tropospheric delay after
model correction will be further estimated in PPP and NRTK applications, so as to mitigate
the biases projecting to positioning. However, in SPP, the residual tropospheric delay is
drowned in measurement noise, and cannot be further compensated by parameter estima-
tion. Therefore, it is necessary to assess the biases produced by the residual tropospheric
delay on SPP.

Usually the tropospheric delay along the line-of-sight is mapped onto the zenith
direction using the elevation-dependent mapping function [6]. Therefore, modeling the
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Zenith Tropospheric Delay (ZTD) is essential. Up till now, a variety of tropospheric delay
models have been proposed and discussed. They are mainly divided into two classes:
(1) the models relying on meteorological parameters as inputs, such as Hopfield model [7]
and Saastamoinen model [8]; and (2) the models based on a look-up table to provide
meteorological parameters, such as University of New Brunswick (UNB) series models and
the European Geostationary Navigation Overlay System (EGNOS) model [9,10]. Funded
by the Austrian Science Fund, TU Wien provides abundant tropospheric products as
open access data [11]. The released discrete troposphere delay models (e.g., VMF1 and
VMF3) are based on actual data from Numerical Weather Models (NWMs) by the European
Center for Medium-Range Weather Forecasts (ECMWF) [12], and are provided either
in grid-wise or site-wise. Furthermore, other hybrid ZTD models, such as GZTD2 [13],
IGGtrop_ri (i = 1, 2, and 3) [14], TropGrid2 [15], Improved Tropospheric Grid (ITG) [16],
the improved wet delay model [17], IGGtrop_SH and IGGtrop_rH [18], WGTEM [19], and
so on, have been successively developed, with the purpose of improving accuracy and
simplifying calculation.

ZTD is conventionally expressed as the sum of the Zenith Hydrostatic Delay (ZHD)
and the Zenith Wet Delay (ZWD) [20]. Due to the high temporal and spatial variability
of atmospheric water vapor, it is difficult to model the ZWD precisely [21], which ac-
cordingly limits the correction accuracies of different ZTD methods. Many investigations
have been focusing on evaluating the correction accuracies of these models. Tuka and
El-Mowafy [22] compared several tropospheric models with the Saastamoinen model at
six IGS stations and concluded that the models used in their study showed higher ac-
curacies at mid-latitude regions than at the equator. Yao et al. [16] concluded that the
Saastamoinen+GPT2 model is 10% better than the UNB3m model, referring to the IGS-ZTD
products. By using 1-year data from 27 IGS monitoring stations, Liu et al. [23] concluded
that the Saastamoinen+GPT2w model is superior to the Saastamoinen+GPT2 model. Zhang
et al. [24] evaluated the accuracy of IGGtrop, EGNOS, and UNB3m models in China using
25 stations of the Crustal Movement Observation Network of China. The results show that
the accuracy of IGGtrop is about 24% and 19% higher than that of EGNOS and UNB3m
models, respectively. Yao et al. [25] assessed the consistence between VMF-ZTD forecast
grid products and IGS-ZTD products, and concluded that the difference is at the centimeter
level. Yuan et al. [26] assessed the forecast Vienna Mapping Function 1 for real-time tropo-
spheric delay modeling in GNSS, and concluded that the model performs of the VMF1-FC
are better than GPT2 and GPT2w. Li et al. [27] conducted a comprehensively accuracy
analysis on nine ZTD models (UNB3m, EGNOS, Saastamoinen+GPT2/GPT2w/GPT3,
Hopfield+GPT2/GPT2w/GPT3, and IGGtropSH models) at 65 Antarctic stations. The
results showed that the Saastamoinen+GPT2/GPT2w/GPT3 models are better than the
other six models.

It is unquestioned that newer, more elegant models generally have higher accuracy
than those older and more complicated one. For example, the VMF models, with centimeter
discrepancies to IGS ZTD products, have already been recognized as a standard for precise
positioning users [26]. Although this kind of grid-wise model can be easily applied at
anytime and anywhere via interpolation, requisition for frequent updates still restricts its
application for real-time positioning, in which empirical models, such as the Saastamoinen
and UNB series models, are still preferred due to higher operational efficiency. In these
cases, the uncorrected residual zenith tropospheric delay would still sway the GNSS SPP
solution remarkably. However, how much the uncorrected residual tropospheric delay
would sway the GNSS positioning solution on a global scale are still unclear. In this paper,
with the purpose of evaluating the biases caused by the uncorrected residual tropospheric
delay on SPP solutions globally, nine conventionally used ZTD models are analyzed and
discussed, including Saastamoinen+norm/GPT/GPT2/GPT2w/GPT3, UNB3, UNB3m,
EGNOS, and VMF3 model. Firstly, the residual ZTDs were obtained by comparing the
model estimation values with the corresponding IGS ZTD products at 400 IGS monitoring
stations, to evaluate the accuracies of the ZTD models. The spatial and temporal variations
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of the residual ZTDs by different models are here discussed. Then the biases on SPP
solutions introduced by the residual ZTDs were computed, and the temporal and spatial
characteristics were analyzed.

