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Abstract: As a popular research direction in the field of intelligent transportation, road detection has
been extensively concerned by many researchers. However, there are still some key issues in specific
applications that need to be further improved, such as the feature processing of road images, the
optimal choice of information extraction and detection methods, and the inevitable limitations of
detection schemes. In the existing research work, most of the image segmentation algorithms applied
to road detection are sensitive to noise data and are prone to generate redundant information or
over-segmentation, which makes the computation of segmentation process more complicated. In
addition, the algorithm needs to overcome objective factors such as different road conditions and
natural environments to ensure certain execution efficiency and segmentation accuracy. In order to
improve these issues, we integrate the idea of shallow machine-learning model that clusters first and
then classifies in this paper, and a hierarchical multifeature road image segmentation integration
framework is proposed. The proposed model has been tested and evaluated on two sets of road
datasets based on real scenes and compared with common detection methods, and its effectiveness
and accuracy have been verified. Moreover, it demonstrates that the method opens up a new way to
enhance the learning and detection capabilities of the model. Most importantly, it has certain potential
for application in various practical fields such as intelligent transportation or assisted driving.

Keywords: intelligent transportation; road detection; superpixel; random forest; multifeature

1. Introduction

The widespread application of artificial intelligence has not only made our daily lives
more convenient but also gained considerable attention and development in agriculture,
communications, medical care, transportation, military, and many other scientific research
fields. As one of the core technologies of intelligent transportation applications, the detec-
tion of drivable areas in road scenes directly affects the performance and popularization
of systems such as autonomous driving and assisted driving. The actual road environ-
ment scene contains plenty of target information such as road traffic signs, lane lines,
and obstacles, etc. Meanwhile, this target information also has diversified, complex, and
uncertain feature attributes. Road detection is certainly a tough project; it needs to meet
the strict requirements of real-time and high precision. Moreover, it should objectively
reflect the complex actual situation of real scene. In order to reach these requirements,
some large-scale complex network algorithms even need detailed annotations for each
region of interest and target information in the image, which greatly increases the amount
of computation. Although researchers face piles of challenges, road detection algorithms
are still emerging in recent years. Image segmentation is not only an independent image
processing task but also one of the realization methods of road target detection, which is of
great significance for helping perceive road scenes. Evidently, road images have both the
conventional attributes of ordinary images and their particularities, which is also reflected
in the segmentation task. Therefore, in the existing literature, we divide these valuable
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research work into two categories, general image segmentation methods and road image
segmentation methods, to analyze and understand their commonalities and contributions.

(1) General Image Segmentation Methods. Up to now, many popular image segmen-
tation algorithms have been applied to road area detection and extraction. These
methods mainly focus on improving classic algorithms or combining with other al-
gorithms [1–5], such as the graph-based method, clustering method, deep learning,
and multitheory combination method. The core idea of the graph-based method is
to transform the global segmentation of an image into a graph partition problem
through a top-down traversal process and optimize the objective function. Shi et al. [6]
proposed the normalization algorithm NCut after the min-cut, which defined the
similarity and difference between the two regions in the image and determined the
global minimization objective function. Boykov et al. [7] proposed the graph-cut
theory, which is mainly to construct an energy function and to minimize this energy
function through the combination of optimization methods. It can be considered
as a human–computer interactive algorithm. Unlike the graph-based methods, as
a segmentation method pays more attention to the information of pixel itself, the
clustering method calculates certain features between pixels in each neighborhood
and then divides the pixels with similarity into the same attribute region [8]. The
meanshift algorithm was proposed in [9]. Its basic idea is to find the local optimum
through the trapezoidal rise of the probability density in space, which is of great
significance in image segmentation and target tracking. The simple linear iterative
clustering (SLIC) algorithm can preserve the contour of the object and clearly generate
groups of superpixel blocks with uniform size, which is usually more in line with the
expected segmentation results [10]. Among the various methods of deep learning,
the convolutional neural network (CNN) has been highly sought after in the field of
computer vision since it was proposed. The advantage is that its multilayer structure
can autonomously learn multiple shallow or deep hierarchical features. The fully
convolutional networks (FCN) method can restore the categories of individual pixels
from some abstract features of the image, which is a new direction for researchers
in classification-based image segmentation methods [11]. In addition to the fully
connected layer structure, the semantic segmentation method also solves the problem
of the neural network pooling layer from another angle, which enhances the receptive
field of the convolution kernel. Typical semantic segmentation networks include
SegNet [12], DeepLabv3 [13], and PSPNet [14]. Ensemble learning can be regarded
as a type of paradigm. By utilizing several weak classifiers to solve the classification
problem, the final prediction result is usually better than a single classifier and closer
to the global optimal. In addition, the generalization ability is even enhanced [15–18].

