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Abstract: The high-frequency channel of lunar penetrating radar (LPR) onboard Yutu-2 rover suc-
cessfully collected high quality data on the far side of the Moon, which provide a chance for us
to detect the shallow subsurface structures and thickness of lunar regolith. However, traditional
methods cannot obtain reliable dielectric permittivity model, especially in the presence of high
mix between diffractions and reflections, which is essential for understanding and interpreting
the composition of lunar subsurface materials. In this paper, we introduce an effective method to
construct a reliable velocity model by separating diffractions from reflections and perform focusing
analysis using separated diffractions. We first used the plane-wave destruction method to extract
weak-energy diffractions interfered by strong reflections, and the LPR data are separated into two
parts: diffractions and reflections. Then, we construct a macro-velocity model of lunar subsurface
by focusing analysis on separated diffractions. Both the synthetic ground penetrating radar (GPR)
and LPR data shows that the migration results of separated reflections have much clearer subsurface
structures, compared with the migration results of un-separated data. Our results produce accurate
velocity estimation, which is vital for high-precision migration; additionally, the accurate velocity
estimation directly provides solid constraints on the dielectric permittivity at different depth.

Keywords: lunar penetrating radar; plane-wave destruction; focusing analysis; diffractions;
velocity analysis

1. Introduction

The lunar subsurface material and geological structure recorded the early evolution
history of the Moon. In the past half century, several radar detections have been carried
out to study subsurface structures of the Moon, such as Earth based radar [1,2], orbital
radar [3–5], and lunar penetrating radar (LPR) [6–8]. The orbital radar can penetrate
deep into the ground because of using low-frequency radar waves and can obtain a
global coverage; however, it has relatively low spatial resolution on the local details of
stratifications [9]. In contrast, the LPR emits and receives the reflected high-frequency radar
waves directly from the lunar subsurface anomalies, such as reflection layers and small
diffractors, thus can detect local details of subsurface structures (Figure 1) [6]. Chang’E-3
landed in the Imbrium basin on the near side of the Moon in 2013, and the Yutu rover
performed the first roving detection by LPR on an extraterrestrial planet [7]. There are
two channels of the LPR payload: Channel 1 works with a central frequency of 60 MHz,
which is to detect the deep subsurface structures with a resolution of 10 m within the depth
of 500 m, and Channel 2 works with a central frequency of 500 MHz, which is to detect
the shallow subsurface structures and lunar regolith with a resolution of 0.3 m within the
depth of 50 m [6]. On 3 January 2019, Chang’E-4 landed in the Von Kármán crater on the
farside of the Moon [8]. The Yutu-2 rover was equipped with similar LPR payloads as the
Yutu rover. The LPR onboard Yutu-2 rover had accumulated a lot of data within its current
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traveling distance of ~600 m, after working 26 lunar days. The LPR data revealed that
the geological sediments consist of several ejecta layers that are from adjacent craters and
multi-episode volcanic eruptions [8], which clearly exhibits the transportation history of
lunar shallow materials.

The model of dielectric permittivity is important for high accuracy imaging and for
estimating the material composition of lunar subsurface. The velocity of radar propagation
within the lunar rocks and regolith can be converted from the dielectric permittivity
as follows,

v =
c√
εr

, (1)