This paper is organized as follows. The calculation procedure for the influence
of residual tropospheric delay on SPP are described in Section 2. Then, the materials,
methodology and the data processing strategy used for the assessment are introduced in
Section 3. Next, the results of the residual ZTDs obtained from different models and their
impacts on SPP solution are presented in Section 4. The results are briefly discussed in
Section 5 and the conclusions are summarized in Section 6.

2. Influences of Residual Tropospheric Delays on Single Point Positioning

Generally, the GNSS pseudo-range and carrier phase are generally expressed as [28]{
Ps

r, f = ρs
r, f + tr − ts + αs

rTz + β f Is
r + bs

r, f + εP

Φs
r, f = ρs

r, f + tr − ts + αs
rTz − β f Is

r + ds
r, f − λ f Ns

r, f + εΦ
(1)

in which, Ps
r, f , Φs

r, f are pseudo-range and carrier phase from receiver r to satellite s (s = 1,
. . . , j) on frequency f ( f = 1, . . . , k) in length units, respectively; ρ is the geometric distance,;
tr and ts are the receiver and satellite clock error in length units, respectively; Tz is the ZTD
that can be converted to slant with the mapping function α; I denotes the line-of-sight
(LOS) total electron content (TEC) with the frequency dependent factor βf = 40.3/f 2; bs

r, f
and ds

r, f are frequency-receiver-satellite dependent signal delays related to pseudo-range
and carrier phase observables; N is the integer ambiguity.

For single-epoch single-station point positioning, only pseudo-range observables are
applied. Without specifying the frequency, the linearized observation model for positioning
is [29]

l = Ax + e and var(e) = Dee (2)

where l = P − ρ0 is the observation residual vector, A = (−u I) is design matrix with
u being the LOS unit vector from the user to satellite; e is the random error vector with
covariance Dee. The unknown parameters in conventional SPP model usually contains four
elements, as x =

[
δx δy δz tr

]T, with δx, δy and δz are three coordinate component
corrections and tr is the receiver clock error.

In SPP, the tropospheric delays are usually corrected by empirical models, and iono-
spheric delays are mitigated either by empirical models or by inter-frequency difference.
In this paper, we mainly concentrate on the impacts of residual tropospheric delays on
the SPP solutions after model correction. Therefore, the observation residual vectors in
Equation (2) are specified as {

l0 = P − ρ0 − αTZ0
l1 = P − ρ0 − αTZ

(3)

where TZ0 and TZ are the model estimated and unknown true value of the station ZTD in
meters, respectively; α is the elevation-related mapping coefficient vector. According to
least-squares estimation principle, the corresponding unknown parameters are estimated
as [29] {

x̂i = Dx̂i x̂i A
TD−1

ee li

var(x̂i) = Dx̂i x̂i =
(
ATD−1

ee A
)−1 i = 0, 1 (4)

And the residual error vector of the observables are estimated as [29]
êi = Rli

R = I − ADx̂i x̂i A
TD−1

ee
var(êi) = Dêi êi = Dee − ADx̂i x̂i A

T
i = 0, 1 (5)
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According to Equations (4) and (5), it is concluded that the residual ZTDs only cause
biases on the estimated parameters, and do not influence the estimated covariances. There-
fore, corresponding biases on the estimated unknown parameters can be given as

δx̂ = x̂1 − x̂0 = Dx̂i x̂i A
TD−1

ee α·dZTD (6)

where dZTD = (TZ − TZ0) is the residual ZTD after model correction. Equation (6)
indicates that the residual ZTD will be projected to the SPP solution with a mapping
coefficient vector m = Dx̂i x̂i A

TD−1
ee α. With a prior variance model Dee, m is determined by

the station geographical location and observing time epoch. Therefore, the SPP solution
biases δx̂ can be estimated at anytime and anywhere once residual ZTD (dZTD) is obtained.

3. Materials and Methods

In this section, the most commonly used ZTD models and products are summarized,
and the data processing strategies are presented.

3.1. ZTD Model

There are two main types of ZTD models, combined and empirical models. The
combined model estimates the ZTD via a combination of a meteorological model and a
classic ZTD model which requires meteorological parameters, while the empirical model
obtains the required meteorological parameters from a look-up table that usually depends
on station latitude and height, as well as observation time.

3.1.1. Combined Model

The classic ZTD model requires in-site meteorological data, which is usually calcu-
lated by the meteorological model. The most popular classic ZTD model is the Saasta-
moienen model.