(2) Road Image Segmentation Methods. In order to perform related driving-assistance
functions in the intelligent transportation system, road detection and extraction tech-
nology is required to make correct and real-time processing and classification of image
information. Some scholars put forward the innovative thought of applying image
segmentation technology to road images. However, the road image itself is compli-
cated and often affected by interference information such as illumination, shadows,
road conditions, obstacles, etc., which makes the implementation of road detection
a challenge. Researchers from various countries have combined the characteristics
and commonalities of general images and road images. Algorithms for road image
detection can be divided into three categories: methods based on regional features,
methods based on road boundary features, and methods based on deep learning. The
method based on regional characteristics comprehensively considers the color and
spatial dimension information and combines the prior knowledge of the road area
and other theories, and the segmentation results obtained are generally ideal [19–21].
Based on road boundary features, it can be obtained by boundary detection [22]. This
type of segmentation method is simple and has good performance, but the adaptabil-
ity to unstructured road scenes still needs to be improved. Therefore, Andrade [23]
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provided a novel strategy for lane detection and tracking, which divides the image
processing into three levels to assist the DAS function. Some researchers have also
proposed to obtain higher-level information to segment images by using 3D radar
remote-sensing images. Chen et al. [24] introduced a progressive LiDAR adaptation-
aided road detection approach to adapt LiDAR information into visual image-based
road detection and improve detection performance. Kong et al. [25] used Gabor
wavelets to extract texture information in different directions and perform statistical
analysis and then extracted road regions based on adaptive vanishing points and
road boundaries.

With the development of deep-learning technology, methods based on deep learn-
ing have also been introduced into road area detection research. In particular, semantic
segmentation has become one of the most commonly used technologies for road scene
understanding in recent years [26,27]. Liu [28] proposed a multitask CNN method, which
can obtain the road network in the complex urban scene. Sun et al. [29] designed a net-
work architecture containing residual optimization modules for road segmentation and
successfully improved the segmentation accuracy. Alvarez et al. [30] obtained high-level
features in outdoor scenes through the CNN algorithm, which reduced the computation
intensity to a certain extent, but the problem of over-segmentation still existed. In spite
of the fact that the deep-learning method has excellent computing power, its execution
ability depends on the depth and complexity of the network. It contains dozens of network
parameters and high computational complexity and relies on millions of labeled sample
data. As a conventional machine-learning algorithm, random forest is a superior algorithm.
Through reasonable modification, the calculation result can be further improved, and it
can also process small dataset faster. This is also one of the reasons why plenty of studies
are currently more inclined to try to make model lightweight.

Despite the rapid development of assisted driving technology, the existing road
detection algorithms based on machine learning still have some shortcomings for complex
real-road scenes. Although some achievements on research have been obtained, considering
their own diversity and complex variability, most methods are only suitable for images of a
certain fixed scene. The main issue of road detection is that the algorithm needs to overcome
objective factors such as different road conditions and natural environments in the actual
scene and also needs to meet certain execution efficiency and segmentation accuracy. For
the purpose of addressing the above issues, this article combines two meaningful research
perspectives, which is different from conventional machine learning methods to help the
assisted-driving function generate accurate road-area detection results. The conventional
random-forest method is prone to leakage of boundary seed points, which may cause errors
in segmentation results and cannot guarantee the reliability of technical applications in real
scenes. Therefore, we merged the superpixel method to address this problem, which not
only protects the integrity of the boundary pixels in the road image, increases the accuracy
of road detection, but also shortens the execution time of the drivable area extraction and
improves driving experience. On the other hand, since plenty of current road detection
methods only extract and segment the lane lines in road images, the segmentation target
is relatively single. With regards to this, our experiment combines the idea of transfer
learning to increase the training samples of random forests, improve the learning ability of
the model, and avoid under-segmentation of some images during the training process due
to randomness. Moreover, the model proposed in this paper is not only able to accurately
identify the drivable area in road images but also detect obstacles in the front visible range
including vehicles, traffic signs, etc., thereby further enhancing the safety performance of
the driving-assistance system.

The main contributions of this paper are as follows:

(1) In accordance with the principles of accuracy, robustness, and efficiency required
for road image detection, we integrate the idea of shallow machine-learning model
and propose a novel hierarchical multifeature road image segmentation integration
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framework. Then, it is applied to different road image datasets for comparison and
evaluation to verify the detection effect in the multitarget complex road environment.

(2) We design a fast and stable feature extraction structure. The SLIC superpixel method
is used to extract the local feature subregions of the image, which have higher granu-
larity expression characteristics and richer feature attributes. It not only retains the
complete boundary information but also reduces the occurrence of over-segmentation.
In order to adapt to wider range of road images, we adjust the corresponding weights
of the method.

(3) In order to achieve the extraction and classification of multiple targets in the complex
road environment and to improve the accuracy and efficiency of the classification
effect, we use the ensemble-learning random-forest method, which is superior to the
conventional single classifier as the pattern classifier, to effectively deal with data
loss and feature loss in the training set. Moreover, an improved bootstrap learning
strategy is integrated to optimize the training sample selection parameters.

The rest of this paper is organized as follows: The second section introduces the road
detection method based on ensemble-learning environment used in this study in detail.
Section 3 evaluates the performance of the model and presents the experimental results.
The next section is the discussion part. The last section summarizes the related work and
proposes research directions for the next stage.