where v is the velocity of electromagnetic waves, εr is the relative dielectric permittivity
and c is the speed of light in vacuum [10]. With this approximation, we can directly extend
many sophisticated methods developed in the seismic exploration fields, such as depth
migration [7] and velocity analysis, to image and identify complex structures detected by
the LPR. Currently, there are two approaches for building up lunar velocity models: (1) one-
dimensional empirical relations derived from statistical method based on measurements on
Apollo lunar samples [7,8,11,12]; (2) hyperbola fitting on identified diffractions [13–16]. The
1D layered model assumption was only valid for the situation that the subsurface velocity
variations are not changed dramatically, such as horizontal layered structure, but would
have an evident error in the presence of lateral velocity variations or dipping structures. In
contrast, the hyperbola fitting is effective for determining the single-point velocity at the
apex of diffractions; however, this method has two inherent drawbacks: (1) the effectiveness
of this method highly depends on the human subjectivity and it is time consuming for
processing a large number of diffractions; (2) it is highly dependent on the signal to noise
ratio of diffractions and are usually influenced by strong-energy of reflections; whereas, it is
usually difficult to separate the diffractions from noisy background and strong reflections,
since the diffractions have much weak energy compared with the reflections. Therefore,
the hyperbola fitting method can only obtain good results when the diffractions are clear
and identifiable; otherwise, it will fail to handle weak diffractions that are fully mixed with
strong-energy reflections. Unfortunately, typical lunar models (ejecta and brecciated basalt)
are shown to be rich in diffractions from small rocks or caves [9], which are buried under
strong-energy reflections from boulders or layer boundaries that are nearly horizontal.
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In the field of seismic exploration, many methods have been proposed to separate
diffractions and reflections. Harlan et al. [17] proposed to separate diffractions from re-
flections and conducted velocity analysis by diffraction focusing. Based on local slopes,
Fomel et al. [18] proposed a two-step workflow for diffraction separation and velocity anal-
ysis by plane-wave destruction (PWD) and focusing analysis. Berkovitch et al. [19] used a
new time-correction formula to estimate and separate diffractions, which focused the energy
of diffractions and scattered the energy of reflections. Klokov and Fomel [20] derived analyt-
ical equation for diffractions in dip-angle domain and separated diffractions and reflections
by their difference in shape using Radon transform. Asgedom et al. [21] enhanced the
diffractions by common-reflection-surface method and replacement-media method. Zhang
and Zhang [22] used shot and opening-angle gathers to image weak diffractions. Merzlikin
and Fomel [23] imaged diffractions by path-summation method and significantly reduced
the computational cost by two fast Fourier transforms. Merzlikin et al. [24] divided the full
wavefield into reflections, diffractions and noise by a framework consisting of Kirchhoff
modeling, plane-wave destruction and path-summation integral filter. Tschannen et al. [25]
used machine learning method to separate diffractions and reflections. Wang et al. [26]
separated diffractions by localized rank-reduction method.

Due to the large differences between seismic and ground penetrating radar (GPR)
data in the frequency components and velocity ranges, few studies have been applied to
separate diffractions to GPR data. Yuan et al. [27] applied the method of Fomel et al. [18]
to GPR data and the estimated velocity was shown to be consistent with the crosshole
GPR velocity estimation. The framework in Fomel et al. [18] converts the diffraction
separation problem into a pure signal processing task, where the GPR data are regarded as
dimensionless [27], which greatly facilitates the extension of sophisticated methods that
are developed for seismic data to GPR data. Economou et al. [28] used local slopes to build
up a new summation weight and applied the weighted summation of constant-velocity
migrated GPR profiles to achieve diffraction focusing without a velocity model.

In this paper, we first review the principle and process of Fomel et al. [18]. Secondly,
we use synthetic GPR data to verify the effectiveness of this method. Thirdly, we use the
PWD method to decompose Chang’E-4 LPR data into diffractions and reflections. Then, we
use the local focusing analysis on diffractions to obtain a two-dimensional velocity model.
Next, we convert this model into relative dielectric permittivity. Finally, we compare the
imaging results after migration and draw a conclusion.

2. Methods

There are two key steps for the method of Fomel et al. [18]: (1) separate diffractions
and reflections using the PWD method [18,29,30], which maps each trace onto neighboring
traces and find out the vertical shift to minimize residual energy among the mapped
trace and its adjacent traces; (2) estimate velocity using separated diffractions by focusing
analysis method.

2.1. Plane-Wave Destruction Method

The PWD filters can be defined as the solution of local plane differential equation [29,30],

∂P
∂x

+ σ
∂P
∂t

= 0, (2)

where P(t, x) represents the wavefield, x and t are distance and time, σ(t, x) represents
the dominant local slopes, which describes the local variations of signals within the local
window. The PWD filters formed a prediction of each trace from its adjacent traces to
estimate local dominant slopes. Fomel [30] constructed a least-squares equation to estimate
the local slopes,
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C(σ)d ≈ 0, (3)

where d represents the data, and C(σ) denotes the operator of convolving the data with the
2D filter, which represents a transformed solution of Equation (2) [30]. We can get the local
slopes by solving Equation (3) through linear iterative optimization method [30]. After
local slopes are estimated, the PWD filter can remove all events with the same planer local
slopes, such as reflections. Diffractions and noises are then leaved in the data, because they
have non-planer local slopes. In other words, planer events mean that values of local slopes
do not change within the local window and non-planer events mean that values of local
slopes vary within the local window. The PWD method assumes that the reflections have
similar local slopes within the local window while the diffractions have rapidly changing
or even contrary local slopes within the local window [31].

