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Abstract: The Gravity Recovery and Climate Experiment (GRACE) mission and its Follow-On
(GRACE-FO) mission provide unprecedented observations of terrestrial water storage (TWS) dynam-
ics at basin to continental scales. Established GRACE data assimilation techniques directly adjust
the simulated water storage components to improve the estimation of groundwater, streamflow,
and snow water equivalent. Such techniques artificially add/subtract water to/from prognostic
variables, thus upsetting the simulated water balance. To overcome this limitation, we propose
and test an alternative assimilation scheme in which precipitation fluxes are adjusted to achieve
the desired changes in simulated TWS. Using a synthetic data assimilation experiment, we show
that the scheme improves performance skill in precipitation estimates in general, but that it is more
robust for snowfall than for rainfall, and it fails in certain regions with strong horizontal gradients
in precipitation. The results demonstrate that assimilation of TWS observations can help correct
(adjust) the model’s precipitation forcing and, in turn, enhance model estimates of TWS, snow mass,
soil moisture, runoff, and evaporation. A key limitation of the approach is the assumption that all
errors in TWS originate from errors in precipitation. Nevertheless, the proposed approach produces
more consistent improvements in simulated runoff than the established GRACE data assimilation
techniques.

Keywords: data assimilation; precipitation; TWS; GRACE

1. Introduction and Research Questions

The Gravity Recovery and Climate Experiment (GRACE) mission and its Follow-On
(GRACE-FO) mission (hereinafter “GRACE” will be used to refer to both GRACE and
GRACE-FO) have been providing observations of changes in the Earth’s water storage since
2002 ([1,2]). These mass change observations are temporally averaged, typically monthly,
measurements of anomalies (departures from the long term mean at a given location) of
the total mass of water stored on and beneath the land surface. The horizontal resolution is
about 300 km at mid-latitudes ([3]). The measured quantity is often referred to as terrestrial
water storage (TWS), which encompasses snow, groundwater, soil moisture, and surface
water in lakes, wetlands, and rivers. Alternatively, TWS can be seen as the net gain (or loss)
of water storage from the balance of precipitation, evaporation, and runoff fluxes.

The assimilation of TWS data into a land surface model has also been used to down-
scale the coarse resolution of GRACE observations and to separate the TWS components
(e.g., [4–6]). Data assimilation is a statistical technique that enables the optimal combination
of model estimates and observational data and offers the potential to generate gridded
information that is more accurate than that simulated by a model alone (e.g., [7,8]). For
TWS, data assimilation has proven valuable for a myriad of hydrology applications such as
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drought monitoring (e.g., [9–12]) and forecasting ([13]), groundwater depletion estimation
(e.g., [14,15]), assessment of flood potential ([16]), streamflow and lake storage estimation
(e.g., [17,18]), identification of human driven hydrological mechanisms (e.g., [19,20]) and
improving the water budget analyses (e.g., [21–24]). A key motivation for land data assimi-
lation is to mitigate error and uncertainty in the parameterizations, parameters and forcing
data used by land surface models to simulate complex water and energy cycle processes.

Precipitation drives the water balance at the land surface and is therefore essential
to the accurate model representation of TWS, runoff and streamflow generation. Yet, ob-
taining accurate global estimates of precipitation remains a major challenge ([25–30]). Data
assimilation can help adjusting for precipitation uncertainties within models (e.g., [31,32]).
As an example, the work by [33] illustrates several soil moisture data assimilation tech-
niques to improve rainfall-runoff model estimation. In their work, the best streamflow
estimates are attained when the assimilation technique adjusts precipitation fluxes [34]
along with the model soil moisture states.

Observations based datasets show a good agreement between precipitation and
TWS ([35]), especially in terms of correlations in the high latitudes of Siberia, Europe,
Russia, and North America ([36]). Because of this agreement, two recent studies used
GRACE TWS to estimate errors due to precipitation under-catch ([37,38]) at high latitudes
(or snowy regions), where precipitation is particularly uncertain, climatic conditions limit
the influence of evaporation and runoff on TWS ([37,39]), and the relationship between
precipitation and TWS is stronger than at mid-latitudes. The main hypothesis behind these
studies is that TWS uncertainties are, to first order, dominated by errors in precipitation.

