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Abstract: Ghosts are a common phenomenon widely present in unmanned aerial vehicle (UAV)
remote sensing image stitching that seriously affect the naturalness of stitching results. In order to
effectively remove ghosts and produce visually natural stitching results, we propose a novel image
stitching method that can identify and eliminate ghosts through multi-component collaboration
without object distortion, segmentation or repetition. Specifically, our main contributions are as
follows: first, we propose a ghost identification component to locate a potential ghost in the stitching
area; and detect significantly moving objects in the two stitched images. In particular, due to the
characteristics of UAV shooting, the objects in UAV remote sensing images are small and the image
quality is poor. We propose a mesh-based image difference comparison method to identify ghosts;
and use an object tracking algorithm to accurately correspond to each ghost pair. Second, we design
an image information source selection strategy to generate the ghost replacement region, which can
replace the located ghost and avoid object distortion, segmentation and repetition. Third, we find
that the process of ghost elimination can produce natural mosaic images by eliminating the ghost
caused by initial blending with selected image information source. We validate the proposed method
on VIVID data set and compare our method with Homo, ELA, SPW and APAP using the peak signal
to noise ratio (PSNR) evaluation indicator.

Keywords: UAV remote sensing image; image stitching; ghosts

1. Introduction

Unmanned aerial vehicles (UAVs) are widely used in image collection because of their
convenient operation and low cost. However, a UAV’s low flying altitude limits the field
of view of the images. In order to obtain more comprehensive regional information, it
is necessary to mosaic some images into a large range of images. UAV remote sensing
image stitching is widely used in many real-world applications; for example, environment
monitoring, disaster assessment and management [1]. An important feature of UAV remote
sensing image acquisition is scanning capture, where there are moving objects in the image
scene. In UAV remote sensing images, creating a mosaic is quite challenging; ghosts usually
exist in the mosaic results, and are difficult to be remove.

The process of image stitching comprises two stages: image registration and image
blending. Image registration is performed to calculate the relative transformation of two
stitched images, so that the stitched image can be transformed into a unified coordinate
system. Image blending is done to form a panoramic image with a large field of view using
overlapped regions. Ghosts usually occur in the process of image blending; a moving
object may appear in an adjacent stitched image. In this case, most of the image mosaic
methods inevitably produce ghosts; because the blending image region is inconsistent. The
ghost phenomenon not only affects the naturalness of stitching results, but also affects
the application of stitching results. In this work, our main goal is to mosaic UAV remote
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sensing images and eliminate ghosts to obtain natural stitching results and achieve a
comprehensive image of the scene.

The existing image stitching methods mainly solve the problem of improving registra-
tion accuracy by designing a good transformation function. For UAV remote sensing image
mosaics, additional information is usually needed, such as camera calibration parameters,
or position and rotation data obtained from the GPU/IMU, ground control points or a
reference map, to achieve accurate mosaic results. However, these additional parameters
do not focus on the ghost phenomenon caused by moving objects, and the ghosts cannot be
eliminated by a transform function. The seam-driven image stitching method can alleviate
these problems to a certain extent. However, there are still limitations in dealing with
ghosts due to the following reasons: first, when there is a moving object in the stitched
image, the seam may cut or copy the object; secondly, the seam-driven method selects one
of multiple seams as the final seam, and if there are fast moving objects in the stitched
images, the process of seam finding method becomes challenging.

In short, the seam-driven method cannot deal with all the challenges of eliminating
ghosts, and ghost elimination is an urgent problem. In particular, when shooting images
that are generally used for stitching, they may be at the same position or have a small
rotation. However, when the UAV’s bird’s-eye view camera captures images, important
factors are not only translation and rotation, but also the distance between the camera
and the object, and the level of shaking, resulting in small objects in UAV remote sensing
images and poor image quality, which in turn increases the difficulty of image stitching
and the removal of ghosts.