2.2. Focusing Analysis Method

After the diffractions are separated, the focusing analysis method can be applied for
velocity estimation. The varimax norm is a good measure of focusing level for separated
diffractions [18,32,33]. The varimax norm is defined as

φ = N
N

∑
i=1

s4
i /

(
N

∑
i=1

s2
i

)2

, (4)

where si are signal amplitudes inside a window of size N. Fomel [34] uses two continuously
variable quantities to replace the varimax norm, which are solutions of the following
regularized optimization problems,

min
pi

(
N

∑
i=1

(s2
i − pi)

2
+ R[pi]

)
, (5)

min
qi

(
N

∑
i=1

(1− qis2
i )

2
+ R[qi]

)
, (6)

where R represents a regularization operator, pi and qi are continuously variable quantities.
By solving Equations (5) and (6), the most focused image can be found.

In summary, we first estimate the dominant local slopes of input data and use the PWD
filter to separate reflections and diffractions. Second, we use velocity continuation [35,36] to
get a series of migrated images of the separated diffractions. Then, we use focusing analysis
method to find out the most focused image and corresponding migration velocity (i.e., root-
mean-square velocity). Furthermore, we transform the root-mean-square velocity into
Dix velocity and further convert it from time domain to depth domain. Next, we perform
migration on the full-wavefield LPR data, the separated reflections, and the separated
diffractions, respectively. Finally, we obtain clearer and focused imaging results of the
separated reflections that had been migrated, compared with the migrated full-wavefield
LPR data using the same velocity model.

3. Results
3.1. Synthetic Data Results

The gprMax is open source software, which uses finite-difference time-domain (FDTD)
method to simulate electromagnetic wave propagation [37,38]. To verify the effectives of the
PWD method and focusing analysis method, we use the gprMax to simulate a 2D synthetic
GPR profile. The model consists of three dipping layers and many point-like diffractors
with different relative permittivity in each layer, as shown in Figure 2. The model is 40 m
in length, 20 m in depth, and the grid spacing is 0.05 m. From the top to the bottom, the
background relative permittivity of each layer is 1, 3, 4, and 5, respectively. To simulate the
phenomenon of weak diffractions, we set the relative permittivity of point-like diffractors
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and reflectors within each layer 0.5 higher than that of the background. Additionally, for
consistency with the high-frequency LPR, the central frequency of simulated antenna is
500 MHz, the sampling interval is 0.5 m, and the temporal step is 1.179 ns. Figure 2b
shows the simulated GPR profile, which consists of two strong-energy reflections and
lots of diffractions. For diffractions, only those in the first subsurface layer can be well
identified, while those in the deeper parts are difficult to identify. If we use the original
GPR profile to conduct velocity analysis by hyperbola fitting method, we can only get
accurate velocity estimation for shallow parts and cannot get reliable velocity estimation
for deep parts, especially in the presence of strong random noise. Therefore, we need
to separate diffractions from strong-energy reflections to enhance the recognizability of
weak-energy diffractions, especially for diffractions from deep depth.

Figure 3 shows the results after applying the PWD method. In Figure 3a, the two
wings of the diffractions have different local slopes, which are the foundation to identify
and separate reflections and diffractions. The separated reflections (Figure 3b) are clearer
and more continuous compared with the original GPR profile, and only small part of energy
remains around the positions of diffractors. Additionally, the diffractions are effectively
separated from the strong-energy reflections, and some weak-energy diffractions that are
hard to identify in the original GPR profile are also successfully identified in the separated
results (see the red dashed box in Figure 3c). By comparing the original model with the
separated diffractions, we find that the apexes of separated diffractions and small anomalies
in each layer correspond to each other, which proves that the PWD method is powerful on
separating the reflections and diffractions.

We use the separated diffractions to implement focusing analysis method. Figure 4a
shows the results of the generated velocity model, which are transformed from the time do-
main to depth domain. The two dipping black dash lines indicate the two layer boundaries
in original model. From the generated velocity model, we can observe that the focusing
analysis method can obtain accurate velocity estimation from separated diffractions. Mean-
while, the migrated diffractions (Figure 4d) show that all diffractions are well focused, and
the migrated reflections (Figure 4c) are much clearer than the results of migrated input
GPR data (Figure 4b). Consequently, we verify by synthetic GPR data that the focusing
analysis method can get accurate velocity estimation using separated diffractions.
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3.2. LPR Data Results

