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Abstract: Although hyperspectral images capture very detailed information about the scanned
objects, their efficient analysis, transfer, and storage are still important practical challenges due to
their large volume. Classifying and segmenting such imagery are the pivotal steps in virtually all
applications, hence developing new techniques for these tasks is a vital research area. Here, deep
learning has established the current state of the art. However, deploying large-capacity deep models
on-board an Earth observation satellite poses additional technological challenges concerned with their
memory footprints, energy consumption requirements, and robustness against varying-quality image
data, with the last problem being under-researched. In this paper, we tackle this issue, and propose a
set of simulation scenarios that reflect a range of atmospheric conditions and noise contamination that
may ultimately happen on-board an imaging satellite. We verify their impact on the generalization
capabilities of spectral and spectral-spatial convolutional neural networks for hyperspectral image
segmentation. Our experimental analysis, coupled with various visualizations, sheds more light
on the robustness of the deep models and indicate that specific noise distributions can significantly
deteriorate their performance. Additionally, we show that simulating atmospheric conditions is key
to obtaining the learners that generalize well over image data acquired in different imaging settings.

Keywords: hyperspectral image analysis; classification; segmentation; deep learning; convolutional
neural network; atmospheric correction; on-board processing; noise

1. Introduction

Hyperspectral images (HSIs) capture the spectral data for each pixel, and provide very
detailed characteristics of the materials within a scene. Classification and segmentation of
such imagery have been attracting research attention due to their wide practical applicabil-
ity in various domains including biology, medicine, environmental monitoring, and remote
sensing, among others [1]. By classification, we mean assigning class labels to specific
hyperspectral pixels, while by segmentation—finding the boundaries of the same-class
objects in the entire input hyperspectral scene. Hence, segmentation involves classification
of separate pixels in this case. The HSI classification and segmentation techniques are
commonly split into conventional machine learning [2] and deep learning approaches.
The former algorithms require performing the feature engineering process, in which we
manually design feature extractors to capture discriminative characteristics within the hy-
perspectral cube. Since the number of features can easily reach hundreds, this step is often
followed by feature selection to determine a much smaller subset of the most important
features (there are also techniques that execute feature extraction and selection simultane-
ously [3]). Although there exist very powerful hand-crafted feature extraction methods,
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such as those based on the multiscale covariance maps that are specifically designed to
improve HSI segmentation [4], alongside hyperspectral data reduction algorithms that aim
at revealing better representation of the input data [5], deep learning techniques have been
continuously gaining research attention, as they benefit from automated representation
learning. Additionally, they are often able to uncover features that are extremely difficult
(or even impossible) to design by humans [6]. Due to the large volume of hyperspectral
imagery, its transfer is time-consuming and costly, so is the manual analysis of newly
acquired HSIs. Therefore, deploying automated algorithms for its efficient processing
on-board satellites is an important science and engineering topic, and on-board artificial
intelligence—employed both in the context of hyperspectral data reduction through band
selection [7-9] or feature extraction [10], and HSI analysis aiming at extracting the value
from raw data—has a potential to speed up adoption of hyperspectral analysis in emerging
use cases.

To effectively deploy machine learning HSI analysis algorithms on-board a satellite, we
need to tackle not only the challenges related to the target hardware constraints, being the
limited amount of available memory and computational power, but also those concerned
with the acquired data [11]. The data acquisition process, and the characteristics of the
captured hyperspectral imagery are dependent on various environmental and external
factors, being the latitude of the satellite (alongside the target latitude), the atmospheric
conditions, ground reflectance, and many more [12]. Additionally, the acquired image data
can be contaminated by noise, whose source may be very different, and includes sensor’s
thermal characteristics or even its failure. However, understanding (and quantifying) the
impact of such noise on the deep models deployed for HSI classification and segmentation
remains under-explored [13,14]. These technological difficulties hamper the wide-spread
adoption of hyperspectral imaging satellite systems, and quantifying the robustness of
on-board deep learning (against low-quality or contaminated data) is pivotal to successfully
deploy them in practice.