In the Saastamoienen model, the troposphere is divided into two layers. The first layer
is from the earth surface to 10 km height of the troposphere, where the temperature descent
rate is 6.5 ◦C/km. The second layer is from the troposphere top at 10 km to the stratospheric
top at 70 km, where the temperature is assumed to be constant. Via atmospheric refraction
integral, the function is simplified as [8]{

ZTD = 0.002277 × [P+(0.05+ 1255
T+273.15 )e]

f (ϕ,H)

f (ϕ, H) = 1 − 2.66 × 10−3cos(2ϕ)− 2.8 × 10−7H
(7)

where P, T, and e are the pressure, temperature, and water vapor pressure at the station,
f (ϕ, H) is the correction of gravitational acceleration caused by the rotation of the Earth,
with ϕ and H denoting the latitude and the ortho height of the station, respectively.

In-site meteorological elements used in Equation (7) can be estimated via a set of
meteorological models, such as the norm, GPT/GPT2/GPT2w/GPT3 models.

The standard meteorological element method (norm) is based on a set of standard me-
teorological parameters on sea level (usually specified as T0 = 288.15 K, P0 = 1013.25 mbar,
e0 = 11.691 mbar), and adjusted to the station via a height correction.

The Global Pressure and Temperature (GPT) model [30], which is based on spherical
harmonics up to degree and order nine, provides pressure (P) and temperature (T) at
any site on the Earth’s surface. It is based on the atmospheric pressure and temperature
products (resolution 15◦ × 15◦) in the meteorological reanalysis data ECMWF Re-Analysis-
40 (ERA-40) for 3 years from 1999 to 2002, and conforms to changes in air pressure and
temperature on the global sea level.

To precisely describe the spatial and temporal variability, GPT2 model [31] based on
10-year meteorological reanalysis data ERA-Interim were established. The model provides
pressure (P), temperature (T), lapse rate (dT), water vapor pressure (e), and mapping
function coefficients at any site, resting upon a global 5◦ grid of mean values, annual, and
semi-annual variations in all parameters.
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Global Pressure and Temperature 2 wet (GPT2w) [32] is the successor of the former
models GPT and GPT2, improving the capability to determine ZWDs empirically. It re-
quires only information about time and location and provides mean values plus annual
and semi-annual amplitudes of a set of quantities such as mapping function coefficients,
pressure (P), temperature (T), water vapor pressure (e), mean temperature weighted with
water vapor pressure (Tm), and water vapor decrease factor (λ), optionally on a 5◦ × 5◦ or
a 1◦ × 1◦ grid. The coefficients were derived from monthly mean pressure-level data of
ERA-Interim fields by the ECMWF. Landskron and Böhm [11] proposed a new GPT3 model,
which provides the same meteorological elements as those in GPT2w. The several meteoro-
logical quantities from GPT2w are left unchanged for GPT3. In addition, the ray-traced
delays are also utilized for determining an empirical gradient grid which outperforms
currently existing models. Finally, primary information of the above five meteorological
models are summarized in Table 1 for a detailed comparison.

Table 1. Primary information of five meteorological models. (P—pressure, T—temperature, e -water vapor pressure, dT—
lapse rate, Tm—mean temperature weighted with water vapor pressure, λ—water vapor decrease factor, ah, aw—mapping
function coefficients, Gnh, Geh, Gnw, Gew—gradient, GPT—Global Pressure and Temperature, ECMWF—European Center
for Medium-Range Weather Forecasts).

Meteorological
Models Data Sources Representation Temporal Variability Output Parameters

norm
a set of standard

meteorological parameters on
sea level

/ / P, T, e

GPT
meteorological reanalysis data
ERA-40 for 3 years from 1999

to 2002

Spherical harmonics up
to degree and order 9 at

mean sea level
mean and annual terms P, T, (ah, aw)

GPT2 10-year meteorological
reanalysis data ERA-Interim 5◦ × 5◦ global grid mean, annual and

semi-annual terms P, T, dT, e, (ah, aw)

GPT2w
monthly mean pressure-level
data of ERA-Interim fields by

the ECMWF

5◦ × 5◦ and 1◦ × 1◦

global grid
mean, annual and
semi-annual terms P, T, e, Tm, λ, (ah, aw)

GPT3 10 years of ECMWF
ERA-Interim re-analysis data

5◦ × 5◦ and 1◦ × 1◦

global grid
mean, annual and
semi-annual terms

P, T, e, Tm, λ, (ah, aw),
(Gnh, Geh, Gnw, Gew)

3.1.2. Empirical Model

Collins et al. [33] proposed the UNB3 model for the Wide Area Augmentation System
(WAAS) users. The UNB3 model depends on a look-up table to calculate the five mete-
orological parameters; namely, pressure (P), temperature (T), water vapor pressure (e),
temperature lapse rate (β), and water vapor pressure height factor (λ) on the station. These
meteorological parameters are estimated by inputting the receiver’s height, latitude, and
day of year (DOY), and are interpolated from the yearly averages and seasonal variations of
the parameters that are primarily derived from North American meteorological data. These
meteorological parameters are then used to compute the hydrostatic and non-hydrostatic
zenith delays using a model which is similar as the Saastamoninen models.