The high-frequency LPR onboard Yutu-2 rover was used to detect the near-surface
structure. It consists of two receiving antennas (Channel 2A and Channel 2B). The channel 2A
is closer to the transmitting antenna thus has a lower signal-to-noise ratio than channel 2B.
Therefore, we use the channel 2B LPR data in our experiments. The data are recorded in the
first two lunar days, until 9 February 2019, with a total length of 88 m (Figure 5). The time step
of channel 2B is 0.3125 ns and spatial interval is 3.65 cm. Before we apply the PWD method,
the channel 2B data were processed by decoding, removing duplicative traces, removing time
delay, band-pass filter, and removing background (Figure 6a,b) [7,8].
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Figure 6. The separation results of LPR data after applying the PWD method. (a) The original
LPR data (after decoding and removing duplicative traces), (b) the preliminary processed LPR data
(after removing time delay, band-pass filter, and removing background), (c) the separated reflections,
(d) the separated diffractions, where symbols “x” and “206” represent the starting and ending point
of Yutu-2 rover shown in Figure 5, respectively.
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After applying the PWD method, the preliminary processed LPR data (Figure 6b)
are divided into two parts: reflections (Figure 6c) and diffractions (Figure 6d). Obviously,
the separated reflections show more continuous hierarchical structures, because most
hyperbola-shaped diffractions are eliminated and only small part of energy remained
at the apexes of diffractions. We can clearly observe the changes of subsurface layers
compared with the preliminary processed LPR data. Meanwhile, after separating from
the strong-energy reflections, some weak-energy diffractions are further enhanced, which
provide more available data for the velocity analysis.

Afterwards, we use separated diffractions for focusing analysis and derive a 2D velocity
model, which is further converted into the relative permittivity model (Figure 7). Finally, we
perform migration on the preliminary processed LPR data, the separated reflections, and the
separated diffractions, respectively (Figure 8). From the estimated velocity model, we find
that the lateral velocity variations are gentle and velocity interfaces are generally horizontal,
which means that there are no significant kinetic effects in this region. Furthermore, the
relative permittivity shows that the lunar subsurface can be roughly divided into three
layers from 0 m to 50 m, according to the variations of relative permittivity. This is consistent
with the results in Zhang et al. [8]. The first layer is interpreted as a lunar regolith layer
from 0 m to ~15 m, whose relative permittivity is about 3~4. The second layer is a material
transition zone from ~15 m to ~25 m, which gradual changes from lunar regolith to ejecta
that has a relative permittivity about 4~5. The third layer is a basalt layer from ~25 m to
50 m, whose relative permittivity is about 5~6.6.
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4. Discussion

Diffractions from small-scale subsurface heterogeneities (such as faults and small
rocks) of lunar subsurface carried rich subsurface velocity information. However, the
diffractions usually have relatively weak-energy and are interfered by strong-energy reflec-
tions. Traditional hyperbola fitting method can only deal with strong-energy diffractions
and does not work when the diffractions are not clear and recognizable. To perform veloc-
ity estimation from top to bottom for the LPR data, we use the PWD method to separate
weak-energy diffractions from reflections, which can evidently enhance the identifiability
of diffractions and avoid the influence from reflections.

In the separated reflections, we can still see some residual diffractions remained, which
can influence the imaging results to some extent, but the remained energy of diffractions is
relatively extraordinary low compared with unseparated data. Additionally, the residual
diffractions mainly located around diffractors, where only a small part of reflections can be
interfered. Certainly, in future works, we should find a more powerful method to further
separate the residual diffractions, which would gain a better imaging result of reflections.

5. Conclusions

We introduce an effective velocity analysis method by separating reflections and
diffractions of the LPR data. We illustrate the effectiveness of this method first by the
synthetic GPR data. The estimated velocity model from the separated synthetic diffractions
showed a good agreement with the true velocity model. We separate the reflections and
diffractions of the Chang’E-4 LPR data, and the separated diffractions are used to perform
velocity analysis. The method of separating diffractions has two advantages: (1) the weak-
energy diffractions can be enhanced and we have more available data of diffractions for
accurate velocity analysis; (2) the separated reflections can eliminate the interference of
cluttered diffractions and the lunar subsurface structures are clearer after imaging. These
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are important for reliable geological interpretations, especially when the reflections are
highly mixed with the diffractions.

The velocity model is essential for obtaining well-focused migration results. Mean-
while, the relative permittivity converted from the velocity can provide a direct constraint
on identifying the material composition [11]. We construct an accurate 2D velocity model
for the lunar subsurface using the separated diffractions. Based on this model, we per-
form migration on the LPR data using the velocity model. The results show that lunar
subsurface can be divided into three zones, which are regolith zone, the transition zone
and the basalt zone, respectively, according to values of relative permittivity. We can see a
more detailed structure of the lunar subsurface from the separated reflections, and such
a continuous distribution of lunar subsurface layer has never been obtained by previous
studies in the same research area. This method could be a powerful tool on imaging the
detailed structures detected by ground penetrating radar on both lunar surface and other
extraterrestrial planets.
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