1.1. Contribution

In this paper, we thoroughly investigate the robustness of deep learning HSI segmen-
tation algorithms against various atmospheric conditions and noise distributions that may
affect the test data in the target operational environment. Specifically, we analyze spectral
and spectral-spatial convolutional neural networks (CNNs) which have not only been
widely applied for HSI classification [6,15-17], but are also easy to be deployed in the target
data processing units, exploiting e.g., field-programmable gate arrays (FPGAs) [11,18].
Since we are currently working on Intuition-1—a 6U-class satellite with a data processing
unit enabling on-board data processing acquired via a hyperspectral instrument—we focus
on our default acquisition targets in the atmospheric simulations, being urban and rural
areas in Central Europe. Therefore, one of our objectives is to understand if we can skip the
atmospheric correction step while preprocessing the hyperspectral image data on-board,
and still maintain high-quality operation of deep models. Additionally, Intuition-1 will
exploit an FPGA to execute on-board artificial intelligence, as it allows for massively paral-
lel processing (very well-fitted to deep learning algorithms), it is energy-efficient [19], it is
commonly designed to support safety-critical applications [20], and can be optimized in
the context of memory usage [21]. Additionally, the satellite will be reprogrammable in the
sense that it will be possible to uplink a new machine learning model, perhaps trained over
an updated or new training set, while Intuition-1 is in-orbit and becomes operational. Be-
cause of these reasons—although there exist classical machine learning approaches tailored
for the hyperspectral data analysis—we focus on deep learning techniques in this work.
Specifically, we investigate CNNSs, as they are the architectures that are currently available
and heavily optimized in the available development platforms for efficient inference [22].
Overall, the contributions of this work are as follows:
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e Wesimulate a wide range of atmospheric conditions affecting the characteristics of the
resulting hyperspectral data cubes. We consider different atmospheric profiles, aerosol
models, and aerosol optical thickness to precisely mimic the real acquisition settings.

¢ We generate Gaussian, impulsive, and Poisson noise and inject it into hyperspectral
imagery. These noise distributions are exploited to simulate real noise that might be
the result of hardware characteristics, failures, and much more.

*  We use our simulators to preprocess the well-known benchmark hyperspectral scenes,
and to quantify the robustness and generalization abilities of spectral and spectral-
spatial CNNs against varying-quality data. By robustness we mean the capability of
maintaining high-quality operation over data contaminated with noise or acquired in
atmospheric conditions different than a training sample used for learning a model.

e We provide a battery of visualizations, and perform a thorough experimental veri-
fication to help better understand the impact of specific disturbances on the overall
performance of CNN.

1.2. Paper Structure

This paper is structured as follows. In Section 2, we review the state of the art in HSI
classification and segmentation, and discuss the current approaches towards dealing with
low-quality data in this context (e.g., noisy data points or noisy labels). Section 3 presents
the spectral and spectral-spatial CNNs that are investigated in this work, alongside our
strategies for simulating varying atmospheric conditions and for injecting noise of different
distributions into the test hyperspectral data. Additionally, we discuss our technique for
splitting the benchmark hyperspectral scenes into training and test subsets that ensures
that there is no training-test information leakage across them. The experimental results are
presented and discussed in Section 4. Finally, Section 5 concludes the paper.

2. Related Literature

The problem of segmenting HSI is often approached in a pixel-wise manner without
taking into account the spatial correlations among the neighboring pixels [23]. In such
cases, each individual pixel is classified independently based on its spectral signature,
hence HSI segmentation consists in solving the classification task for all the pixels in the
image, with each pixel treated as a point in a multi-dimensional input space of spectral
coordinates. For this reason, the process of segmenting an HSI is commonly termed as HSI
classification when performed in a supervised manner, even if the spatial information is
exploited [24]. In many works, the HSI segmentation term is used only when considering
unsupervised segmentation, thus splitting the HSI into super-pixels or larger regions
of uniform properties. This is actually in contrast with the terminology adopted in the
image processing community [25], where segmentation is categorized as supervised and
unsupervised, while image classification is understood as assigning a label (or labels) to the
entire image based on its contents. In this section, we review the state-of-the-art methods
for supervised and unsupervised segmentation of HSI (Section 2.1) and we discuss the
approaches towards dealing with the noisy and low-quality data (Section 2.2).

2.1. Hsi Segmentation

The first attempts to segment HSIs were based on the techniques commonly applied
to classify highly-dimensional data. They encompassed the use of the k-nearest neighbor
classifier [26], support vector machines (SVMs) [27], or Gaussian mixture models that
presented some level of noise robustness [28]. While these techniques can be employed
to classify the spectral signature of each individual pixel, sparse representation of signals
helps reduce their dimensionality significantly based on a learned dictionary [29].