Using the same hypothesis, in this paper we explore if precipitation errors can be
estimated from the assimilation of TWS observations. In this first, exploratory study we
assume that the main and only source of TWS uncertainty is error in the precipitation
forcing data. We perform a synthetic assimilation experiment where GRACE-like TWS
observations are used to correct errors in precipitation, thus leading to a better precipita-
tion input to the land surface model. If, for example, the model’s precipitation input at
a specific location and time was less than the synthetic truth, the model would underes-
timate TWS. Our proposed assimilation scheme would then use the difference between
the synthetic TWS observations and the modeled (underestimated) TWS to increase the
estimated precipitation and, in a second repeat model simulation, generate improved TWS
estimates. In reality, errors in simulated TWS and runoff could also be caused by errors
in the model parameterization of evapotranspiration or the partitioning into infiltration
and runoff ([25,33,40]). Thus, the assimilation of actual GRACE TWS observations into the
model may result in further uncertainties. Nonetheless, the analysis presented here is a
first step towards improving precipitation and runoff estimates along with TWS estimates
through the assimilation of TWS observations. A more in-depth investigation of other
sources of errors and the design of more sophisticated assimilation approaches is left for
future work.

The proposed work builds upon previous TWS assimilation methods (e.g., [4,5,9,41]).
These efforts directly adjust the model’s TWS prognostic state variables such as groundwa-
ter, soil moisture, and snow; model parameters and input meteorological forcings do not
change. This implies that the direct adjustments (or increments) of the TWS prognostic vari-
ables disrupt the simulated internal model mass balance. Differently from previous TWS
assimilation, here we aim to calculate and apply increments directly to the precipitation
errors that is used in the land model to generate the predicted TWS. The main advantages
of adjusting precipitation errors rather than prognostic model state estimates is that model
fluxes such as runoff and evaporation are also automatically modified directly in response
to the adjusted precipitation inputs and according to model physics, thus respecting the
internal model mass balance.

The main goal of this study is to explore if the accuracy of precipitation information
can be increased by minimizing the differences between modeled and observed TWS. This
study focuses on TWS data assimilation, broadly similar to previous experiments but with
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some technical differences that highlight another way of leveraging GRACE observations
to further improve land surface model output. The specific research questions we aim to
address are: (1) can precipitation errors be inferred from the proposed assimilation scheme?
(2) Can hydrologic states and fluxes also be improved?

2. Models and Data

All experiments conducted in this study used the Catchment Land Surface Model
(CLSM), developed by [42]. CLSM has been used in several TWS assimilation studies
(e.g., [4,5,20,43]) because it is one of the few global land surface models capable of repre-
senting shallow groundwater storage changes. Briefly, CLSM solves the surface water and
energy balance in response to surface meteorological forcing. The model first determines
the equilibrium profile soil moisture from the shallow groundwater table to the surface
based on the total subsurface water storage deficit (referred to as the “catchment deficit”).
The profile soil moisture content (prmc) is then determined from this deficit and from two
additional excess moisture variables that describe deviations from the equilibrium profile
in a 0–5 cm surface layer and a 0–100 cm root zone layer. Moreover, CLSM horizontally
redistributes soil water within each hydrological catchment based on the statistics of the
catchment topography. The model’s estimate of TWS is the sum of soil moisture, shallow
groundwater, snow and canopy interception water.

The model domain used here included all land regions north of 20 degrees north lati-
tude. All experiments used a 36 km resolution Equal-Area Scalable Earth (EASE) version
2 grid ([44]) and a model time step of 7.5 min. Our period of investigation was July 2003
to July 2016, which encompassed most of the period of the GRACE mission. We used the
model parameters defined for Version 4 of the SMAP Level-4 Soil Moisture product ([45]).
Surface meteorological forcing data from the Modern Era Retrospective analysis for Re-
search and Applications Version 2 (MERRA-2, [46]) were used as input to CLSM. The
precipitation forcing used here was the precipitation generated by the Atmospheric Circula-
tion Model (AGCM) within the MERRA-2 system following the assimilation of atmospheric
variables (e.g., temperature, humidity, among others). That is, the MERRA-2 precipitation
used here was not corrected with gauge-based data ([47]).

3. Methods

We developed a synthetic data assimilation experiment to test our research questions,
which allowed us to test the newly proposed technique in a controlled environment where
all sources of errors and their characteristics are known. Four steps were involved in the
synthetic experiment: (1) generate a set of synthetic observations using an independent
model run (Section 3.1); (2) perform the model-only (or open-loop) ensemble simulation
(Section 3.2); (3) assimilate the synthetically generated observations (Section 3.3); and
(4) assess the performance of the proposed assimilation framework with respect to the
synthetic truth (Section 4).