UNB3m [9] is a modified version of the UNB3, with changes on parameter values
in the look-up table and the associated UNB3 algorithms. The part of the table that was
related to water vapor pressure was replaced with values that computed from the relative
humidity. Hydrostatic delay will not be affected by this modification in the model, since it
does not depend on the water vapor pressure. By ray-tracing analyses of 703,711 profiles
from 223 stations in North America and surrounding territory from 1990 to 1996, it is
evaluated that the prediction errors of UNB3m is similar to that of UNB3, and the absolute
mean error has been reduced by almost 75%.

The European Geo-stationary Navigation Overlay System (EGNOS) guidelines rec-
ommend that a user applies a correction for tropospheric delay that is compliant with the
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International Civil Aviation Organization (ICAO) Standards and Recommended Practices
(SARPs) for Satellite-Based Augmentation Systems (SBAS). The recommended SBAS model,
termed simply the EGNOS model, utilizes the same look-up table as UNB3 to provide
empirical meteorological parameters, and then calculates the ZTD by simplified equations
where the Earth Gravity parameter is assumed to be constant [10].

Finally, Table 2 summarizes the major information of the above three empirical models,
where similarities and differences among them are listed.

Table 2. Information of three empirical zenith tropospheric delay (ZTD) models. (P—pressure, T—temperature, e—water
vapor pressure, β—temperature lapse rate, λ—water vapor pressure height factor, RH—relative humidity, UNB—University
of New Brunswick).

EGNOS UNB3 UNB3m

five meteorological parameters P, T, e, β, λ P, T, e, β, λ P, T, RH, β, λ
Input parameters height (H), latitude (ϕ) and day of year (DOY)

Output parameters ZTD

Remarks Simplification of UNB3 / Improved wet delay
calculation accuracy based on UNB3

3.2. Products

Apart from correction models, more accurate ZTD products have been provided by TU
Wien and the International GNSS Service (IGS), named as VMF-ZTD and IGS-ZTD. Primary
information about the two are introduced in this subsection, with a brief summarization
in Table 3.

Table 3. Information about Vienna Mapping Functions (VMF)-ZTD and International Global Navigation Satellite Systems
(GNSS) Service (IGS)-ZTD products.

VMF-ZTD IGS-ZTD

Data Sources ECMWF ERA-Interim re-analysis data GNSS observation data
Time resolution 6 h 5 min

Calculation method Ray-tracing PPP (software: Bernese GNSS Software 5.2;
mapping function: GMF)

3.2.1. VMF-ZTD

TU Wien provides ZTD products as a part of the proposed Vienna Mapping Functions
(VMF) which can be found at the webpage: https://vmf.geo.tuwien.ac.at/ accessed on
9 August 2020.

The discrete VMF are based on direct raytracing through NWM by using meteorologi-
cal data from the ECMWF [34]. Currently, two versions are available for the user, namely
VMF1 and VMF3.

The VMF1 [35] is a model providing discrete values for ZHD, ZWD and the hydrostatic
and wet mapping functions “mfh” and “mfw”. It relies on empirical equations for the
“b” and “c” coefficients of the continued fraction form, whereas the “a” coefficients are
determined from rigorously ray-traced mapping functions at 3◦ elevation based on the
information of NWMs by the ECMWF. VMF1 are provided on a global grid (2.5◦ × 2.0◦) as
well as at IGS sites, and the time resolution is 6 h.

VMF3 is the successor of VMF1, with refined model accuracy. Ray-traced delays for 10
years of ECMWF ERA-Interim re-analysis data on a global grid was used to re-determine
empirical mapping function coefficients ”b” and “c” through spherical harmonics expan-
sions up to degree and order 12, by which spatial as well as temporal components are
equipped [12]. The grid-wise VMF3 data is available in a horizontal resolution of 5◦ × 5◦

as well as 1◦× 1◦, and in a time resolution of 6 h.

https://vmf.geo.tuwien.ac.at/
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3.2.2. IGS-ZTD

The International GNSS Service (IGS) has been providing the total ZTD products
for global monitoring stations since 1997. Between 1997 and 2003, a weighted average
combined product was generated by independent products from multiple analysis centers.
The product adopts the SINEX format, with a time resolution of 2 h and an accuracy of
about 4 mm [36]. Since 2003, a new ZTD product was acquired by the Jet Propulsion
Laboratory (JPL) Analysis Center using GIPSY software with Precise Point Positioning
(PPP) procedure and Neil Mapping Function (NMF). A 5-minute-resolution ZTD file was
provided with an official accuracy of 1.5–5 mm. Due to the systematic error, the actual error
is slightly larger [37]. Since 2011, The United States Naval Observatory (USNO) assumed
responsibility for producing IGS final ZTD products by Bernese GNSS Software 5.2 [38].
The processing used PPP and the Global Mapping Function (GMF) with IGS final satellite
orbits/clocks and earth orientation parameters as input, and the elevation angle cutoff is
7 degrees [39,40].