Sparse representation topped with machine-learned classifiers dominated the scene
of hyperspectral data classification [30], before deep learning emerged with its powerful
capabilities. While deep belief networks [23] and recurrent neural networks [31] were
employed for elaborating improved spectral features, the use of CNNs with 3D kernels
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allowed for combining the spectral dimension with spatial coordinates to extract the
contextual information [6,32]. The spatial-spectral techniques are characterized by intrinsic
robustness against the noise [33], hence we focus on them further in this section. There
were also some attempts reported to extract the spatial-spectral features without employing
deep learning, for example using quaternion-based multiscale analysis [34]. While such
approaches require less data for training, which is a clear advantage over deep learning,
the latter remains the intensively explored mainstream direction. Recently, Okwuashi
and Ndehedehe introduced a deep network combined of multiple SVMs as neurons [35].
The network classifies each pixel based on its spectral signature, while ignoring the spatial
component. In fact, this is an SVM ensemble which increases the performance of individual
SVMs and allows them to deal with multi-class problems [36].

Zhao and Du exploited a simple CNN composed of several convolutional layers to
extract the spatial features from principal components of the spectral bands [37]. These
deep features are coupled with spectral information extracted with local discriminant em-
bedding and classified using logistic regression. Gao et al. demonstrated that both spatial
and spectral information can be jointly extracted using a CNN with 3D kernels applied
in the input layer [6]. The recent advancements in this field consist in proposing deeper
architectures capable of extracting more informative features. This encompasses the use of
densely connected CNNs [38], attention mechanisms [39], or multi-branch networks [40,41].
Additionally, many attempts are aimed at elaborating lightweight models [42] that are
suitable for on-board processing. Paoletti et al. exploited the ghost module [43] that
combines light convolutional layers with linear transformations that reduce the dimen-
sionality of the input data, hence decreasing the computational cost. Their Ghostnet [44]
achieves classification scores competitive to the state-of-the-art techniques at much lower
computational requirements.

In their recent review, Zhou and Prasad [45] focus on the challenges concerned with
the lack of labeled data which they identify as a major obstacle in deploying hyperspectral
image analysis based on deep learning. Among the solutions that can help deal with limited
amount of ground-truth data, are the unsupervised [46] and semi-supervised [47,48] ap-
proaches, including active learning [49]. In [50], Protopapadakis et al. utilized a very small
portion of labeled examples (constituting less than 0.08% of the available data) to train their
deep models. Additionally, a semi-supervised technique was used to process unlabeled
data, and to estimate soft labels which are later exploited to improve the training process.
The experimental study proved that this approach may not only help effectively deal with
extremely limited ground-truth datasets, but also allows for obtaining the state-of-the-art
performance. The possibility of exploiting unsupervised learning for segmenting HSI was
tackled in our recent work [51]. We demonstrated that recurrent neural networks allow for
extracting latent representation which can be topped with a simple clustering algorithm
to split the HSI into regions of high similarity. Importantly, we demonstrated that this
maps well onto the regions having identical ground-truth labels. Other approaches to deal
with limited ground-truth labels embrace transfer learning [52,53] and data augmenta-
tion [54,55]. The latter may also include test-time data augmentation [56] that consists in
generating more samples from a sample presented for classification. The classification is
obtained by agglomerating the classifier’s responses for all the samples, including the orig-
inal one and those that were generated. Finally, there are machine learning techniques that
can be successfully learned even using very limited amounts of training data. There exist
efficient tensor-based linear and nonlinear models for segmenting HSI which benefit from a
low number of trainable parameters, hence require smaller training samples [57,58]. In [59],
overlapping 3D tensor patches are extracted from an input HSI, and they are modelled as
the summation of intrinsic spatial-spectral tensors alongside the corresponding variation
tensors. Then, the intrinsic spatial-spectral tensor is decomposed into three matrices and a
core tensor by the Tucker decomposition—a tensor-based dictionary learning is exploited
to extract more discriminative tensor features for pixel-wise classification, which is finally
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performed using SVMs. Interestingly, such tensor-based techniques may be also utilized
for dimensionality reduction of hyperspectral imagery [60].

The problem of limited labeled data is also reflected in the way the HSI segmentation
methods are trained and evaluated. Most of the benchmarks are composed of a single image
with annotated pixel-wise class labels, which means that the training data, as well as the
data used for testing are extracted from the very same image. Such an approach is correct
as long as there is no information leakage between the test and training samples. For the
methods based on spectral features, it is sufficient to prevent the same pixel from being
incorporated into the training and test set at once. However, for the methods underpinned
with the spatial analysis, the whole neighborhood of the pixels in the test set must be
excluded from training, which has been overlooked in many works. This problem was
highlighted in our earlier paper [16] and it was also spotted by other researchers [61,62].
Overall, in many cases this leads to reporting overoptimistic quantitative scores which may
not be achievable in real-life scenarios.