3.1. Synthetic Truth

Several methods are available to produce a synthetic (imaginary) truth. Following
a so-called “identical twin experiment” approach, we adopted the same model and the
same forcing datasets used in the open-loop and data assimilation experiments (MERRA-2)
except for the precipitation, which was instead chosen from an 8-year shifted period. That
is, we used MERRA-2 precipitation data from 1995 to 2008 as the imaginary synthetic
precipitation (PTrue) for 2003 to 2016, as illustrated in Figure 1. The rationale behind the
8-year shift was to construct a synthetic precipitation dataset that differs from the one used
in the ensemble and assimilation runs (Sections 3.2 and 3.3). The resulting “truth” and
simulated TWS, soil moisture, and SWE data were unbiased, exhibit consistent seasonality,
and did not include patterns that were not modeled (e.g., groundwater depletion). This
approach restricted all errors in the system to errors in precipitation, so that we could
directly address the hypothesis tested in this study. Using this forcing setup we generated
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a suite of synthetic prognostic and diagnostic estimates (soil moisture, terrestrial water
storage, runoff, etc.). As an example, Figure 1 shows the synthetic TWS obtained from
the deterministic model run that uses synthetic precipitation input. We used the suite
of synthetic prognostic and diagnostic estimates to verify if the assimilation of synthetic
TWS observations could recover other aspects of the hydrology, beside constraining the
precipitation fluxes.

Period to generate synthetic “truth”

Period of open-loop and assimilation experiments

a)

b)

Figure 1. (a) MERRA-2 precipitation from July 1995 to July 2016. The green and red horizontal bars indicate the periods to (i)
generate synthetic precipitation (July 1995–July 2008) and (ii) evaluate model and assimilation results (July 2003–July 2016),
respectively. (b) Synthetically generated precipitation (blue bars) and synthetic Terrestrial Water Storage (TWS, black line)
for the period of analysis (July 2003–July 2016) of a sample 36-km model grid located in Virginia, United States (37.32 N,
78.46 W).

3.1.1. Generation of Synthetic TWS Observations

The suite of synthetic diagnostic variables includes estimates of TWS at the model
spatial resolutions (i.e., 36 km). From these, we generated synthetic TWS observations (Z)
via temporal and spatial averages. Temporal- and spatial-averaging and re-gridding were
necessary to reproduce GRACE-like synthetic observations. Temporally, we aggregated
TWS values to 1-month 1-month (Figure 2a) and spatially, apply a Gaussian smoother with
a 300-km half-width on the 36-km modeled TWS (Figure 2b) and finally sub-sampled the
smoothed TWS values at 3 × 3 degrees spacing (Figure 2c) to approximately match the
spatial resolution of GRACE operational products (e.g., [2,3,48,49]). Note, that GRACE-
derived TWS retrievals are usually expressed in terms of anomalies with respect to a
specific reference time. Prior to data assimilation, we converted the TWS anomalies into
absolute TWS values based on a model estimate of TWS at the reference time. This common
practice is equivalent to confronting the anomalies of the model estimates with the original
anomaly TWS retrievals in that only TWS anomaly information is assimilated. In the
proposed synthetic assimilation approach (Section 3.3), sources of errors were known and
only attributed to precipitation fluxes, thus we arbitrarily used a measurement error equal
to 5 mm.
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Synthetically generated observed TWS Jan. 2010
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Figure 2. (a) Synthetic Terrestrial Water Storage (TWS) at the model 36-km spatial resolution for a sample month (Jan 2010);
(b) As in (a) but after applying a 300-km Gaussian smoothing function; (c) Synthetically generated TWS obtained from
sub-sampling (b) at 3 × 3 degree spacing. Panels (a–c) illustrate the process used to generate the synthetic, GRACE-like
TWS observations.

3.2. Ensemble Simulation

In general, any land surface model determines TWS from the mass balance equation:

dTWS(t)
dt

= [P(t)− E(t)− R(t)]dt (1)

This means that for a specific model time step t the uncertainties associated with the es-
timation of TWS depended upon errors/uncertainties in the precipitation (P), evaporation
(E), and runoff (R) fluxes on the right-hand side of Equation (1). In this study, we focused
on the error dependencies between TWS and precipitation fluxes and assume dthat the only
source of modeling errors was inaccurate precipitation input. While precipitation errors
were likely to dominate in GRACE data assimilation, this assumption was nevertheless a
simplification that was not fully representative of reality. The assumption was, however,
useful for testing the feasibility of the proposed assimilation method in our synthetic
experiment. In our ensemble-based data assimilation system, the precipitation errors could
be represented through the generation of an ensemble of equiprobable model realizations.
We generated an ensemble of 24 members ([5]) of possible precipitation realizations using
a multiplicative error scheme as follows:

Pj,m = bj,m · PM2,m (2)

where the subscript j = 1, 2, . . . , 24 indicates the ensemble member, PM2,m is the nominal
precipitation forcing (in this case, MERRA-2 precipitation, Section 2), and bj,m is the precipi-
tation error coefficient for a given ensemble member j and month m. These error coefficients
were sampled at the beginning of each month m from a lognormal distribution with mean
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= 1.0 and coefficient of variation = 0.5, which implies that the perturbations corresponded
to 50% of the magnitude of the nominal MERRA-2 precipitation. This approach has been
extensively used in previous efforts to generate an ensemble of precipitation forcings
(e.g., [4,50–53]). Horizontal correlation of the precipitation errors (bj,m) is isotropic with a
2-degree correlation length ([5]). We assumed that errors in the precipitation forcing were
perfectly correlated within 1 month. This assumption helped to assess the feasibility of
using GRACE for improving precipitation estimates by narrowing its uncertainties and al-
lowed systematic updating of the precipitation errors (bj,m) using the monthly GRACE-like
synthetic observations.

With these settings we generated an ensemble of model realizations, hereafter referred
to as the open-loop (or model only) simulation, which included monthly estimates of TWS,
along with soil moisture at different soil levels (surface, rootzone), and all associated fluxes
(e.g., precipitation, runoff, evaporation) for July 2003–July 2016.

3.3. Data Assimilation Approach

The proposed data assimilation approach was broadly similar to existing GRACE
data assimilation schemes (e.g., [4,5,9,41]), except that we update errors in precipitation
fluxes instead of the TWS prognostic states (i.e., soil moisture and snow). That is, we
employed a two-step, ensemble smoothing approach in which the land model integration
was performed twice over the course of the same month: first to collect monthly TWS
observations minus predicted differences, and a second time to update that month’s
simulated TWS. Details of the assimilation methodology can be found in [5]. As in [5],
CLSM computed, for each model grid cell and every 7.5 min, an ensemble of TWS estimates
that were driven by the ensemble of precipitation forcings (Equations (1) and (2)). At the
end of each month, these estimates were aggregated in space and time to compute monthly
TWS observation predictions (M(b−j,m))), which were the model’s best guess of the synthetic
observations. Both the spatial- and the temporal-averaging procedures were the same
as those used for the generation of the synthetic observations (Z, Section 3.1.1). The
ensemble-based analysis used these observation predictions to compute precipitation error
increments:

b+j,m − b−j,m = K[Zj − M(b−j,m)] (3)

where the superscripts “+” and “−” in the monthly precipitation error coefficients (bj,m)
refer to the assimilation (or posterior) and open-loop (or prior assimilation) ensembles,
respectively. In Equation (3), GRACE-like synthetic TWS observations (Zj) were also
perturbed according to [54] using the measurement error (Section 3.1.1). The array K
represents the Kalman gain, which controlled the magnitude of the precipitation error
increments (b+j,m − b−j,m), and was calculated as:

K = CbM[R + CMM]−1 (4)

where R is the measurement error covariance (a diagonal matrix with non-zero elements
equal to the measurement error), and CMM is the sample error covariance of the observation
predictions. CMM is simply obtained as a covariance matrix from the observation predic-
tions M(b−j,m). Thus, the key technical difference with respect to previously developed
GRACE data assimilation efforts was in the calculation of the cross-covariance matrix CbM,
the error covariance term computed between the forecast observation predictions (M(b−j,m))
and the precipitation error coefficients (b−j,m). This was different from previous studies
which instead computed this cross-covariance directly from the ensemble of the TWS
prognostic variable states (e.g., groundwater, soil moisture, snow, etc.) and the observation
predictions while updating the prognostic states directly.

After computing the precipitation error increments (Equation (3)), we rewound the
model to the beginning of the month and re-ran the same month with the updated precipita-
tion errors. Under the assumption that TWS errors retained information of the precipitation
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errors, the rewound run should include a more realistic precipitation input, as the assim-
ilation step minimized the differences between modeled and observed (synthetic) TWS.
The data assimilation run produced a series of estimates of precipitation errors, along with
fluxes (precipitation, evaporation, runoff), and prognostic variables (snow, soil moisture)
over the same period as the open-loop, from July 2003 to July 2016. Thus, the adjusted
precipitation was included among the outputs of the assimilation step.

3.4. Metrics for Performance Evaluation

We assessed the performance of the proposed assimilation scheme using the Pearson
correlation coefficient (R) and the unbiased root mean-square error (ubRMSE, [55]), com-
puted for both the open-loop and data assimilation experiments with respect to the set
of synthetic hydrologic variables (Section 3.1). These two metrics are commonly used to
evaluate modeled vs. observed hydrological estimates in terms of their dynamic variability
(R) and random error (ubRMSE). Bias metrics were not computed as they were close
to zero by the design of the synthetic experiment, and RMSE metrics were effectively
equivalent to ubRMSE metrics here.