3.3. Data Processing Strategy

To evaluate the accuracies of abovementioned nine models, IGS ZTD products from
372 to 404 globally distributed monitoring stations were used as references, by which
accuracies of nine conventionally used ZTD models or products are evaluated, including
saas+norm/GPT/GPT2/GPT2w/GPT3, UNB3, UNB3m, EGNOS and VMF3. In order to
analyze the seasonal discrepancies, the data from four 7-day periods in 2019 were selected
during spring, summer, autumn, and winter periods. The data time slots were DOY 80–86,
DOY 172–178, DOY 266–272, and DOY 356–362 respectively. The corresponding day of
year (DOY) and the number of available stations (num) are shown in the Table 4. Figure 1
shows the distribution of global IGS GPS stations. The sampling rate IGS-ZTD produces
is 5 min, therefore the model values were computed at every 5 min. For VMF3, the cubic
spline interpolation method was used to interpolate the 6 h products to 5 min. Since the
Saastamoinen model requires meteorological parameters as inputs, the first step was to
calculate the meteorological data by the norm/GPT/GPT2/GPT2w/GPT3 model, and
then the ZTD values were calculated by the Saastamoinen model. The GPT model does
not provide the water vapor, therefore the same value as that in the norm model was used.
Regarding the IGS-ZTD as the “true value”, and the residual ZTD (dZTD) of each model
can be calculated as

dZTD = ZTDt
IGS − ZTDt

M (8)

where ZTDt
IGS and ZTDt

M are the IGS-ZTD and model-calculated ZTD at the time epoch t,
respectively. Mean and Root Mean Square (RMS) values of the dZTD were used to measure
the bias and stability of the ZTD models, respectively.

mean =
1
N

N

∑
i=1

(dZTDi) (9)

RMS =

√√√√ 1
N

N

∑
i=1

(dZTDi)
2 (10)

where N is the total number of observations.
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Table 4. The corresponding day of year (DOY) and the number of global International GNSS Service
(IGS) GPS stations (num).

Spring Summer Autumn Winter

DOY num DOY num DOY num DOY num
80 386 172 404 266 374 356 376
81 374 173 400 267 372 357 377
82 390 174 401 268 372 358 380
83 392 175 403 269 373 359 379
84 382 176 394 270 377 360 377
85 381 177 394 271 381 361 382
86 386 178 399 272 384 362 380
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As derived in Section 2, the biases on SPP caused by the dZTD were further calculated
by substituting dZTD into Equation (6). The GPS satellite constellation was used, and the
elevation cut-off angle was 7 degrees, which is consistent with IGS-ZTD. The GMF [41] and
IGS final satellite orbits were used for the calculation.

4. Result

In this section, the characteristics of the residual zenith tropospheric delay (dZTD) of
nine ZTD models and their impacts on the SPP solution are presented.

4.1. The Residual Zenith Tropospheric Delay (dZTD)

Firstly, the mean and RMS values of the dZTD by the nine models were calculated
via data from all stations and in all days, as shown in Figure 2. It shows that among
these models, the dZTD mean and RMS values by saas+norm/GPT were significantly
larger than those by other models. The reason for this is that the meteorological param-
eters used in the saas+norm/GPT are quite rough and have low accuracy. Comparably,
saas+GPT2/GPT2w/GPT3 show much better performances. The dZTD means and RMSs
by these three models are all less than 1 cm and 5 cm, respectively. The performances
of EGNOS/UNB3/UNB3m were also comparative, and were all slightly worse than the
saas+GPT2/GPT2w/GPT3. The biases by EGNOS/UNB3 were less than 2 cm, while that
of UNB3m was significantly reduced to 0.35 cm. This is because the UNB3m model uses
relative humidity instead of water vapor pressure in the look-up table, which improves
the calculation accuracy of the ZWD. However, dZTD RMSs of the three models were
similar, all around 6 cm. Also, it is interesting to note that biases by combined models
(saas+) were positive, and biases by empirical models (EGNOS/UNB3/UNB3m) were
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negative. As a more accurate product, the bias of VMF3-ZTD is ignorable, and the RMS is
just 1.31 cm. Therefore, it can be concluded that IGS-ZTD and VMF3-ZTD products are on
similar accuracy level.
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From Figure 3 we can see that dZTD means by most models show obvious discrepan-
cies in different seasons. For the saas+norm model, the dZTD mean value in summer is the
largest (around 9 cm), and those in spring and winter were much smaller (around 5 cm).
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The seasonal discrepancy of the saas+GPT model was most significant, with biases mainly
existing in summer and autumn, and nearly ignorable in spring and winter. Biases of
saas+GPT2/GPT2w/GPT3 models were remarkably reduced, and were also slightly larger
in summer. Comparably, biases of saas+GPT2 were always smaller than the other two in
different seasons. In terms of the three empirical models, the biases of EGNOS and UNB3m
were similar, and both larger than those of UNB3m models. It is noted that the biases of
EGNOS and UNB3 models in summer were much smaller than those in other three seasons,
and biases of UNB3m were most significant in winter and almost ignorable in other three
seasons. At last, the biases of VMF3-ZTD were comparable in the four seasons, and always
close to 0.