2.2. Dealing with Low-Quality Data

Insufficient amounts of ground-truth data limit the capabilities of investigating
whether and how far the proposed techniques are robust against low quality of the data
being processed. In practical scenarios, the main factors affecting the image quality are
concerned with the sensor noise and atmospheric distortions [33]. There are two general
ways to deal with these problems, namely to improve the data quality prior to proper
HSI segmentation, or to make the segmentation techniques intrinsically robust against
such distortions.

The problem of image denoising has been intensively explored over the years, with a
wide range of methods proposed, including those based on deep learning [63], to deal
with various types of noise that can be observed in images of manifold modality [64].
Basically, the methods elaborated for grayscale [65] images can be applied in a band-wise
manner to enhance HSIs. Moreover, the techniques developed for processing color [66]
or multispectral [67] images, as well as those for enhancing the volumetric data [68],
can be adopted for HSI denoising. In addition to analyzing the spatial dimensions, they
benefit from the correlations across the spectral bands. Similarly, the methods developed
specifically for HSIs commonly operate in the spatial-spectral domain [69,70]. This can be
achieved relying on tensor-based techniques [71] that were summarized in a review by
Lin and Bourennane [72]. Many of the proposed methods were tailored to deal with an
assumed type of noise. While this is sufficient for images with the simulated noise, taking
such assumptions limits the performance in real-life scenarios. Therefore, the recently
reported attempts are aimed at dealing with mixed noise that better reflects the operating
conditions [73] and allows for obtaining satisfactory results for real data. Similarly as for
HSI segmentation, 3D CNNSs that operate in the spatial-spectral domain [74] are exploited
for noise removal. In [75], Wei et al. demonstrated that their fully convolutional 3D quasi-
recurrent network with residual connections is highly effective in removing simulated and
real noise in HSIs.

While the existing noise reduction algorithms allow for enhancing the quality of HSIs,
developing noise-robust HSI segmentation technique is also an actively researched field.
Especially when CNNs are employed, there may be severe overlap between the operations
executed in the convolutional layers for noise removal and HSI segmentation. This means
that denoising the image before running the segmentation or classification algorithm may
be suboptimal.

Among the first attempts towards noise-robust HSI data classification, was the divide-
and-conquer approach reported by Prasad et al. [28]. A redundant discrete wavelet trans-
form (RDWT) is employed to partition the highly-dimensional input space into several
less-dimensional subspaces, in which the HSI data are classified independently. They
demonstrated that an ensemble created out of these classifiers offers high classification
scores even for low signal-to-noise ratios. Li et al. reported that the RDWT-based features
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can be classified using an SVM, as well as with the nearest-regularized-subspace classifier
to increase the robustness against the noise [76].

Zhan et al. claimed that robustness against the noise can be achieved by splitting an
HSI into super-pixels, so that each super-pixel is classified as a single entity [77]. According
to the authors, this provides robustness against the noise and low data quality attributed
to the atmospheric distortions, but no experimental evidence was reported in the paper.
The concept of classifying the super-pixels was also explored by Huang et al., who exploited
a sparse representation model to achieve robustness against the mixed noise [78]. Duan et al.
proposed to employ relative total variation (commonly used for noise reduction) to extract
multi-scale structural features [79].

Among the many works reported on using deep learning for HSI segmentation, just
a few consider the problem of low-quality data. Recently, Li et al. proposed a capsule
network that is based on maximum correntropy criterion to deal with the noise and outliers
in the input HSI data [80]. Although the method obtains competitive classification scores
for real-life data, it is not entirely clear whether they are indeed attributed to the claimed
intrinsic noise robustness. Voulodimos et al. exploited the discrete cosine transform (DCT)
to convert the HSI into the frequency domain, and these data were fed into a CNN [81].
They demonstrated that the DCT-based preprocessing allows for obtaining high robustness
against the Gaussian and noise-and-pepper noise.

Importantly, not only the quality of the HSI data may be affected in real-life scenarios,
but also the ground-truth labels are often incorrect which leads to elaborating suboptimal
models. While the problem of noisy labels is well-known to the machine learning society,
with a number of generic techniques proposed [82,83], it has also been analyzed in the
context of training the classifiers with remotely-sensed data [84]. Jiang et al. proposed a
label noise cleansing algorithm based on random label propagation and reported an exten-
sive experimental study on how the noisy labels affect the classification performance [85].
Tu et al. considered several types of label noise and investigated its influence on the HSI
data classification with different classifiers [86].