4. Results and Discussion
4.1. Verification of the Method

To verify that the new assimilation scheme behaves as designed, we first investigated
the R and ubRMSE performance skill metrics for TWS at the spatial and temporal scales
of the assimilated synthetic TWS observations. The domain average values for the R and
ubRMSE are 0.70 and 39.2 mm, respectively, for the open-loop run and 0.90 and 17.5 mm
for the assimilation case, which confirmed the expected overall improvement in TWS
estimates from the assimilation of the synthetic TWS observations.

Figure 3a maps R values of the open-loop TWS estimates versus the synthetic truth
and Figure 3b depicts the improvement of the assimilation estimates over the open loop
for the R skill (ubRMSE is not shown). Some of the low values were attributed to regions
with very low precipitation (e.g., Sahara Desert, Gobi Desert), where small changes in
precipitation could cause large changes in the correlation coefficients. Other differences
could be attributed to the nonlinearity of the model in partitioning the precipitation input
into the various TWS components. For example, the lower R values reported in the central
US corresponded to regions where the depth-to-bedrock parameter was large, affecting the
TWS response to changes in precipitation.

When the synthetic observations of TWS were assimilated, the R skill increased
everywhere over the domain region, with some areas receiving larger increases than others.
The largest improvements (darker blues in Figure 3b) correspond to regions where the open-
loop TWS performs poorly (blue areas in Figure 3a). These improvements were expected
because the assimilated TWS should, by design, agree better with the observed (synthetic)
TWS (Figure 3c). For the sample location shown in Figure 3c, the R and ubRMSE values
for the open-loop experiment were 0.61 and 58 mm. These improved in the assimilation
case to 0.94 and 23 mm, respectively. In this specific example, improvements were evident
in the second half of 2007, between 2009 and 2010, and again in 2011, when the assimilation
of TWS matched the synthetic TWS more closely than TWS from the open-loop.

The spatial averaging process to generate GRACE-like synthetic observations
(Section 3.1.1) removed the fine scale features that are present in the modeled TWS
(Figure 2a). Our synthetic experiment configuration allowed us to test whether fine spatial
scales could be resolved through the assimilation of coarse spatial resolution TWS into
a model running at finer resolution. To test this, for each month we calculated spatial
correlations between the synthetic TWS and the assimilation and open-loop TWS at the
model horizontal resolution, after removing a 300 km Gaussian average from the estimates,
as an attempt to isolate improvements at the finer (model) scale. The assimilation spatial
correlation was always larger than the open-loop. For both experiments, values were
very high with long-term average equal to 0.97 and 0.99 for open-loop and assimilation
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experiments, respectively. These high values were likely a consequence of the perfect
knowledge of both open-loop and assimilation experiments of the synthetic model physics
at the 36-km scale.

Difference in TWS Correlation Between Assimilation (DA) and Open Loop, DR = RDA-ROL [-]

TWS Open Loop Correlation, ROL [-](a)

0.8
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Figure 3. (a) Correlation coefficient between open-loop (OL) estimates and synthetic observations of Terrestrial Water
Storage (TWS). (b) Difference in correlation (∆R) between the data assimilation (DA) and OL TWS. Statistics are computed
using 156 monthly estimates. TWS estimates from the OL and DA runs are temporally and spatially averaged and resampled
to match the resolution of the synthetic observations. (c) Example TWS observations (green circles) and TWS from the
open-loop (red lines) and assimilation (blue lines) experiments for a location in Virginia, United States (37.32 N, 78.46 W).
Shaded areas illustrate the ensemble spread (± one ensemble standard deviation from the ensemble mean) for the open-loop
(red shading) and assimilation (blue shading) experiments.

4.2. Assessment of Precipitation Errors

The open-loop (Section 3.2) precipitation errors were updated by the assimilation
scheme (Section 3.3). The mechanism behind the precipitation error updates is illustrated
for a sample location in Figure 4. The black solid lines in the figure report true-error values,
determined as:

bTrue,m =
PTrue,m

PM2,m
(5)

where PM2,m is the MERRA-2 precipitation for a given month m and the synthetic “true” pre-
cipitation PTrue,m was obtained from the 8-year shifted MERRA-2 precipitation (Section 3.1).
The above ratio inevitably created some instabilities for those times when the nominal
MERRA-2 precipitation (PM2,m) approached zero. To limit these instabilities, bTrue,m we
calculated and showed only for the months when PM2,m was greater than its temporal
1-percentile calculated for each individual model grid. For this reason, some months (i.e.,
September 2005 and November 2012) had missing values for bTrue,m in Figure 4a.