In this paper, we propose a multi-component collaboration method to stitch UAV
remote sensing images while eliminating ghosts without a seam finding process. Intuitively,
we first identify the ghost region, then select the image information source, and finally
replace the ghost region with the selected image information source.

In summary, our main contributions are as follows:

• We propose a method based on multi-component collaboration to stitch UAV remote
sensing images, which can achieve a natural stitching performance;

• We design a ghost identification component that can identify the ghost area of small
objects in UAV remote sensing images and accurately identify multiple ghosts;

• We realize a UAV remote sensing image stitching method without requiring additional
information and seam optimization that can produce natural stitched images by using
selected image sources to eliminate ghosts in the initial blending result.

2. Related Work

This paper focuses on eliminating ghosts in UAV remote sensing image stitching.
Therefore, in this section, we introduce the current mainstream work from two aspects:
UAV remote sensing image stitching and ghost elimination.

2.1. UAV Remote Sensing Image Stitching

The existing image mosaic methods focus on two aspects: registration accuracy and
distortion reduction. Registration accuracy is an important research problem in image
stitching. After more than 10 years of research, some progress has been made in this area.
The key to improving registration accuracy is to design a good transform function. The
initial image stitching calculates a global transform function to register two stitched images.
This method is called homography, and is used as the baseline of the stitching method. In
2007, AutoStitch [2] was proposed to stitch multiple images, in the image registration stage,
a global transform is also used to register images. These methods are good for images with
only translation or small rotation; but are insufficient for images with large rotation; that
is, they cannot solve the parallax problem. To address parallax, multiple transformations
are used to register images rather than a single global homography. In 2011, Gao et al. [3]
divided a stitched image into two planes, and then calculated two homography matrices to
register the images. Because some images may not be clearly divided into two planes, this
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method is not applicable to all images. Lin et al. [4] used multiple affine transformation
matrices to improve the accuracy of image registration. In 2014, APAP [5] was proposed,
which is a classic image stitching method. It divides an image into several grids of fixed size
and computes multiple homography matrices to register the image. This method achieves
good results for images with large parallax. Liu et al. [6] proposed a shape-optimizing
and illumination-smoothing image stitching method and an automatic grid generation
strategy. Lee et al. [7] proposed a new concept of the warping residual, which is based on a
warping residual to stitch large parallax images. Zheng et al. [8] used the normal vector’s
orientations of local regions and the projection errors of aligned images to segment an
image; to improve the image registration accuracy. Li et al. [9] proposed an image stitching
method based on robust elastic warping, which can stitch large parallax images and achieve
accurate registration. In addition, for low texture image stitching, Xiang et al. [10] used
the line-guided local warping method to achieve accurate registration. For large parallax
video stitching, Lee and Sim [11] used the epipolar geometry method to stitch.

Through various registration methods, the overlapping areas of two images can be well
aligned, and the non-overlapping areas usually have serious distortions. Chang et al. [12]
proposed (the SPHP) algorithm, which corrects the shape of the stitched image, and reduces
the projection distortion. Lin et al. [13] proposed a homography linearization method,
which is also a shape correction problem; the natural appearance of the stitching results is
improved with this method by a level compared with SPHP. Chen et al. [14] proposed the
global similarity prior (GSP) to obtain natural stitching results, which uses line alignment
constraints to set constraint terms. Liao et al. [15] used two single-perspective warps to
register images to produce natural stitching results. Li et al. [16] proposed a novel quasi-
homography to solve the line blending problem between the homography transformation
and the similarity transformation by linearly scaling the horizontal component of the
homography, to create a more natural panorama.