Figure 4 show the dZTD RMSs of different models by season. Generally, RMSs in sum-
mer are always the largest, and RMSs in the other three seasons are comparable for all these
nine models. These nine models can be divided into four groups, that are saas+norm/GPT,
EGNOS/UNB3/UNB3m, saas+GPT2/GPT2w/GPT3, and VMF3. The model stabilities are
comparable within each group, and significantly increase among groups. Specifically, RMSs
of EGNOS/UNB3/UNB3m are nearly 30% smaller than saas+GPT, and are 20% larger than
saas+GPT2/GPT2w/GPT3. RMSs of VMF3 are the smallest, which are improved by about
70% compared to the GPT2/GPT2w/GPT3 model.

The results above show that the correction accuracies of different ZTD models could
be remarkably different, and the model accuracies are usually lower in summer. Generally,
newer, more elegant models have higher accuracy than those older and more compli-
cated one. However, operational burdens for the former are also heavier. As shown in
Figure 5, the average run time of eight models (saas+norm/GPT/GPT2/GPT2w/GPT3,
EGNOS, UNB3, UNB3m) was counted by using MATLAB software. It counted data
from 400 stations with a time slot of 28 days, and the data sampling rate was 5 min. It
showed that the computation efficiency of the Saastamoinen model is 100 times higher
than saas+GPT/GPT2/GPT2w/GPT3, and 30 times higher than EGNOS/UNB/UNB3
models. For real-time practical applications, users should make balance between higher
accuracy and higher computation efficiency. Empirical models, such as Saastamoinen, are
still popular when the requirement for positioning accuracy is not so stringent, but higher
computation efficiency is necessary.
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In the next subsection, biases on SPP solutions produced by the uncorrected residual
ZTD when adopting different ZTD models are evaluated globally and the spatiotemporal
characteristics are analyzed. With these results, custom-grade SPP users are capable of
anticipating the positioning deviation from the unknown real location when using different
tropospheric delay correction models.
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4.2. The Impacts of the Residual Zenith Tropospheric Delay on the SPP Solution

In this subsection, impacts of the dZTD on the SPP solution are analyzed. Table 5
shows the means and RMSs of the SPP biases on North (N), East (E), and Up (U) direction
produced by the dZTD of the nine models. One can see that the biases mainly occur on
the U direction, nearly to decimeter level. In contrast, biases on the horizontal (N and E)
direction are significantly smaller, just at the centimeter level. Among all these models,
the SPP biases by using the saas+norm model are the largest, with means being 0.16 cm,
0.04 cm, −35.6 cm, and RMSs being 4.08 cm, 3.31 cm, 44.55 cm on the N, E, U directions
respectively. The SPP biases of using the EGNOS/UNB3/UNB3m models are slightly
larger and less stable than those of saas+GPT2/GPT2w/GPT3 models. It is noted that SPP
biases on the vertical direction are negative when using saas+ models, and those values
are positive when using EGNOS/UNB3/UNB3m models. At last, the SPP biases by using
the VMF3 model are the smallest, with means being −0.01 cm, 0 cm, 0.79 cm, and RMSs
being 0.59 cm, 0.43 cm, 5.93 cm on N, E, U directions respectively. In general, the dZTD
impacts on SPP solutions are negligible on horizontal directions and significant on vertical
direction. Therefore, only the SPP solution impacts on the vertical direction are further
analyzed below.

Table 5. Means and RMSs of the Single Point Positioning (SPP) solutions generated by the dZTD
obtained by the 9 methods (saas+norm/GPT/GPT2/GPT2w/GPT3, EGNOS, UNB3, UNB3m, VMF3)
on North (N), East (E), and Up (U) direction (unit: cm).