Overall, while the problems of atmospheric correction [87,88] (discussed in detail later
in Section 3.3.1) and noise removal for HSIs have been deeply investigated in the literature,
relatively little attention has been paid to verify how HSI segmentation methods behave
when applied to the low-quality data. This is particularly important when the type of these
distortions is unknown or changeable over time. Importantly, the robust techniques are a
better choice for spaceborne platforms, as they do not require costly preprocessing.

3. Methods

In this section, we summarize the deep network architectures that are investigated
in our study—they include both spectral and spectral-spatial CNNs (Section 3.1). Then,
we discuss the hyperspectral datasets that are used in the experimentation, alongside our
training-test splits (Section 3.2). In Section 3.3, the simulated atmospheric conditions that
affect the acquired hyperspectral cubes are presented, whereas Section 3.4 focuses on the
noise distributions that are injected into the test data to mimic real-life noise that may
eventually happen on-board an imaging satellite.

3.1. Deep Network Architectures

To investigate the classification abilities of various CNNs, we focus on both spectral
and spectral-spatial CNN architectures. In the former case, only the spectral information
about a pixel is exploited to elaborate its class label while the inference, whereas spectral-
spatial CNNs benefit from both spectral and spatial information captured in an input
patch. In Table 1, we present the architectures of the investigated deep models—the
spectral network (1D-CNN) inspired by [16], alongside two spectral-spatial CNNs (2.5D-
CNN and 3D-CNN [17], with 2.5D-CNN inspired by [6]). Although both spectral-spatial
models operate on hyperspectral patches, 2.5D-CNN convolutional kernels span the entire
spectrum of B bands. On the other hand, we utilize small (3 x 3 x 3) kernels in 3D-CNN to
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effectively capture local features that may be manifested in specific (often tiny) parts of the
spectrum [17].

Table 1. The convolutional neural network (CNN) architectures investigated in this work. For each

layer, we report its hyper-parameter values, where k stands for the number of kernels (filters), s is

stride, B indicates the number of hyperspectral bands, w x w is the size of the input patch, and ¢

is the number of classes in the dataset. The Conv, MaxPool, and FC layers are the convolutional,

max-pooling, and fully-connected ones, whereas ReLU is the rectified linear unit activation function.

Model Layer Parameters Activation
Convl k: 200@(1 x 1 x 6) ReLU
s:1x1x1
Conv2 k: 200@(1 x 1 x 6) ReLU
s:1x1x3
1D-CNN Conv3 k: 200@(1 x 1 x 6) ReLU
(1x1x B) s:1x1x2
Conv4 k: 200@(1 x 1 x 6) ReLU
s:1x1x2
FC1 #x192 ReLU
FC2 192 x 150 ReLU
FC3 150 x ¢ Softmax
Convl 200@(w — 3 X w — 3 X B) ReLU
2.5D-CNN MaxPooll 2x2
(w x w x B) Conv2 200@(2 x 2 x 200) ReLU
Conv3 c@(2 x 2 x 200) Softmax
Conv1 24@(3 x 3 x 3) ReLU
Conv2 24@(3 x 3 x 3) ReLU
Conv3 24@(3 x 3 x 3) ReLU
?;D;C;\TB) FC1 # x 512 ReLU
FC2 512 x 256 ReLU
FC3 256 x 128 ReLU
FC4 128 x ¢ Softmax

3.2. Datasets and Training-Test Splits

In this work, we focus on four well-established hyperspectral images that were man-

ually delineated and are commonly used for validating the emerging HSI segmentation
techniques [16]:

The Indian Pines (IP) hyperspectral scene (145 x 145 pixels) was captured over the
Indian Pines site in North-western Indiana, USA, with a spatial resolution of 20 m. It
presents agriculture, forest, and natural perennial vegetation areas, and encompasses
16 classes (see the characteristics of all sets gathered in Table 2). The number of all
bands was reduced to 200 (from the original 224 bands) through removing those that
cover the region of water absorption. This dataset was acquired using the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.

The Salinas Valley (SV) hyperspectral scene (217 x 512 pixels) was captured over the
Salinas Valley area in California, USA, with a spatial resolution of 3.7 m. The image
presents different sorts of vegetation, corresponding to 16 classes. The original set
consists of 224 bands, however 20 bands were removed by the authors of SV due to
either atmospheric absorption or noise contamination [16] (finally, 204 bands remained
in the resulting hyperspectral cube; see http:/ /www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes; last access: 25 March 2021). This dataset was
acquired using the AVIRIS sensor.

The Pavia University (PU) hyperspectral scene (340 x 610 pixels) was captured over
Pavia University in Lombardy, Italy, with a spatial resolution of 1.3 m. The image
presents an urban scenery with nine classes, and contains 103 bands, as 12 most
noisy bands (out of 115 originally acquired) were removed by the authors of this set.
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This dataset was acquired using the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor.