By construction, the open-loop error distribution is sampled from the same lognormal
distribution (Section 3.2) for each month. Thus, the open-loop sample distribution varied
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only minimally (because of sampling noise); its mean remained close to one (red solid line
in Figure 4a) and did not follow the true precipitation errors.

For the assimilation case, the precipitation error distributions from the ensemble-
based analysis (Section 3.3) followed the true errors much more closely. Nonetheless,
the assimilation results could not quite retrieve some of the high values (extremes) reported
in the synthetic precipitation error time-series as could be seen, for example, in September
2007 and in June 2008. In general, high values of bTrue,m corresponded to times when
synthetic precipitation (i.e., the 8-year shifted MERRA-2 precipitation) was much higher
than the nominal one from MERRA-2. The ensemble-based analysis performed best under
a Gaussian linear assumption which may not be met for some of these instances given
the non-linearity of the land surface model. Finally, note that the ensemble spread of the
assimilation was much smaller than that of the open-loop. In fact, as it combined multiple
sources of information, the assimilation allowed for increased robustness (i.e., reduced
uncertainty) of the estimates around the mean value.

Finally, Figure 4b,c illustrates precipitation error ensembles (or realization) of the open-
loop (red) and assimilation (blue) distributions for two different months. In April 2011
(Figure 4b), the assimilation performed as planned and retrieved the synthetic precipitation
error. In October 2007 (Figure 4c), however, the assimilation failed to retrieve the true
errors and the open-loop ensemble provided a better precipitation error’s estimate. This
might have been caused by the differences in the temporal response of TWS to changes in
precipitation errors. In fact, the value of bTrue was very large for the month of September
2007 and considerably underestimated by the assimilation (and even more so by the open-
loop), whereas in October 2007 the true precipitation error was very small (close to one). It
is possible that the assimilation of TWS could not capture these quick changes experienced
by the precipitation error.

(a)
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Figure 4. (a) Precipitation errors (bj,m) at a sample location in Virginia, United States (37.32 N, 78.46 W). (b) Ensemble of the
precipitation error estimates from the open-loop (red) assimilation (blue) for April 2011 and (c) October 2007. Vertical black
lines in (b,c) indicates the true precipitation errors.
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4.3. Assessment of Storages and Fluxes

Figure 5 and Table 1 summarize the domain-average performance skill in terms of R
and ubRMSE for all storage and flux variables of the water budget for the open-loop and
assimilation cases. The assimilation results (blue bars in Figure 5) indicated consistently
improved statistics relative to the open-loop results (red bars) for both the R and ubRMSE
metrics because of the precipitation correction in the TWS assimilation scheme. These
bulk statistics demonstrated that GRACE-like TWS assimilation could help correct (adjust)
the precipitation forcing, which in turn enhanced TWS, snow mass, soil moisture, runoff,
and evaporation estimates. Next, we investigated the spatial pattern dynamics related to
fluxes and terrestrial water storage components.
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Figure 5. Domain-average skill metrics for the assimilation (blue) and open-loop (red) experiments for TWS, snow water
equivalent (SWE), snowfall (SnowF), rainfall (RainF), total precipitation (TotPPT), profile soil moisture (prmc), runoff and
evaporation (Evap). Skill is measured in terms of time series (a) correlation (R) and (b) unbiased root mean square error
(ubRMSE) vs. the synthetic true values. The assimilation skill for all variables (including precipitation fluxes) are improved
compared to the open-loop.



Remote Sens. 2021, 13, 1223 11 of 17

Table 1. Domain-average correlation coefficient (R) and unbiased root mean square error (ubRMSE) for open-loop (OL) and
data assimilation (DA) estimates. Metrics are computed vs. the synthetic “truth” data. Confidence intervals are negligible
owing to the very large sample sizes afforded by the synthetic experiment setup; statistics are computed for 156 months and
averaged over 63,392 grid cells. Values for snowfall and snow water equivalent are calculated after masking impossible
snow areas according to [56].

R [-] ubRMSE
OL DA DA-OL OL DA DA-OL

Terrestrial Water Storage at obs. scale 0.70 0.90 0.20 39.2 mm 17.5 mm −21.7 mm
Terrestrial Water Storage at 36 km 0.59 0.77 0.17 45.5 mm 29.6 mm −15.8 mm

Snow Water Equivalent 0.67 0.72 0.05 22.8 mm 16.1 mm −6.7 mm
Profile Soil Moisture 0.54 0.73 0.19 0.020 m3 m−3 0.014 m3 m−3 −0.006 m3 m−3

Tot. Precipitation 0.41 0.50 0.08 1.54 mm/d 1.41 mm/d −0.13 mm/d
Rainfall 0.48 0.54 0.07 1.37 mm/d 1.26 mm/d −0.11 mm/d
Snowfall 0.38 0.44 0.05 0.63 mm/d 0.60 mm/d −0.03 mm/d