2. Methodology

The methodology mainly consists of two procedures: superpixel generation and
ensemble segmentation. After obtaining the main geometric structure of the image in
CIELAB color space, we use the SLIC superpixel algorithm to obtain the superpixel block.
The random forest is selected as a pattern classifier to effectively deal with data loss and
feature loss in the training set. Moreover, we combine the improved bootstrap learning
strategy to optimize the training sample selection parameters. In this way, a hierarchical
multifeature road image segmentation integration framework is constructed and applied
to road image detection. For high-dimensional training sets with large amounts of data, no
explicit feature selection is required to distinguish road area and surrounding environments.
The experimental results indicate that the classification accuracy is improved, and the road
segmentation image is closer to the actual situation.

2.1. Superpixel Generation and SLIC

The superpixel method clusters similar pixels in the neighborhood into superpixel
blocks by calculating the similarity between pixels, which greatly reduces the degree of
redundancy of image information that needs to be processed and ensures the validity of all
boundary information in the image. It also reduces the complexity of the subsequent work
of image processing. Lucchi et al. [31,32] initially applied the superpixel segmentation
method to the preprocessing stage in the field of machine vision and have since been widely
used in fields such as image segmentation, pattern recognition, and target tracking.

The SLIC [10] algorithm comprehensively considers the color and position of pixels
in the neighborhood and has a higher granularity than pixels. The feature vector of the
color image is converted into a five-dimensional feature vector Labxy including Lab color
and two-dimensional planar space. Lab is the color model in the CIELAB color space.
L represents brightness, ab represents two colors, and xy is the spatial position in a flat
image. Next, the distance metric between pixels needs to be calculated as the basis for
the similarity measurement. The algorithm calculates the similarity between pixels in the
neighborhood, assigns labels to similar pixels, and finally iterates until convergence. The
distance Ds is defined as follows:

dlab =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2 (1)

dxy =

√
(xk − xi)

2 + (yk − yi)
2 (2)
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Ds =

√
dlab

2 +
(m

S

)2
dxy2 (3)

where dlab is the color difference between pixels (color distance component in CIELAB
space), dxy is the spatial distance between pixels (position distance component), Ds is the
similarity of two pixels (final distance measure), S is the step size between pixels, and m is
a compactness parameter, which is used to determine the relative proportion of different
color distances dlab and position distances dxy.

The SLIC algorithm steps are described below.

Algorithm 1 SLIC

Input: RGB raw images
Output: segmented images containing superpixel blocks
1 Initialization:
Distribute seed points evenly in the image containing N pixels
Set up and generate K superpixel blocks
Set the step between pixels to S
Initialize cluster center Ck
Initialize distance Di = ∞
2 Pixel clustering:
00for each cluster center Ck do
00000for shift cluster center, each pixel i in the range of twice the size around Ck do
00000000calculate the similarity DS between pixel i and cluster center Ck
00000000if Ds < di then
0000000000set di = DS
00000000end if
00000end for
end for
3 Assign label: assign a class label to the cluster center of each generated small superpixel block
4 Iterate the cluster center until convergence is reached
5 Enforce connectivity

Taking into account the homogeneity of each pixel in the super pixel block, this paper
combines the statistical thinking to express the feature information of the entire road
image through the generated superpixel blocks and the pixel-level features of its internal
pixels. In other words, the conventional pixel-level features of image are transformed into
several superpixel blocks to convey characteristic attributes. This can reduce the amount of
computation for image segmentation, which not only enhances the feature expression level
of superpixel but also improves the execution efficiency of subsequent tasks.

2.2. Conventional Random Forest

The introduction of ensemble learning has led many researchers to study it [33,34].
Bagging and boosting are representative methods for ensemble learning. They mainly have
three steps: generate different classification members, choose the most suitable ensemble
classifier, and combine classifiers according to a certain strategy. In fact, random forest [35]
is an extension of bagging's thoughts. It can process high-dimensional training sets with
a large amount of data and has a fast classification speed. Moreover, it is not prone to
overfitting and has strong anti-noise capabilities. However, due to its combination of theory
and application, there are still many novel ideas for improving its performance [36–38].

Random forest contains several tree-like classifiers h(x, θk), k = 1, . . ., where x repre-
sents the input variable and θk is a random vector that is independent and distributed on
the bootstrap set. Each classifier votes for the input variable x, and the classification with
the most votes is used as the classification result of x.

Generalization error of random forest:

PE∗ = PX,Y(mg(X, Y) < 0) (4)
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Plenty of experiments have signified that with the increase of decision tree classifiers,
the global generalization error can almost reach convergence:

PX,Y

(
Pθ(h(X, θ) = Y)−max

j 6=Y
Pθ(h(X, θ) = j) < 0

)
(5)

which indicates that random forest is less prone to overfitting due to the increase in decision trees.
The growth process of the random forest integrated classifier is given below, as shown

in Figure 1:

Figure 1. Random-forest construction diagram.

Step 1: If there are N samples in the dataset, then we randomly select N samples for
replacement (one sample is randomly selected at a time, and then it is put back in, and
the selection process is repeated continuously). The selected N samples are used to train a
decision tree as samples at the root node of the decision tree.