®  The University of Houston (Houston) hyperspectral scene (4172 x 1202 pixels) was
captured over the University of Houston campus, USA, with a spatial resolution
of 1 m, using an ITRES CASI 1500 hyperspectral imager. The image includes 48
bands, and presents 20 urban land-cover/land-use classes. This dataset was utilized
in the 2018 IEEE GRSS Data Fusion Challenge—Fusion of Multispectral LiDAR and
Hyperspectral Data [89].

Table 2. The number of samples (pixels) for each class in the investigated datasets.

Class Indian Pines Salinas Valley Pavia University Houston

1 Alfalfa 46 Brocoli weeds 1 2009 Asphalt 6631 Healthy grass 39,196
2 Corn-notill 1428 Brocoli weeds 2 3726 Meadows 18,649 Stressed grass 130,008
3 Corn-mintill 830 Fallow 1976 Gravel 2099 Artificial turf 2736

4 Corn 237  Fallow rough plow 1394 Trees 3064 Evergreen trees 54,332
5 Grass-pasture 483 Fallow smooth 2678  Metal sheets 1345 Deciduous trees 20,172
6 Grass-trees 730 Stubble 3959 Bare soil 5029 Bare earth 18,064
7 Grass-pasture-mowed 28 Celery 3579 Bitumen 1330 Water 1064

8 Hay-windrowed 478 Grapes untrained 11,271 Bricks 3682 Red. buil. 158,995
9 Oats 20 Soil vinyard dev. 6203 Shadows 947 Non-res. build. 894,769
10 Soybean-notill 972 Corn weeds 3278 Roads 183,283
11 Soybean-mintill 2455 Lettuce 4-week 1068 Sidewalks 136,035
12 Soybean-clean 593 Lettuce 5-week 1927 Crosswalks 6059

13 Wheat 205 Lettuce 6-week 916 Major thoroughfares 185,438
14 Woods 1265 Lettuce 7-week 1070 Highways 37,438
15 Build.-Trees-Drives 386 Vinyard untrained = 7268 Railways 27,748
16 Stone-Steel-Towers 93 Vinyard trellis 1807 Paved park. lots 45,932
17 Unpaved park. lots 587

18 Cars 26,289
19 Trains 21,479
20 Stadium seats 27,296

Total 54,129 42,776 10,249 2,016,920

Although Monte-Carlo cross-validation has been widely exploited in the literature to
quantify the generalization of HSI classification and segmentation algorithms, we showed
that this approach can easily lead to obtaining over-optimistic estimation of the perfor-
mance of deep models [16]. It affects spectral-spatial techniques which utilize the pixel’s
neighborhood information while elaborating its class label, and such neighboring pixels
may fall into both training and test sub-parts of the scene, as the training and test pixels
are commonly sampled from the very same image.

To tackle the problem of the training-test information leakage, we utilize the patch-
based training-test splits obtained using our division technique [16]. For each scene, we
elaborate separate folds—we visualize our splits for IP, SV, PU, and Houston in Figures 1-3
(the training patches, containing all training pixels are rendered in yellow, and the remain-
ing parts of the image constitute the test set ¥). For the Houston scene, being the most
challenging one, we extract two data split versions (Version A and Version B). In Version
A, the patches are of size 24 x 95, and they are drawn until at least 3 - 10% samples are
present in the training set (T). On the other hand, in Version B, the dataset is divided
into a grid (10 x 10 blocks of the same size, being 120 x 477), and each fold contains 20
random blocks for training. Therefore, Version A encompasses patches that are sampled
more heterogeneously across the entire scene, whereas the number of training pixels is
significantly larger in Version B.
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Figure 1. The false-color version of the Indian Pines (IP) scene, alongside its ground-truth manual delineation and the folds
obtained using our patch-based splitting technique [16]. The training patches, containing all training pixels, are rendered in
yellow, whereas all other areas constitute the test set.

Salinas Valley
Fold 4

W

Pavia University
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 2. The false-color versions of Salinas Valley (5V) and Pavia University (PU), alongside their ground-truth manual delineations
and the folds obtained using our patch-based splitting technique [16]. The training patches, containing all training pixels, are rendered
in yellow, whereas all other areas constitute the test set.



Remote Sens. 2021, 13, 1532 10 of 30

Color composite Ground truth

Figure 3. The color-composite version of Houston, alongside its ground-truth manual delineations and the folds obtained using our
patch-based splitting technique [16]. The training patches, containing all training pixels, are rendered in yellow, whereas all other areas
constitute the test set.