Evaporation 0.82 0.86 0.05 0.28 mm/d 0.22 mm/d −0.06 mm/d
Runoff 0.51 0.62 0.11 0.77 mm/d 0.62 mm/d −0.15 mm/d

4.3.1. Precipitation

The synthetic data assimilation experiment allowed us to understand if TWS observa-
tions (in this case, synthetically derived, but similar to GRACE observations) had the capa-
bility to inform precipitation fluxes, especially in regions where precipitation observations
were scarce or otherwise uncertain. Figure 6 illustrated the difference in correlation skill (vs.
the synthetic observations) between the data assimilation and open-loop estimates of total
precipitation (i.e., rainfall plus snowfall), snowfall only, and rainfall only. Domain-mean
differences were 0.08, 0.07, 0.05 for the total precipitation, rainfall, and snowfall respec-
tively (Table 1). Domain-mean differences in ubRMSE were −0.13 mm/d, −0.11 mm/d,
and −0.03 mm/d for the total precipitation, rainfall, and snowfall respectively (Table 1).
Although small, these differences (increased R and decreased ubRMSE) confirmed an
improvement thanks to data assimilation.

In general, the data assimilation scheme improved total precipitation correlations
everywhere in the domain, except for a few localized regions where the skill was consider-
ably degraded (red areas in Figure 6a). Specifically, there were large discrepancies between
assimilated precipitation and the synthetic observations in some areas like around the
Gulf of Alaska and in the Yenisei River Delta (Russia), mainly during the summer months.
Because of this, the spatial pattern of rainfall correlation differences (Figure 6b) largely
resembled that of total precipitation (Figure 6a). The Gulf of Alaska received abundant
precipitation along the maritime coastal mountain range, but several kilometers inland it
decreased dramatically. It is unlikely that this strong gradient in precipitation was resolved
by the assimilation of coarse scale TWS observations.

The assimilation yielded improvements nearly everywhere when we looked at snow-
fall correlation differences (Figure 6c). This might be related to the fact that, when snowfall
occurred, nearly all of the snowfall resulted in a change in TWS due to the accumulation
of SWE and the fact that runoff and evaporation were typically small when the tempera-
ture was below freezing. When it rained, a substantial fraction of the rainfall evaporated
and/or is converted into runoff, thus the resulting change in TWS was generally smaller
than the rainfall total. The correlation differences demonstrated that, in general, TWS
synthetic observations could be used to constrain precipitation if the latter was unknown
or uncertain.
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Figure 6. Difference in correlation skill (∆R) between data assimilation (DA) and open-loop (OL) for (a) total precipitation,
(b) rainfall, and (c) snowfall, taking the synthetic precipitation as “truth”. The assimilation of TWS increases the skill over
nearly the entire domain, except along the Gulf of Alaska and in the Yenisei River Delta. Only snow-possible areas as
indicated in ([56]) are reported in (c).

4.3.2. Evaporation and Runoff

The differences in correlation between the open-loop and the assimilation results (∆R)
for runoff and evaporation are reported in Figure 7a,b. For evaporation, the open-loop
domain-average R skill equaled 0.82 and it was 0.86 for the assimilation runs. For ubRMSE,
these were 0.28 mm/d for the open-loop and 0.22 mm/d for the assimilation. Only regions
below about 50 N latitude showed an appreciable change in evaporation skill owing to
the assimilation scheme. Evaporation changes were negligible in the high latitudes, where
temperatures were substantially lower and thus, the evaporation fluxes were a minor
component of the total water balance.

For runoff, the domain-average R skill equaled 0.51 for the open-loop and 0.62 for
the assimilation. The corresponding ubRMSE was 0.77 mm/day for the open-loop and
0.62 mm/day for the assimilation. Runoff fluxes were improved everywhere in the study
domain. By and large, the spatial patterns in these maps corresponded to those seen in
the difference map for the precipitation fluxes (Figure 6). Not surprisingly, improved
precipitation fluxes corresponded to better runoff estimates, which would only have been
marginally possible with the traditional GRACE data assimilation approaches. In the latter,
runoff changes would have been limited to improvements in baseflow and would not
capture surface runoff, which, for the most part, dominates the total runoff signal. Regions
of degradation include a few sporadic areas where the runoff ∆R is negative (red area in
Figure 7b), such as the coast of the Gulf of Alaska, where precipitation (rainfall) fluxes
experienced degradation as well (Section 4.3.1).
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Figure 7. Difference in correlation (∆R) between data assimilation (DA) and open-loop (OL) for (a) Evaporation, (b) Runoff,
and (c) Snow water equivalent; (d) profile soil moisture, based on the synthetic simulation. Only snow-possible areas as
indicated in ([56]) are reported in (c).