UAV image mosaic usually needs additional information, such as camera calibration
parameters, and position and rotation data from the GPS/IMU, ground control points or a
reference map, to achieve accurate mosaic results [17–24]. When the GPS/IMU data are not
sufficiently accurate, the stitching may be affected. Xue et al. [24] proposed a novel image
mosaic method without the requirements of camera calibration parameters, camera poses,
or any 3D reconstruction procedure. This method can obtain visually satisfactory mosaic
results automatically using only the raw 2D imagery captured from a UAV. Liu et al. [25]
considered mosaic for low overlap UAV aerial images and found that the commonly used
methods and software were not suitable for this type of data. Then, a novel adjustment
model for mosaic low-overlap sweeping images was proposed. Cai et al. [26] proposed a
robust transform estimator based on residual analysis and its application to UAV aerial
images. Estimating the transformation between two images from the same scene is a
fundamental step for image registration, image stitching and 3D reconstruction.

2.2. Ghost Elimination

At present, there are few studies on ghost elimination. Kakli et al. [27] noted that
the presence of moving objects in a stitched image would cause blurring or ghosts, and
proposed the minimization of parallax artifacts in video stitching for moving foregrounds.
Davis et al. [28] proposed a stitching method for scenes with moving objects: first, the
stitched image is divided into disjointed regions, and the pixels of each region are sampled
from a single source image; then, the intensity difference images of the two images are
calculated and the Dijkstra algorithm is used to find the seam. The work in [29] used
the seam-driven method to eliminate ghosts. The purpose of that study was to remove
pedestrians from Google Street View images and obtain pedestrian positions by using the
pedestrian detection method.

These methods all use the seam-driven method to eliminate ghosts. The seam-driven
method can avoid and eliminate ghosts to a certain extent, but it cannot deal with all the
challenges of eliminating ghosts. For example, when a seam passes through a moving
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object, the moving object is cut. When a seam is placed between two moving objects, the
moving objects are copied. Therefore, it is difficult to eliminate the ghosts by using the
seam-driven method. Our method can effectively deal with ghosts produced by moving
objects in UAV remote sensing mosaic without using the seam-driven method.

3. Methodology
3.1. Overview

An image mosaic is used to stitch two images with overlapping areas to form a
panorama with a large field of view. Given two image I1 and I2, I1 is the reference image.
Generally, the image stitching process is split into the following steps: first, we perform
image registration and calculate the homography matrix as I2 relative to I1. Second, we
transform I2 through the homography matrix with Î2 = warp = (I, H). Finally, we perform
an image blend between I1 and Î2.

In real-world applications, two images are usually taken from a camera twice and
rotated in the same scene with different angles or small camera positions, or appropriate
key frames are selected from a video. Since the two images are not taken at the same time,
the objects move through the scene, resulting in ghosts in the stitching result and leading
to a major challenge for the image stitching problem. There are two challenges for UAV
remote sensing image stitching:

(1) Due to the large shooting distance between the UAV and the object, the object in the
UAV remote sensing image is very small;

(2) The image quality of UAV remote sensing images is poor due to the shaking of UAV
shooting equipment.

In order to deal with the above challenges, we focus on the image blending process and
propose a multi-component cooperation method for ghost identification and elimination,
which is used for UAV remote sensing image mosaic. Intuitively, we first identify potential
ghost regions in the blending region, and then explore how to eliminate them using
appropriate image information sources, which are selected from two input images in the
same ghost environment. Finally, the image information source is used to replace the ghost
area to form a natural mosaic result. The above process has the following difficulties:

(1) It is difficult to identify the ghost region because of the variety of motion patterns and
the different types of ghost. In order to deal with this problem, we propose the ghost
identification component in Section 3.2 for effective ghost identification;

(2) It is also a challenge to choose the image information source for the ghost’s replace-
ment. We should ensure that the objects in the final result are not copied or cut. To
deal with this challenge, we propose an image information source selection compo-
nent to select the appropriate image information source. In Section 3.3, we design
three rules to avoid object distortion, cutting and repetition;

(3) Using the identified ghost region and image information source, we naively perform
region substitution, which easily causes a serious seam in the ghost region. In order
to avoid this problem, we propose a ghost elimination component in Section 3.4 that
can effectively eliminate ghosts and enhance the naturalness of stitching results.