Step 2: m attributes were randomly selected from all attributes of each sample in the
classification tree, and then a split method (such as Gini, IG method) was taken from these
attributes to select one as the root node attribute. For instance, the formula Gini is:

Gini(Ai) = −
c

∑
i=1

p(yi)
2 +

mi

∑
j=1

p
(
vi,j
) c

∑
i=1

p
(
yi
∣∣vi,j

)
(6)

c = argmaxc

((
1
n

n

∑
k=1

I(x, θk) = c

))
(7)

Step 3: During the formation of the classification tree, each node must be split accord-
ing to step 2 until all trees are generated (If the attribute selected by the node next time is
the attribute that was used when its parent node was split, then this node is used as a leaf
node and stop splitting). There is no need for pruning during the entire formation process
to make it fully grow.

Step 4: Steps 1 to 3 are followed to train a large quantity of classification trees. The
data samples to be predicted are put into the trained model for classification processing,
and the prediction of each tree is counted, and the maximum number of votes is used as
the final classification result.

Random forest is a process of continuously categorizing and voting for randomly
extracted feature attributes. In this article, all the processes are based on superpixel
blocks. The superpixel blocks in road images contain rich feature attributes. These feature
attribute sets composed of diverse information undergo continuous division and growth
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of the classification tree to form a reasonable random-forest model to obtain the final
classification result.

Random-forest algorithm is noticeably a classification model with mature technology.
It uses the characteristics of ensemble learning to make the classification results of datasets
with multidimensional features better. At the same time, specific feature selection can
be performed according to the importance of sample features, which is more flexible
in operation. However, in the case of a large amount of data noise, it is also prone to
overfitting. Therefore, we use superpixel algorithm to increase the performance of feature
extraction, combined with the actual situation of road detection, to improve the ability to
accurately distinguish road boundaries.

2.3. Proposed Detection Model Construction
2.3.1. Feature Representation based on Superpixel

In this paper, SLIC is used as a preprocessing method to obtain the superpixel features
of the image. From a macro perspective, the feature attributes of all pixels in a superpixel
block S can be represented by randomly selected pixels i(i ∈ S). Based on this characteristic,
this paper first randomly selects the pixels in a superpixel block to calculate its feature
values and then uses statistical knowledge to represent the attributes of the entire superpixel
block with its pixel-level features for subsequent processing.

As we know, the super pixel block S contains several pixels and the randomly selected
pixel i = randsrc(1, 1, (S)). When the pixel i is used as the basic unit for segmentation, it
only contains its own feature attribute Fi. However, if we take the superpixel block S as
the basic unit for segmentation, it should also have all the attributes Fi of the pixel i.

We assume that each pixel has a feature set of Fi(m) and each superpixel has a feature
set of Fs(M). When several features 0 < f (FS) ≤ M1 + M1 + . . . + Mρ of the superpixel
block S are extracted for classification, the accuracy of the features is not fine enough and
sufficient. According to the above analysis, we know that S not only has its own superpixel
block features but also contains pixel features. We define that

f ′(FS) = f (Fi) + f (FS) (8)

then
f ′(FS) = m1 + m2 + . . . + mρ + M1 + M2 + . . . + Mρ > f (FS) (9)

Therefore, the superpixel-based feature expression method used in this paper contains
more features than the number of features in conventional pixel blocks. It not only makes
full use of the advantages of the superpixel method but also highlights the extensiveness
of superpixel feature expression.

2.3.2. Bootstrap Learning Strategy

Random-forest classifier training process uses resampling techniques. It differs from
ordinary sampling in that the latter estimates the statistical results by drawing a small
number of samples, while the sampling technique used in the former classifier training
focuses more on dividing the sample into training and test samples. One is used to train
the classifier, and the other is used to judge the error rate and accuracy of the classifier.

Common resampling methods include the reuse method, nearest neighbor method,
and bootstrap method. Among them, the bootstrap method randomly draws n training
samples from the N training samples with replacement and generates N bootstrap sample
sets through repeated operations. This improves classification accuracy by avoiding
misleading samples. Without changing the number of samples, when the training samples
of each tree are sampled with replacement, the variance of the random forest can be reduced
by increasing the number of samples. However, the training samples are unfiltered and
uncertain, which can easily lead to data impurities and overfitting. Therefore, based on the
random-forest method for processing road images, this paper attempts to filter the original
samples in combination with the instance-based transfer learning method. The obtained
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auxiliary dataset helps the classifier to achieve classification, thereby avoiding negative
transfer or overfitting.

The main idea of instance-based transfer learning method [39] is to assume that some
data in the source domain can assist the learning of the target domain data. The usual
approach is to apply this part of the data to the learning of the target task through weighting
operations, so that the machine itself has the ability to perform incremental learning.

In this paper, source domain data are used to construct a random-forest classifier set
for target data to improve classification accuracy. If the random forest is constructed only
from the target domain data, it may cause a lower accuracy to a certain extent due to the
lack of labeled data and reduce the classification performance. Therefore, the labeled data
that can be correctly classified in the source domain are used as an auxiliary dataset to help
the target domain data be classified. The auxiliary dataset and target domain data still
use the bootstrap method for multiple sampling operations to obtain multiple bootstrap
sample sets. The random forest is used to construct a classifier for the data in the target
domain, and then all samples in the target domain are voted on to classify based on the
obtained classifier set.