In Tables 3-5, we gather the number of training and test pixels for each data split.
We can appreciate that the elaborated folds are not only extremely imbalanced, but they
also contain classes that are either present in the test set only (with no examples in the
corresponding training sample), or vice versa. Such cases, although being a real-life
scenario, have to be taken into account while quantifying the performance of the machine
learning algorithms learned over the corresponding training samples, as the models were
not able to learn characteristics of the classes that were not captured in T’s. For more details
on our approach towards calculating the classification metrics in such cases, see Section 4.1.
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Table 3. The number of pixels in each training and test set within each fold (|T| and |¥|, respectively) for the IP and SV

scenes—we have extracted four IP and five SV folds. For each fold, we boldface the classes that are not present in T, but they

are captured in ¥. Additionally, we underline those classes that are not included in ¥, but are available in T.

Indian Pines Salinas Valley
Fold 1 Fold 2 Fold 3 Fold 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Class [T| [¥| |T| [¥| |T| [¥| |T| [¥| |T| [¥| |T| [¥| IT| k4 |T| k4 |T| [¥|
1 0 46 0 46 18 28 18 28 222 1787 364 1645 367 1742 145 1864 63 1946
2 223 1205 433 995 412 1016 339 1089 370 3356 657 3069 126 3600 603 3123 37 3689
3 150 680 218 612 320 510 142 688 0 1976 284 1692 119 1857 82 1894 440 1536
4 37 200 29 208 73 164 98 139 0 1394 446 948 200 1194 26 1368 86 1308
5 152 331 179 304 79 404 73 410 151 2527 17 2661 96 2582 0 2678 312 2366
6 315 415 158 572 128 602 129 601 0 3959 212 3747 249 3710 454 3505 564 395
7 28 0 0 28 0 28 0 28 0 3579 316 3263 341 3238 431 3148 221 3358
8 181 297 49 429 69 409 179 299 1411 9860 890 10,381 1109 10,162 650 10,621 1039 10,323
9 2 18 14 6 4 16 0 20 220 5983 566 5637 559 5644 22 6181 433 5770
10 195 777 205 767 236 736 60 712 837 2441 439 2839 178 3100 351 2927 314 2964
11 543 1912 693 1762 561 1894 567 1888 100 968 82 986 121 947 0 1068 306 762
12 226 367 13 580 206 387 148 445 24 1903 176 1751 206 1721 174 1753 358 1569
13 72 133 56 149 39 166 38 167 41 875 107 809 156 760 76 840 14 902
14 308 957 395 870 175 1090 387 878 187 883 96 974 11 1059 143 927 5 1065
15 94 292 81 3056 106 280 105 281 1310 5958 70 7198 775 6493 1615 5653 438 6830
16 0 93 0 93 76 17 17 76 29 1778 0 1807 220 1587 14 1793 220 1587

Table 4. The number of pixels in each training and test set within each fold (| T| and ['¥], respectively) for the PU scene—we

have extracted five folds. For each fold, we boldface the classes that are not present in T, but they are captured in Y.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Class |T| [P |T| k4 |T| || |T| k4 |T| [P
1 437 6194 353 6278 631 6000 338 6293 897 5734
2 1577 17,072 788 17,861 1330 17,319 1942 16,707 612 18,037
3 202 1897 4 2095 132 1967 130 1969 89 2010
4 223 2841 281 2783 191 2873 112 2952 147 2917
5 0 1345 176 1169 270 1075 0 1345 191 1154
6 0 5029 392 4637 0 5029 0 5029 487 4542
7 0 1330 0 1330 0 1330 0 1330 0 1330
8 219 3463 476 3206 111 3571 98 3584 297 3385
9 87 860 121 826 70 877 0 947 94 853




Remote Sens. 2021, 13, 1532

12 of 30

Table 5. The number of pixels in each training and test set within each fold (|T| and ||, respectively) for the Houston
scene—we have extracted five folds in each version (Version A and Version B). For each fold, we boldface the classes that
are not present in T, but they are captured in ¥.