The proposed multi-component cooperative ghost identification and elimination
method is divided into three components: ghost identification, image information source
selection and ghost elimination. The three components cooperate to complete the ghost
identification and elimination in UAV remote sensing image mosaic to produce natural
mosaic results. We show the collaboration flow of the three components in Figure 1.
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3.2. Ghost Identification Component

Different ghosts are generated according to different motion trajectories of objects. As
shown in Figure 2, the boxes with the same color represent the same object, correspondingly,
the boxes with different colors represent different objects, and the dotted line describes the
moving track of the object.
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Figure 2. The trajectory of an object in multiple images.

The performance of ghosts is diverse in image mosaic. Because the performance
and motion modes of objects are different between cases, it is difficult to identify the
corresponding ghosts accurately. Intuitively, only objects in the overlapping region may
produce ghosts, which lead to the inclusion of different or non-aligned objects in the
overlapping area of two images as shown in Figure 3. The region marked by the red box
is the overlapping region. We observe the object marked by the green box. In Figure 3a,
the object is in the overlapping region; in Figure 3b, the object is in the non-overlapping
region. In the final stitching result, the object in the overlapping region is shown as a ghost,
due to the corresponding region not being an object in Figure 3b, while the object in the
non-overlapping region is still a real object.
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Figure 3. Schematic diagram of ghost performance.

Based on the above analysis, because there are non-aligned objects in the overlapping
region, ghosts are produced. In order to correctly identify the ghost region, we first find
the overlapping region of the stitched images, and then identify the non-aligned object
regions (ghost regions) in the overlapping region. Specifically, we identify ghosts with the
following steps:

(1) The overlapping region of stitched images is calculated according to the homography
transformation matrix, i.e., Ω1 and Ω2 corresponding to the overlapping regions of I1
and I2 respectively;

(2) Because the object in the UAV remote sensing image is too small and the image quality
is poor, it is difficult to obtain the object information from the scene by using the object
detection method directly. Therefore, we propose a mesh-based ghost identification
method. Meshing is performed on the overlapping regions of two images (i.e., Ω1
and Ω2). The divided grids are denoted as M1 =

{
mi

1
}

and M2 =
{

mi
2
}

where mi
1

and mi
2 are the ith meshes in I1 and I2, respectively, as shown in Figure 4;

(3) Calculating the average pixel difference of the corresponding mesh in M1 and M2:

di f fi =
abs

(
∑10

w=1 ∑10
h=1 mi

1(w, h)−∑10
w=1 ∑10

h=1 mi
2(w, h)

)
100

(1)

where di f fi is the difference between the ith mesh in I1 and I2. Intuitively, if di f fi is
large (i.e., larger than a specified threshold di f fi ≥ t1), the blended regions are not
the same and the blended result tends to be a ghost in the final result.
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In a real UAV remote sensing image, there are usually multiple objects, so it is chal-
lenging to distinguish each ghost:

(4) Utilizing a state-of-the-art object tracker, i.e., KCF [30], to perform object tracking to
accurately correspond to each ghost object.
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3.3. Image Information Source Selection Component

In order to obtain a natural stitching result, we choose the appropriate image infor-
mation source to eliminate ghosts. When we choose the image information source, we
should avoid selecting distorted objects as much as possible. Because the objects in the
warped image will have different degrees of distortion, we should choose the objects in
the reference image as the image information source as far as possible. When there are
two non-aligned objects in the overlapping region, we choose one object region and the
corresponding region of another object as the image information source. When there is an
object on the boundary of the overlapping region, we must select the object as the image
information source.