Models
Mean RMS

N (cm) E (cm) U (cm) N (cm) E (cm) U (cm)

saas+norm 0.16 0.04 −35.60 4.08 3.31 44.55
saas+GPT −0.08 0.01 −8.51 3.55 2.80 38.22
saas+GPT2 0.03 0.01 −1.20 1.97 1.49 20.37
saas+GPT2w 0.03 0.01 −3.13 1.86 1.40 19.14
saas+GPT3 0.03 0.01 −3.13 1.86 1.40 19.14

EGNOS −0.02 0.00 7.83 2.54 1.88 26.11
UNB3 −0.03 0.00 8.03 2.56 1.89 26.28

UNB3m 0.04 0.01 1.81 2.42 1.78 24.75
VMF3 −0.01 0.00 0.79 0.59 0.43 5.93

To evaluate the SPP solutions influenced by the uncorrected ZTD when using different
models in different seasons, the RMSs of the SPP biases on the vertical direction produced
by dZTD of the nine models are shown in Figure 6 by season. Compared with Figure 4, one
can see that similar tendencies on the SPP solutions are observed. The RMSs in summer are
generally the largest, and RMSs in spring and winter are equivalent and slightly smaller
than those in autumn. One exception is the saas+GPT, where RMSs in spring and winter are
much larger than those in summer and autumn. For VMF3, the seasonal discrepancies are
less significant, even though the RMSs in summer are still slightly larger. In generally, it can
be concluded that SPP solution stability would be relatively lower in summer regardless of
the ZTD model.
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Figure 6. RMSs of the SPP solutions on the vertical direction produced by dZTD of the 9 models
(saas+norm/GPT/GPT2/GPT2w/GPT3, EGNOS, UNB3, UNB3m, VMF3) in different seasons.

To compare the model discrepancies in different geographical locations, the dZTD
RMSs (upper panels) and RMSs of the SPP biases on the vertical direction (lower panels)
generated by dZTD from saas+GPT (left panels) and UNB3 (right panels) models at globally
distributed IGS stations are shown in Figure 7. Triangulation linear interpolation is used
for the demonstration. One can see that the saas+GPT model performs worst around
the equator, and best around middle latitude areas. Near the equator, the dZTD RMSs
can exceed 20 cm and accordingly cause over 100 cm biases on the SPP solutions in the
vertical direction. In contrast, more significant asymmetry between southern and northern
hemispheres is observed by using the UNB3 model. The performance of UNB3 model
is significantly better in the northern hemisphere, especially around middle and high
latitudes (40◦N~90◦N), where the dZTD RMSs are below 5 cm and RMSs of SPP vertical
biases are below 20 cm.
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Equation (6) indicates that the residual ZTD will be projected to the SPP solution with a
mapping coefficient vector m = Dx̂i x̂i A
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dZTD and the SPP biases on the vertical direction, the means of the mapping coefficient
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between dZTD and the SPP biases on the vertical direction at globally distributed IGS
stations are shown in Figure 8. It can be seen that the mapping coefficient is negative
and approximately symmetrical along the equator. The mean value reaches the minimum
(around −4.6) at mid-latitude zones, and then increases to around −5.4 at equatorial, and
around −6 at polar zones. This implies that the dZTD values would be adversely magnified
about five times on the SPP vertical solutions globally, and the impacts are slightly smaller
at mid-latitude zones.
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In Figure 7 we can see that the SPP biases show significant discrepancies along
different latitudes. Therefore, the globally distributed stations are divided into groups
with a latitude interval of 15◦, and RMS of the vertical SPP biases caused by dZTDs from
the nine models were further calculated for each latitude region. The station numbers at
different latitude regions are shown in Figure 9 and RMSs of the vertical SPP biases by
using the nine models at different latitude regions are shown in Figure 10.
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gions (unit: cm).

Figure 9 shows that nearly 50% of these stations are located on 30◦N~60◦N, and stations
beyond 60◦S~60◦N are rare. Figure 10 shows that RMS of the vertical SPP biases caused by
dZTDs from the nine models are significantly different at different latitudes, and tendencies
among models are inconsistent. Around equatorial regions (30◦S~30◦N), the SPP biases for
saas+norm/GPT models reach the largest (around 100 cm) which are 2–3 times, as much
as those for UNB3/UNB3m/EGNOS and saas+GPT2/GPT2w/GPT3. While the model
discrepancies decrease relatively at middle latitude regions (30S◦~60◦S and 30N◦~75◦N),
and RMSs of SPP biases by using these models are all reduced to below 40 cm. In the regions
of 60S◦~90◦S, RMSs of SPP biases by using UNB3/UNB3m/EGNOS and saas+norm/GPT
models gradually increase to 50 cm, and those by using saas+GPT2/GPT2w/GPT3 further
reduced to around 10 cm. In the regions of 45N◦~90◦N, RMSs of SPP biases by using
UNB3/UNB3m/EGNOS and saas+GPT2/GPT2w/GPT3 models are nearly stable, all less
than 20 cm, while those for saas+norm/GPT models increase slightly to around 30 cm
and 50 cm respectively. The VMF3 model performs well globally, with a relatively larger
uncertainty around the equator, where the RMSs of SPP vertical biases are still less than
10 cm.
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To further evaluate the SPP accuracies and stabilities influenced by different ZTD
models at different altitudes, the globally distributed stations were divided into groups
along to their station heights (orthometric height) and RMSs of the vertical SPP biases by
using these models were calculated within each altitude region. Considering that ZTD
has a large number of stations within 500 m, and the variation is large within 500 m [42],
the group of station heights were subdivided into seven groups. The station numbers at
different altitudes regions are shown in Table 6 and RMSs of the vertical SPP biases by
using the nine models at different altitudes regions are shown in Figure 11.