2.3.3. Hierarchical Model Framework

This paper takes ensemble-learning methods as cluster classification and uses bagging
to build a random-forest and bootstrap-sampling strategy for data filtering. The labeled
data in the source domain is used as an auxiliary dataset to help the target domain data
be classified. Furthermore, the SLIC algorithm is used to generate superpixels as input
features, which consolidates the local feature consistency and clustering of the image and
retains the image boundary information, which is very meaningful for road image detection
and segmentation.

In summary, we propose a hierarchical multifeature road image segmentation integra-
tion framework. The basic steps of the HMRF model are given below:

Algorithm 2 MODEL: HMRF

Input: RGB image S
Output: Road segmentation image
1 Convert I to I′ in Lab color space and use the Sobel operator to get the color gradient map
I′Grad of I′.
2 Set K superpixel cluster center points.
3 Assign corresponding class labels to each pixel and calculate the distance Ds.
4 Continue to calculate new cluster centers until convergence and strengthen connectivity.
5 Get the edge image I′Edge based on the generated superpixel block, calculate the probability
and get the edge pixels.
6 Perform pixel-level feature extraction on all pixels.
7 Use the labeled dataset obtained from the source domain data as auxiliary dataset.
8 Take the bootstrap method to sample the target data and auxiliary dataset multiple times to
generate a labeled training set.
9 Construct decision tree and train the random forest.
10 Randomly select several features m as the feature attribute set.
11 Design a split strategy of m for pruning-free growth.
12 Import data into the trained model for classification, count the prediction of each tree classifier,
and use the one with the most votes as the final classification result.
13 Subsequent processing.

3. Experimental Results and Analysis
3.1. Description of Datasets and Evaluation Criteria

In order to verify the effectiveness of our proposed model, we adopted two sets of
different datasets as the source domain data for the experiments to evaluate the proposed
algorithm. Firstly, the HMRF was trained and evaluated on the famous road segmenta-
tion dataset from Karlsruhe Institute of Technology and Toyota Institute of Technology
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(KITTI) [40]. Among them, the road dataset contained more than 200 labeled training
images and test images. Considering that only the drivable area of interest was extracted
from the image, we made some adjustments to its image size. Meanwhile, in order to
demonstrate the universality and robustness of the proposed model, the model was also
verified on the local dataset collected from the network. Through the method introduced
in Section 2.3, the number of training samples of the image increased, and finally the effec-
tiveness of the model proposed in this article for road image segmentation was verified on
the test set.

For scientifically evaluating the performance of image segmentation algorithms, it
is often required to use consistent standards for quantitative comparison. Common eval-
uation criteria include boundary recall (BR), boundary precision (BP), and achievable
segmentation accuracy (ASA). Boundary recall (BR) is used to measure the ratio of the
boundary classified by the classifier to the boundary of the real image. Boundary precision
(BP) is used to measure the ratio of the boundary divided by the classifier to the true
segmentation boundary. They jointly measure the accuracy of boundary segmentation and
logically influence each other. True positive (TP) represents the pixels in the true value of the
boundary and the number of pixels that simultaneously appear in the boundary obtained
by the algorithm; false negative (FN) represents the number of pixels in the true value of
the boundary, but they do not appear in the boundary pixels obtained by the algorithm;
false positive (FP) is the number of boundary pixels obtained by the algorithm, but they do
not appear in the true value of the boundary. Achievable segmentation accuracy (ASA) is a
measure of the upper limit of algorithm performance. It can measure the optimal accuracy
of the segmentation results obtained with superpixels as input. In addition, compactness,
dice coefficient, jaccard, etc., are also frequently utilized to evaluate the performance of
image segmentation algorithms. These criteria measure the degree of overlap between
the algorithm segmentation results and the actual situation. Moreover, their values also
indicate the degree of classification effect. Table 1 gives a detailed description.

Table 1. Common evaluation criteria of image detection.

Segmentation
Accuracy Metric Formula Domain Original

Reference

BR BR = TP/(TP + FN) [0,1] [41]
BP BP = TP/(TP + FP) [0,1] [41]

ASA ASA = ∑k maxi |Sk∩Gi |
∑i |Gi | [0,1] [42]

Dice DSC = 2|X∩Y|
|X|+|Y|

[0,1] [42]

Jaccard J(A, B) = |A∩B|
|A∪B| =

|A∩B|
|A|+|B|−|A∩B|

[0,1] [42]

3.2. Details of the Experiments and Preprocessing

In order to verify the feasibility and performance of the road detection model proposed
in this paper, two sets of images containing multiple clear roads and nonclear roads
under natural exposure were selected for experiments. First, we performed several sets of
experiments similar to the ablation experiment to select the relatively optimal parameters
of the SLIC. Then, we carried out multiple experiments on different datasets to present the
segmentation results visually and quantitatively. Finally, we also discussed the parameter
setting of the proposed HMRF model. During the construction of the random forest, each
sample set generated by bagging sampling, some samples in the dataset may not have
been selected. They were called out-of-bag data (OOB) and were used to test and evaluate
the final classification effect.

The experiment was implemented on the Matlab platform under the Windows 10 oper-
ating system. It should be noted that, for the purpose of testing the execution ability of the
model proposed in this article on non-GPU platforms, all the training and validation work
in this article was performed in a CPU environment. It used 14-dimensional pixel-level
features as split-node attributes: texture feature, shape feature, variance filtering, 3 ∗ 3 Sobel
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operator gradient feature, maximum and minimum filtering, Gaussian filtering, mean filter-
ing, median filtering, and the three-dimensional color space features and two-dimensional
space position features of SLIC superpixels. Since statistical classifiers generally do not con-
sider the correlation between voxels, they may cause scattered noise. In order to eliminate
the influence of this noise, the classification data need to be postprocessed.