In order to deal with the above problems, we designed three rules for the selection of
image information sources:

• Shape-stabilized rule: This rule was created to make the final stitching result more
natural and keep the object as natural as possible. When there are objects in both
images, we usually take the left image as the reference image while the right image
undergoes transformation, and then the two images are blended. Correspondingly,
the objects in the right image also have deformation. Therefore, we should choose the
objects in the reference image as the image information source;

• Completeness rule: This rule mainly eradicates the ghosts at the edge of the overlap-
ping region. When a complete ghost object and ghost at the edge of the overlapping
region exist simultaneously in the final stitching result, we should select the object
at the edge of the overlapping region as the image information source to ensure the
completeness of the object;

• Uniqueness rule: This rule is used to ensure that the same object appears only once in
the final stitching result. It can avoid the repetition of objects; and also ensure that the
scene information is complete.

3.4. Ghost Elimination Component

This section focuses on the elimination of ghosts. The basic principle of eliminating
ghosts is to try to make the moving objects in the stitched image come from an image.
Specifically, we first obtain an initialized blended image I by naively blending I1 and Î2,
where we average the overlap regions of the two images as the blending region. Then, we
combine the initialized blending result with the image information source selected from I1
or Î2; we aim to generate a blended image IS by a seamless clone [31]:

IS = seamlessclone(I, obj) (2)

where, obj is the selected image information source.
Seamless clone is a method based on the Poisson equation for seamless image blending.

In the process of image blending, it is applied in the gradient domain of the image. Using
a color gradient instead of the color intensity can produce a more realistic effect. Our
seamless blending is guided by the gradient field in the source image block, and the
difference between the target scene and the source image on the blended boundary is
smoothly diffused into the blended image block; in this way, the blended image block
can be seamlessly blended into the target scene, and its hue color and illumination can
be consistent with the target scene. Specially, for the initialized blended image I and the
image information source obj, we want to interpolate obj into I; for this, we only need to
use the gradient of I as the guide gradient and solve the Poisson equation.

3.5. Implementation Details

In this section, we first show the entire flow of our proposed algorithm, as shown in
Figure 5, and then we elaborate on some details for implementing our method. We used
the SIFT [32] feature point detection algorithm of VLFeat [33] to get the feature points of
the image, and used RANSAC [34] to remove mismatches and calculate the transformation
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matrix. In the ghost identification component, the meshes were divided into 10× 10 pixels
in overlapping regions of the two images.
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For the average pixel difference of the corresponding mesh, we set the threshold t1
to be 15 to obtain a mesh with a large difference. The threshold t1 was used to determine
whether the region was the ghost region. The larger the threshold, the greater the difference
between the two regions (the region tends to be a ghost). The threshold was determined
by experiments. The experimental results are shown in Figure 6. We tested with the
threshold t1 set between 10 and 25, and the step size as 5. When t1 was 10, the correct rate
of identifying ghosts was 87.5%; when t1 was 15, the correct rate of identifying ghosts was
100%; when t1 was 20, the correct rate of identifying ghosts was 62.5%; when t1 was 25, the
correct rate of identifying ghosts was 50%. Therefore, in this paper, t1 was set as 15.
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If the value of t1 is too small, the object cannot be distinguished, as shown in Figure 7.
In Figure 7a, two ghost regions are marked with red and blue; the first line of Figure 7b,c
is the result with a threshold value of 15, which allowed the two regions to be correctly
identified, while the second line is the result of a threshold value of 10, which did not allow
the two regions to be distinguished. If the value of t1 is too large, the ghost region cannot
be identified, as shown in Figure 8. Figure 8b shows the result for a threshold value of
15, with which three ghost regions could be identified. Figure 8c shows the result for a
threshold value of 20, where only two regions could be identified.
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In the case of an inappropriate threshold, the ghost region cannot be identified, and
our technology reverts to the standard stitching.