Table 6. Number of IGS stations (Num) at different altitudes.

Altitude <100 m 100~300 m 300~500 m 500~1000
m

1000~2000
m >2000 m

Num 185 80 27 58 43 15
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Table 6 shows that nearly 75% of these stations are below 500 m and stations with
height above 2000 m are rare. Figure 11 shows that RMSs of the vertical SPP biases by using
the nine models generally show significant downward trends as the heights increase except
for the saas+GPT2 and VMF3 models. The saas+GPT2 model performs best on stations
with heights between 500~1000 m, and significantly worst on stations above 2000 m. The
VMF3 performs equally at different height regions. The results coincide with the fact that
ray tracing used for producing VMF3 products considers changes with height. In general,
the vertical SPP solutions would suffer more significantly influence by the uncorrected
ZTD at lower stations.

5. Discussion

By now, SPP is still the most popular mode for custom-grade positioning and nav-
igation applications, in which the Saastamoienen model with standard meteorological
parameter, the UNB-series models and the EGNOS model are prevailingly applied, other
than those newer grid-wise models, e.g., the GPT and VMF series, since frequent data
communication and higher operational burden are required by the latter. In contrast, the
latter generally have higher accuracy than the former. Therefore, it is worth to anticipate
how much the uncorrected residual ZTD would sway the SPP solution in different locations
around the world, so that SPP users can optimally determine which ZTD model is used to
seek the highest computation efficiency under required positioning precision. For reference,
the following recommendations are provided:

(1) If users just request meter-level horizontal positioning accuracy and are not con-
cerned with vertical positioning accuracy, the simplest Saastamoienen model is preferred.
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(2) For users located at 30◦S–90◦S, the Saastamoienen model is a better choice com-
pared with UNB3/UNB3m/EGNOS models.

(3) For users located near the equator areas, the Saastamoienen model is not an optimal
choice, since the SPP biases caused by uncorrected residual ZTD would be at least three
times as large as those caused by using other models.

(4) For users at Northern Hemisphere, UNB3m model would be optimal. Since it can
achieve similar accuracy to the saas+GPT series models and the computation efficiency is
significantly higher.

(5) If the vertical SPP biases produced by residual ZTD are required to be lower than
10 cm, only the VMF3 model can be used.

(6) It is anticipated that the SPP solution on vertical direction would be higher than
the real value when using Saas+ models and would be lower than the real value when
using UNB3/UNB3m/EGNOS models.

6. Conclusions

In this study, the accuracies of nine zenith tropospheric delay (ZTD) models, as
well as the SPP biases caused by the residual ZTD (dZTD) after model correction were
evaluated using IGS-ZTD products from around 400 globally distributed monitoring
stations. The nine ZTD models are saas+norm/GPT/GPT2/GPT2w/GPT3, UNB3, UNB3m,
EGNOS, and VMF3. The seasonal, latitudinal, and altitudinal discrepancies were analyzed
respectively. From the study, the following conclusions can be obtained:

(1) The nine models can be generally divided into four groups, that are saas+norm/GPT,
EGNOS/UNB3/UNB3m, saas+GPT2/GPT2w/GPT3, and VMF3. The model accuracies
and stabilities are comparable within each group, and significantly increase among groups.
RMSs of EGNOS/UNB3/UNB3m are nearly 30% smaller than saas+GPT, and are 20%
larger than saas+GPT2/GPT2w/GPT3. The bias of VMF3-ZTD is ignorable, and the RMS
is just 1.31 cm.

(2) The SPP solution biases caused by the dZTD mainly occur on the vertical (U)
direction, nearly to decimeter level, and biases on horizontal (N and E) directions are
significantly smaller, just at centimeter level. Generally, the dZTD values are adversely
magnified about 5 times on the vertical SPP solution biases globally, and the impacts are
slightly smaller at mid-latitude zones.

(3) In terms of seasonal effects, all of the nine models show lower stabilities in summer,
and stabilities in the other three seasons are comparable. For latitude effects, the four
groups show inconsistent tendencies. Generally, these models show larger variations and
discrepancies at equatorial and south polar regions. Finally, for altitude effects, the model
stabilities generally increase as the station heights increase except for the saas+GPT2 and
VMF3 models.

By the above assessments and analyses, the question of how much the uncorrected
dZTD would sway the SPP solution on a global scale is answered. Meanwhile, references
for the refinement and applications of the nine ZTD models are provided.
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