Pixels are often used as the basic unit in image processing. A pixel whose adjacent
pixels change is defined as a boundary. The model is designed to identify the drivable
area on the road and the obstacles in front of vehicles. In general, road boundary can be
geometric boundary that can be distinguished by the naked eye. If the recognition result
of the model fits the geometric boundary of the road, the optimal segmentation effect
is achieved.

The evaluation criteria of the superpixel include the controllability of the number of
superpixels generated, compactness, and the degree of boundary fit. Figure 2 demonstrates
the result of preprocessing a road image using the SLIC algorithm. Each over-segmented
object is a superpixel block, which can maintain the contour of the object well. Since the
compactness m and the number of superpixels K are the two most important parameters
of the SLIC algorithm, we compared multiple sets of experiments and removed some of
the insufficient parameter settings. By adjusting the values of K and m, the segmentation
results with different effects can be obtained. The number of superpixel blocks should not
be too large. The smaller the number of K, the less time it consumes. In the case where the
number K of superpixel blocks remains unchanged, as the m value gradually increases, the
shape and size of the generated superpixels also become more regular, but the degree of
boundary fit also decreases. It can be seen intuitively from Figure 2 that different m values
all produce superpixel blocks containing boundary information. In Figure 2b, although the
superpixel blocks roughly match the color and texture characteristics of the road, its shape,
size and compactness still need to be improved. There is also an obvious discrepancy for
the boundary of the lane line, which is due to the inappropriate setting of parameters.
Meanwhile, in Figure 2c, the road boundary is basically complete, but the shape and size
of the superpixel blocks appear to be a bit messy since the compactness parameter is not
large enough. Therefore, the superpixel block and compactness parameters are set to:
K = 300, m = 30, and other parameters are set by default. As the result show in Figure 2d,
SLIC generates superpixels with a more stable shape, which better preserves the boundary
information of the center of the road and the lane lines on both sides, which is convenient
for subsequent processing and segmentation. Since the SLIC method uses a relatively small
number of superpixel blocks instead of pixels to express the feature attributes of images, it
helps to reduce the complexity of the entire framework.

3.3. Evaluation Based on KITTI Dataset

Firstly, Figure 3 shows the result of applying the HMRF model to the road images
in the KITTI dataset. The figure shows the original images, the superpixel segmentation
results, and the final output images from left to right. It can be seen that superpixel blocks
are regular and uniform, and the corresponding road area in output road images are well
segmented. The boundary texture change of the target area remains relatively complete, the
lane lines and traffic signs on the road are all preserved, and the boundary is regular and
continuous. By adjusting random-forest training parameters and different weak classifiers,
over-segmentation can be reduced, but it is still susceptible to speckle noise and may cause
an increase in detection time. It can be seen through the experiment that it proves that
the model proposed in this paper is not affected by the road condition and has brilliant
road-area detection performance.



Remote Sens. 2021, 13, 1213 11 of 19

Figure 2. Simple linear iterative clustering (SLIC) parameter setting effect: (a) original road image;
(b) K = 150, m = 10; (c) K = 300, m = 10; and (d) K = 300, m = 30.

Figure 3. Segmentation results of Karlsruhe Institute of Technology and Toyota Institute of Technology (KITTI) dataset.
From top to bottom are original image, superpixels, and output image of our model.

In order to further evaluate the performance and feasibility of the proposed HMRF
model in outdoor-scene road detection, we used the boundary recall, boundary precision,
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and Dice as the evaluation metrics. Meanwhile, the proposed model is compared with
the classification results of the commonly used SVM, radial basis function (RBF), and
conventional random-forest method, and the average quantitative evaluation results of
road image detection by different classification algorithms are discussed. The quantitative
evaluation outcomes of the HMRF segmentation results are listed in Table 2. It demonstrates
that the HMRF algorithm proposed in this paper performs well in all the results of various
evaluation metrics, which is closer to the ideal value than other traditional segmentation
methods. HMRF model combines the advantages of the superpixel algorithm, enriches
the feature description, and completes the sampling assistance of random-forest training
samples by combining the idea of transfer learning, which reduces the error rate and has
general applicability.

Table 2. The performance comparison of common algorithms on KITTI dataset.

Algorithm BR BP Dice

SVM 0.78 0.82 0.76
RBF 0.75 0.84 0.79
RF 0.83 0.90 0.85

HMRF 0.87 0.92 0.89

Execution efficiency has always been an important evaluation basis for image segmen-
tation algorithms. An excellent algorithm must maintain a balance between segmentation
accuracy and execution efficiency. The execution times of different image segmentation
algorithms are listed in Table 3. Although the SLIC algorithm included in the HMRF
framework is similar to the preprocessing operation during execution, it plays a rather
important role in the subsequent multifeature extraction of the entire framework. The
excellent segmentation speed of the SLIC algorithm has been demonstrated on our dataset,
with an average processing time of only 0.96 s, which helps the test performance of the
HMRF model to be significantly improved. It indicates that HMRF algorithm has obvious
advantages in the test segmentation stage, and its execution efficiency is better than that of
the other three algorithms. In particular, the execution efficiency which compared with the
traditional SVM algorithm is increased by one third, while achieving effective segmentation.
Since the model proposed in this paper combines the strategy of transfer learning in the
processing of nonclear roads, the correctly classified labeled clear road images are used
as auxiliary dataset for detection and classification; therefore, the accuracy and execution
efficiency of the algorithm are improved compared with the conventional RF algorithm.