4. Experimental Evaluation

In this section, we show the results of our proposed method and compare with the
following state-of-the-art methods to demonstrate its effectiveness: Homography (Homo),
APAP [5], ELA [11] and SPW [15]. Homography is conducted to calculate a global transform
function to register two stitched images. APAP divides the image into several grids of
fixed size and computes multiple homography matrices to register the image. This method
achieves good results for images with large parallax. ELA is an image stitching method
based on robust elastic warping, which can stitch large parallax images and achieve accurate
registration. SPW uses two single-perspective warps to register images to produce natural
stitching results. In particular, the SPW method has two blending parameters: average and
linear. We obtained the stitching results using the source codes provided by the authors. We
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also verified the effectiveness of the proposed mesh-based ghost identification method. All
of our experiments were conducted on the VIVID data set. We will evaluate the proposed
method in terms of processing time, quantitative comparison, qualitative comparison and
user study.

4.1. Effectiveness of Mesh-Based Ghost Identification Method

In the ghost identification process, in order to obtain information about objects in
the scene, if we intuitively use an object detection method to obtain object information,
there may be some limitations, such as poor image quality and small objects. Therefore,
we propose a mesh-based ghost identification method. In order to verify the effectiveness
of our proposed mesh-based ghost identification method, we conducted a comparative
experiment with the object detection method. Here, we took the SSD [35] object detection
method as an example. The comparative results are shown in Table 1.

Table 1. Comparison between the SSD and the proposed mesh-based ghost identification method.

Experimental Data
(VIVID) Proposed SSD

eg01 T F
eg02 T F
eg03 T F
eg04 T F
eg05 T F
pk01 T F
pk02 T F
pk03 T E

In Table 1, “Proposed” stands for the proposed method, “T” indicates that the ghost
object could be identified successfully, “F” indicates that the object detection failed and “E”
indicates that the object detection was incorrect.

It can be seen from Table 1 that the object detection method does have limitations in our
experimental data. However, the mesh-based ghost identification method could correctly
identify the ghost objects. Figure 9 shows an error case of object detection. Figure 9a shows
the input images, and Figure 9b shows the detected result of SSD. “cat:63%” means that
the probability that the detected object was a cat was 63%. The region marked with a blue
rectangle is the object detected by SSD. Obviously, this region was not a single object, which
proves that the detection result of SSD was incorrect.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 

 

 

the inaccurate registration caused by large parallax. However, the proposed method can 

successfully eliminate the registration ghosts in the background, as shown in Figure 10. 

In Figure 10, we compare the Homo, APAP, ELA and SPW methods. The red box and 
the green box represent two different cars. It can be seen that only our results guarantee 

the uniqueness of each car. In the final result, each car only appears once, and it is a real 
object rather than ghost. The yellow box is the ghost produced by the content in the back-

ground, which could not be achieved by the ghost identification method based on object 
detection. Moreover, the ghost identification method based on a mesh could identify the 

ghost, and the proposed method could correct the ghost very well. 

 

 

Figure 9. An error case of an object detection method. 

 

Figure 10. The effectiveness of the mesh-based ghost identification method. 

4.2. Processing Time Comparison 

We compared the processing times of Homo, APAP, ELA, SPW and the proposed 

method, and the results are shown in Table 2. In the comparison of the five methods, on 
the whole, APAP had the longest processing time. There were two groups of data stitching 

failures in the SPW method, and the processing time of SPW was also relatively long. 
Although the processing time of the Homo method and ELA were lower than that of the 

(a) Input Image (b)The Result of SSD

Figure 9. An error case of an object detection method.



Remote Sens. 2021, 13, 1388 11 of 18

The ghost identification method based on object detection is limited by the object; for
example, it only works on the objects in the training set, the content in the background of
the mosaic image cannot be detected, and a registration ghost may be produced due to
the inaccurate registration caused by large parallax. However, the proposed method can
successfully eliminate the registration ghosts in the background, as shown in Figure 10.
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Figure 10. The effectiveness of the mesh-based ghost identification method.