4.3.3. TWS Storage Components

Here, we focused on analyzing the TWS components in terms of snow water equiva-
lent (SWE) and prmc. The prmc could be used as a proxy for both groundwater table and
unsaturated zone soil moisture dynamics (Section 2).

The SWE domain-average R skill equaled 0.67 for the open-loop and 0.72 for the
assimilation. The ubRMSE was 22.8 mm for the open-loop and 16.1 mm for the assimilation.
Correlation metrics of simulated SWE with the synthetic observations improved over most
of the domain, except for some low latitude areas where the SWE was not likely one of the
main components of TWS. These patterns of SWE improvement (Figure 7c) often resemble
those for snowfall (Figure 6c).
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In general, TWS skill improvement (Figure 3b) resembles that obtained in the prmc
(Figure 7d). For the prmc, the open-loop domain-average R skill equaled 0.54 and it was
0.73 for the assimilation runs. For ubRMSE, these were 0.020 m3 m−3 for the open-loop
and 0.014 m3 m−3 for the assimilation. The assimilation yielded improvements nearly
everywhere in the study domain, and the patterns of these changes were very similar
to those seen in TWS. This is not surprising, given that the prmc encompasseed shallow
groundwater and unsaturated soil moisture.

5. Summary and Conclusions

The GRACE and GRACE-FO satellite missions have been measuring TWS globally
for nearly two decades at spatial and temporal resolutions that are often considered too
coarse for practical hydrological applications. State-of-the-art data assimilation methods
have proven effective for spatial and temporal downscaling through direct updates to the
TWS prognostic variables (i.e., soil moisture, groundwater, snow states, and surface water).
This work presents an alternative approach in which the TWS data assimilation scheme
adjusts errors in precipitation fluxes instead of the land model prognostic variables that
make up TWS. The proposed method has the main advantage of adjusting water fluxes
and states according to physically-based principles encoded in the land model as opposed
to the statistically-based water increments obtained in the traditional GRACE assimilation
schemes. In this way, this alternative assimilation method ensures the closure of the model
internal water budget. Additionally, model fluxes such as runoff and evaporation are
automatically and directly modified in response to the adjusted precipitation inputs and
according to model physics.

To assess the potential of the proposed approach, we conducted a synthetic experiment
where the ensemble of precipitation errors is sampled from a lognormal distribution.
Under the assumption that TWS errors retain information of the precipitation errors,
the assimilation scheme updates these errors using an ensemble-based analysis approach.
Our main findings can be summarized as follows:

1. On average, the assimilation can retrieve reasonable precipitation errors. However,
when the true errors are high, the assimilation does not always recover high enough
error estimates. This might be during times when the nominal MERRA-2 precipitation
is very low and the synthetic precipitation error is high.

2. The improvements in precipitation estimates are more robust for snowfall than for
rainfall. Degradations sometimes occur over regions where there is a strong horizon-
tal gradient in precipitation. Nonetheless, our results suggest that the proposed TWS
assimilation technique can improve precipitation flux estimates. This is consistent
with earlier studies ([37,38]) that concluded that GRACE observations could be bene-
ficial in constraining precipitation fluxes in regions with large uncertainties (e.g., due
to a scarcity of in situ data).

3. The assimilation procedure improves estimates of evaporation, runoff, SWE and
profile soil moisture, thus demonstrating the feasibility of the proposed approach
as an alternative to directly updating the TWS states in land surface models. This
mechanism may work best where the precipitation fluxes are the main driver of errors
in the water budget.

In conclusion, the results presented here demonstrate that the assimilation of synthetic
TWS observations can correct (adjust) the model’s precipitation forcing and in turn enhance
model estimates of TWS, soil moisture, snow mass, runoff, and evaporation. Because of this,
the proposed approach has a more positive impact on simulated runoff than the standard
GRACE data assimilation techniques in which TWS is updated directly. Our findings
further demonstrate the benefits of GRACE assimilation on land surface model simulations,
thus adding to the myriad ways that GRACE TWS retrievals have been harnessed to
improve our knowledge of the terrestrial hydrologic cycle. Nonetheless, this work only
presents a synthetic experiment and future work will have to test these findings using real
data. Finally, an inherent assumption of the proposed synthetic data assimilation scheme is



Remote Sens. 2021, 13, 1223 15 of 17

that all model errors arise from errors in the precipitation forcing, which are the largest
source of error. Future work will need to address other unaccounted sources of errors
(e.g., in the model inputs and parameters) for estimating TWS and related water storages
and fluxes.
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