Table 3. Comparison of average testing time of different classification algorithms.

Algorithm Testing Time (s)

SVM 93.46
RBF 87.22
RF 40.51

HMRF 25.39

3.4. Evaluation based on Local Dataset

Since the data contained in the KITTI dataset are relatively complete, the image
size is consistent, and the pixel distribution is relatively regular, these factors make the
segmentation result and execution time of the KITTI dataset more stable. It is worth
mentioning that the image segmentation process may be affected by various natural and
objective factors, including natural light, shooting angle, image size, and other noise factors.
We additionally utilize the locally collected dataset for further validation, which serves as
an unlabeled weakly supervised auxiliary dataset to prove the rationality of the proposed
model. In the local dataset, we selectively show the segmentation results of some typical
road images. Figure 4 intuitively suggests the results of the HMRF model applied to
outdoor road images and selects pictures of typical clear roads and nonclear roads for
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display. Figure 4a–c is the original images of clear and nonclear roads respectively, and
Figure 4d–f is the corresponding detected road areas. It can be clearly observed from
Figure 4d that the clear road can be well detected, and the boundary texture change of the
target area remains relatively complete, which indicates that it has good robustness to the
texture change. Figure 4e–f clearly demonstrates that the detected lane lines and traffic
signs on the nonnclear roads have been well preserved in detail. The texture of the target
area is smooth and even, the boundaries of the lane lines and the traffic signs are regular
and continuous, and only some speckle noise exists in the vehicle.

Figure 4. Segmentation results of the HMRF model on clear and nonclear roads of the local dataset.
From top to bottom are original and output images (a–f).

Table 4 demonstrates the comparison of the number of nodes with different algorithms.
Similar to the KITTI dataset, the algorithm execute in the local dataset has achieved better
segmentation accuracy in all evaluation metrics. It can be seen in Figure 5 that under the
same experimental conditions, the BP, BR, and Dice values of the HMRF algorithm all
reached 0.9 or more. Although SVM and RBF methods perform well in terms of boundary
accuracy, the boundary recall rate is generally relatively low.

In addition, the operating efficiency of the algorithm is also crucial. Table 5 details
the training time, test time, and total execution time of the HMRF model for different road
images during the detection process. We can see that the method proposed in this paper is
excellent in the execution time of the training phase and the test phase.

Table 6 lists the testing time of different methods on road images. It can be clearly seen
in Figure 6 that the HMRF model proposed in this paper is more superior in the execution of
clear road and nonclear road images. Although the conventional random-forest algorithm
has a certain advantage in the test time of the clear road image, the efficiency of the nonclear
road image is insufficient because the classifier needs to relearn the features of the nonclear
road image, so that its average execution efficiency is at a medium level. The network of
RBF algorithm is relatively large, which leads to a significant increase in its calculation
time. The test time of the SVM algorithm is roughly equivalent to the RBF algorithm, and
it also has no advantage.
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Table 4. The nodes information of common classification algorithms.

Algorithm SVM RBF RF HMRF

Nodes 15500 12402 5017 4307

Figure 5. The mean quantitative assessment results of local dataset road images for common classifi-
cation algorithms.

Table 5. The execution time of proposed classification model HMRF in the local dataset.

Image Image Size
Execution Time (s)

SLIC Time Training Time Test Time Total

a 420 × 420 0.94 37.68 26.94 65.56
b 450 × 450 1.40 44.96 35.19 81.55
c 450 × 450 1.09 36.65 27.58 65.32

Table 6. Comparison of testing time of different classification algorithms with the road image.

Image
Comparison of Testing Time (s)

SVM RBF RF HMRF

a 100.44 98.57 41.36 26.94
b 131.93 126.50 56.49 35.19
c 92.67 101.92 46.55 27.58
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Figure 6. Comparison of different algorithms in testing time.

4. Discussion

It is well known that the experimental parameter settings are of great importance to
image segmentation algorithms. As one of the widely used superpixel algorithms, SLIC is
able to generate superpixel blocks with a controllable number and uniform shape, which
pay more attention to color and spatial information and smoothly maintain the contour of
objects. The evaluation metrics of the superpixel algorithm include the controllability of
quantity, compactness, and boundary fit of generated superpixels.

Since the compactness and the number of superpixels are the two most important
parameters of the SLIC algorithm, we performed multiple sets of comparisons similar
to ablation experiments for these two parameters, while ensuring that other parameters
remain unchanged. After evaluating the impact on results, we removed some sets where the
segmentation results were not ideal and only selected a few sets for display. Three typical
comparison parameter setting diagrams were placed in Figure 2 to suggest the effects of
superpixels generated by different parameters on the size controllability, compactness, and
boundary fit.