In Figure 10, we compare the Homo, APAP, ELA and SPW methods. The red box and
the green box represent two different cars. It can be seen that only our results guarantee the
uniqueness of each car. In the final result, each car only appears once, and it is a real object
rather than ghost. The yellow box is the ghost produced by the content in the background,
which could not be achieved by the ghost identification method based on object detection.
Moreover, the ghost identification method based on a mesh could identify the ghost, and
the proposed method could correct the ghost very well.

4.2. Processing Time Comparison

We compared the processing times of Homo, APAP, ELA, SPW and the proposed
method, and the results are shown in Table 2. In the comparison of the five methods, on
the whole, APAP had the longest processing time. There were two groups of data stitching
failures in the SPW method, and the processing time of SPW was also relatively long.
Although the processing time of the Homo method and ELA were lower than that of the
proposed method, Homo and ELA did not pay attention to moving objects, and there were
ghosts in the stitching results. The processing time of the proposed method was lower than
that of APAP and SPW.
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Table 2. Comparison of processing time (unit: sec).

Experimental Data
(VIVID) Homo APAP ELA SPW Proposed

eg01 12.4513 115.9844 13.256510 - 18.8906
eg02 11.2969 131.7813 17.730541 50.3594 19.2188
eg03 24.6719 160.3438 17.715818 50.5469 25.3125
eg04 11.9219 134.9531 15.567404 55.2500 13.5156
eg05 13.0938 113.4688 13.726297 - 20.2344
pk01 16.9375 128.0938 13.371444 45.6875 19.8906
pk02 9.8438 105.7719 15.592251 47.9219 18.1406
pk03 10.2969 83.5781 17.370393 47.5313 14.9688

4.3. Quantitative Comparison

We compared the proposed method with Homo, APAP, ELA and SPW by the Peak
Signal to Noise Ratio (PSNR). Since there were moving objects in the two stitched images,
comparison involved calculating the PSNR value of the overlapping region of the stitching
result, the overlapping region of I1 and the overlapping region of I2, and then calculating
the average value of the two values as the final result. The calculation method for PSNR is
shown in Equation (3). The comparison results are shown in Table 3. The PSNR value of
the proposed method outperforms the other methods:

PSNR = 10·log10

(
MAX2

MSE

)
(3)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[RIS(i, j)− RI(i, j)]2 (4)

where RIS is the overlapping region of the final stitching result, RI is the overlapping
region of the stitched image (i.e., I1, I2), the size of the overlapping region is m× n and the
pixel value is represented by B-bit binary; then, MAX = 2B − 1.

Table 3. PSNR Value Comparison.

Experimental Data
(VIVID) Homo APAP ELA SPW Proposed

eg01 20.2016 21.40845 22.5796 - 22.82165
eg02 12.1815 23.2395 25.1985 22.9554 25.2624
eg03 12.03825 19.7038 24.5577 19.43185 24.66515
eg04 25.98565 26.3615 26.9716 25.85315 27.5436
eg05 13.0429 27.6184 28.13995 - 28.1579
pk01 11.9454 24.35365 26.56885 23.5627 27.1024
pk02 19.99475 21.72835 22.9649 23.78245 23.80285
pk03 12.81695 20.4451 16.83345 26.7951 27.75225

4.4. Qualitative Comparison

In this section, in order to show the effectiveness of the proposed method, we make a
qualitative comparison by comparing four state-of-the-art methods: Homo, APAP, ELA
and SPW. The comparison results are shown in Figures 11–17.
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Figures 11 and 12 show the comparison results of eg02 and eg03 data in the VIVID
data set. There are multiple ghosts in each pair of stitched images. Different colored boxes
represent different objects. Correspondingly, the same color box represents the same object.
In the final stitching result, the same color box appears many times; that is, the object is
repeatedly displayed, which violates the principle of object uniqueness. The dotted line
box indicates that the object is as ghost, and the solid line box indicates a real object. In the
result of the proposed method, the ghosts are eliminated to ensure that each object appears
only once in the final mosaic result, and the object is not segmented.

Figures 13 and 14 show the stitching results of eg01 and eg05 in VIVID, which are
compared with Homo, APAP and ELA methods. It was not possible to stitch these two
sets of data with the SPW method. Therefore, the results of only four methods are shown
in Figures. As above, different colored boxes represent different objects, dotted boxes
represent ghosts, and solid boxes represent real objects. Our results still exhibit advantages.
In our final mosaic results, the objects are not repeated; at the same time, the objects only
appear once, and they are real objects rather than ghosts.

In particular, our method is also effective for dim images, and the results are shown
in Figures 15–17. The stitching results show another advantage of our method; that is,
stitching dim images and removing ghosts.

In Figures 11–17, we present experiments on eight data in the VIVID data set and
compare four state-of-the-art methods. The results show that the proposed method is
superior to other methods. Moreover, our method can not only mosaic UAV remote
sensing images and eliminate ghosts but is also effective with multiple small objects in the
scene, especially for low resolution and dim images.

4.5. User Study

In order to investigate whether our method would be popular with users, we per-
formed a user study and compared it with four state-of-the-art methods: Homo, APAP,
ELA and SPW. We invited 16 participants to vote on the results of eight data. All the eight
data were from the VIVID data set, as shown above. The voting results of participants are
shown in Table 4.
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Table 4. The results for the user study.

User

Data eg01 eg02 eg03 eg04 eg05 pk01 pk02 pk03

S P S P S P S P S P S P S P S P

01
√ √ √ √ √ √ √ √

02
√ √ √ √ √ √ √ √

03
√ √ √ √ √ √ √ √

04
√ √ √ √ √ √ √ √

05
√ √ √ √ √ √ √ √

06
√ √ √ √ √ √ √ √

07
√ √ √ √ √ √ √ √

08
√ √ √ √ √ √ √ √

09
√ √ √ √ √ √ √ √

10
√ √ √ √ √ √ √ √

11
√ √ √ √ √ √ √ √

12
√ √ √ √ √ √ √ √

13
√ √ √ √ √ √ √ √

14
√ √ √ √ √ √ √ √

15
√ √ √ √ √ √ √ √

16
√ √ √ √ √ √ √ √

Score 6.25 93.75 6.25 93.75 0 100 12.5 87.5 0 100 6.25 93.75 6.25 93.75 6.25 93.75

In Table 4, “S” means state-of-the-art methods (Homo, APAP, ELA, SPW) and “P”
means the proposed method. Table 4 shows a summary of user voting. We calculated the
score according to the voting results of 16 participants. The calculation method of the score
is shown in Equation (5). This user study shows that the mosaic result of our proposed
method won the favor of most users:

Score = λ× v (5)

λ =
100
n

(6)

where, λ is the weight coefficient of voting, n is the number of people who voted, (n = 16)
and v is the number of votes.

5. Conclusions

In this paper, we have proposed a novel ghost removal method for UAV remote
sensing image mosaics that can jointly identify ghosts and eliminate ghost areas without
distortion, cutting and repetition. Our three main contributions to the final performance
are as follows: firstly, in the ghost identification component, we proposed a mesh-based
image difference method to detect significant moving objects as potential ghosts in two
stitched images, which accurately correspond to the ghost pairs based on the object tracking
method; secondly, we designed an image information source selection strategy in the image
information source selection component to generate appropriate image information sources
as potential ghosts for localization; finally, we designed a method based on Poisson fusion
to further optimize the image block in the ghost elimination component to produce a natural
mosaic image. We validated the proposed method on the VIVID data set and compared the
proposed method with Homo, ELA, SPW and APAP using the PSNR evaluation indicator.
The comparative results show that the results of the proposed method are superior to other
methods. The proposed method has some limitations in threshold selection. In future
work, an adaptive threshold adjustment method will be designed to select an appropriate
threshold for each group of test images to improve the robustness of the method.
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