During the experiment, due to the need to preprocess the road image using the SLIC
algorithm, the quality of the superpixel blocks generated halfway may have affected the
performance of the subsequent algorithm, and the appropriate shape of the superpixel
blocks could maintain the contour of the object well. In order to obtain a suitable segmen-
tation result, the values of parameters K and m needed to be adjusted continuously. The
smaller the number of K, the less time it consumes. In the case where the number K of
superpixel blocks remains unchanged, as the m value gradually increases, the shape and
size of the generated superpixels also become more regular, but the degree of boundary fit
also decreasse.

For the purpose of examining the robustness of the HMRF model to parameters, we
conducted robust analysis experiments. Experimental results in Sections 3.3 and 3.4 suggest
that the performance of HMRF is significantly improved compared to the classification
effect of other methods and the detection effect for different road images is generally
superior. Meanwhile, the second section mentions that random forest has its inherent
randomness. Therefore, when analyzing the results, it is essential to consider the influence
of the number of trees numTrees in the random forest on accuracy. Taking the local dataset as
an example, Figure 7 displays the effect of the parameter numTrees on multiple road images
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in the experiments. The maximum depth Dmax of each tree is set to the default value. As
shown in Figure 7a, the BP value increases with the change of numTrees and gradually
stabilizes. When numTrees reaches about 50, BP value tends to stabilize. Considering the
execution time as another criterion that can judge the performance of HMRF, Figure 7b
mainly indicates the relationship between the number of trees and execution time. In
general, the greater the number of trees, the better the performance, but it also increases
the calculation time. According to the charts in Figure 7, it can be concluded that when the
number of trees is equal to 50, the HMRF model could achieve the optimal results. Not
only does the accuracy tend to be stable, but the execution time also tends to be linear as
the number of trees increases. This could demonstrate that when the number of trees is
50, the model proposed in this paper can obtain acceptable detection results, while the
execution time is kept within a reasonable range.

Figure 7. Performance of HMRF affected by the number of trees: (a) boundary precision (BP) performance on HMRF and
(b) execution time on HMRF.

This paper presents a classification approach for road images detection using a hierar-
chical multifeature road image segmentation integration framework. Overall, the novelty
of this article is that it improves the boundary related issues and enhances the multifeature
learning ability of the road detection method. Specifically, it effectively integrates transfer
learning ideas and improves bootstrap learning strategy for optimizing training process
and utilizes the proposed HMRF model framework to analyze images in order to obtain
diversified road target information. Our method makes full use of image texture, color,
location information, etc., and adjusts various parameters in the algorithm. Several sets of
experiments demonstrate that the proposed HMRF model can obtain better segmentation
accuracy and efficiency compared with other classification methods. Moreover, the quali-
tative detection effect is presented visually, which lays a good application foundation for
advanced road image processing such as assisted driving.

Road image detection originates from one of the computer vision tasks of intelligent
transportation, and image segmentation technology can greatly improve the processing
efficiency of road image detection. The research on road image detection methods is not
limited to the usual methods in this field. We may attempt to integrate more general
image-processing methods to enhance the performance of road detection, which is also
the direction we will pay more attention to in the future. Nevertheless, we also found out
some objective problems in the process of research. For instance, due to the particularity
and complexity of the application field, the execution time still needs to be shortened.
In addition, owing to the influence of objective factors such as image acquisition and
outdoor environment, the leakage of pixels during the segmentation may cause local
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areas to be undetectable, which indicates that the model is not sufficiently sensitive to
obstacle boundaries. We suppose that these problems will be improved in further research
to achieve more accurate and convenient detection, which will become the focus of our
future work.

5. Conclusions

In this paper, we propose an effective HMRF model for road image detection. Con-
sidering some key issues in this field, a crucial advantage of our model is to improve the
boundary-related problems and enhance the multifeature learning ability of the road detec-
tion method. First, aiming at the instability of road image feature processing, we propose a
novel hierarchical multifeature road image segmentation integration framework, which
improves the detection performance. It is applied to different datasets for comparison
and evaluation to verify the detection effect in the multitarget complex road environment.
Then, for most segmentation algorithms that are sensitive to noisy data, we integrate an
improved bootstrap-learning strategy to optimize the selection of training samples for
random forest. It effectively handles the data loss and feature loss in the training set and
reduces the phenomenon of redundant information or excessive segmentation. Moreover,
road detection undertakes the complexity of objective factors such as natural environ-
ment. Therefore, we adopt two datasets to multidimensionally verify that the model can
still ensure certain execution efficiency and segmentation accuracy in an objective and
natural environment. Finally, the HMRF framework in this paper not only reflects the
road boundary information of the real scene, shortens the time for extracting the drivable
area, but also detects obstacles in front visible range, thereby further enhancing the safety
performance of the driving-assistance system. The experimental results signify that the
HMRF model performs well on real-road datasets, and the execution time has certain
advantages. Besides, it has good antinoise capabilities and robustness, especially for the
drivable area on nonclear road images. At present, machine-vision technology has been
widely used in various industries. In the future, how to process larger datasets in parallel
and further improve the performance of the algorithm is still a topic worthy of research.
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