Houston (Version A)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Class IT| kd |T| kd |T| k4 |T| k4 IT| kd
1 28 39,168 350 38,846 20 39,176 640 38,556 64 39,132
2 176 129,832 1330 128,678 2708 127,300 2184 127,824 3096 126,912
3 0 2736 424 2312 0 2736 0 2736 364 2372
4 2226 52,096 617 53,705 1351 52,971 240 54,082 303 54,019
5 0 20,172 1019 19,153 1586 18,586 288 19,884 244 19,928
6 0 18,064 1268 16,796 608 17,456 0 18,064 0 18,064
7 0 1064 0 1064 0 1064 64 1000 0 1064
8 2356 156,639 1331 157,664 2362 156,633 1487 157,508 2768 156,227
9 17,069 877,700 14,061 880,708 10,225 884,544 14,312 880,457 18,416 876,353
10 2065 181,218 3054 180,229 2298 180,985 3190 180,093 2880 180,403
11 1958 134,077 2483 133,552 2796 133,239 2179 133,856 1176 134,859
12 17 6042 0 6059 111 5948 214 5845 0 6059
13 783 184,655 1581 183,857 4130 181,308 3289 182,149 560 184,878
14 538 38,900 1076 38,362 0 39,438 0 39,438 313 39,125
15 612 27,136 456 27,292 980 26,768 64 27,684 0 27,748
16 651 45,281 285 45,647 687 45,245 1383 44 549 48 45,884
17 0 587 0 587 0 587 0 587 0 587
18 725 25,564 254 26,035 0 26,289 644 25,645 287 26,002
19 489 20,990 1154 20,325 675 20,804 253 21,226 680 20,799
20 1082 26,214 0 27,296 0 27,296 0 27,296 4 27,292
Houston (Version B)
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Class |T| k4 |T| kq |T| [P |T| k4 |T| k4
1 3438 35,758 6504 32,692 15,154 24,042 6968 32,228 3280 35,916
2 31,392 98,616 15,376 114,632 33,968 96,040 15,498 114,510 24,282 105,726
3 1922 814 814 1922 0 2736 0 2736 0 2736
4 3705 50,617 13,902 40,420 15,346 38,976 8587 45,735 9670 44,652
5 6736 13,436 4793 15,379 2544 17,628 1985 18,187 4114 16,058
6 0 18,064 0 18,064 15,576 2488 0 18,064 2488 15,576
7 0 1064 588 476 332 732 0 1064 144 920
8 29,989 129,006 22,531 136,464 19,636 139,359 33,881 125,114 48,949 110,046
9 170,893 723,876 254,060 640,709 175,290 719,479 140,177 754,592 115,858 778,911
10 45,076 138,207 28,549 154,734 36,307 146,976 35,391 147,892 24,712 158,571
11 22,711 113,324 35,343 100,692 32,003 104,032 26,840 109,195 14,600 121,435
12 1339 4720 880 5179 1694 4365 563 5496 1469 4590
13 31,660 153,778 37,525 147,913 25,053 160,385 32,630 152,808 53,319 132,119
14 7570 31,868 0 39,438 5282 34,156 5266 34,172 16,014 23,424
15 0 27,748 4172 23,576 740 27,008 4056 23,692 10,780 16,968
16 12,783 33,149 1837 44,095 8660 37,272 11,627 34,305 11,025 34,907
17 0 587 256 331 0 587 0 587 331 256
18 8051 18,238 1126 25,163 3456 22,833 0 26,289 13,656 12,633
19 3160 18,319 1284 20,195 1345 20,134 3772 17,707 7650 13,829
20 7052 20,244 10,696 16,600 0 27,296 5242 22,054 4306 22,990
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3.3. Hyperspectral Analysis in Varying Atmospheric Conditions

Although the atmospheric correction step is not time-consuming or computationally
expensive, it is difficult to determine the atmospheric profile that should be used for this
correction during the operation of a satellite. In this work, we assume that we take images
of Central Europe (e.g., no tropical climate). Therefore, we should (at least) cope here with
urban and rural sites with mid-latitude values, as Poland is considered our primary target.
In the following sections, we summarize the atmospheric profiles (Section 3.3.1), aerosol
models (Section 3.3.2), and the Aerosol Optical Thickness variants (Section 3.3.3) that
were utilized to establish the atmospheric disturbance variants that reflect our on-board
acquisition conditions (Section 3.3.4).

3.3.1. Atmospheric Profile

The atmospheric profile is used to represent the atmospheric gaseous absorption
which takes place due to oxygen (O2), ozone (O3), water vapor (H,O), carbon dioxide
(CO»), methane (CHy), and nitrous oxide (N,O). Four of them (O,, CO,, CHy, and N,O)
are assumed constant and uniformly mixed in the atmosphere. Additionally, the H,O and
O3 concentrations depend on the time and the location of the acquisition, therefore their
intensities define an atmospheric profile.

There are standard atmospheric profiles defined by water vapor and ozone con-
centrations in the MODTRANG radiative transfer algorithm (Table 6) [90]. The general
recommendations are to select one of these predefined profiles based on the available water
vapor information. If no water vapor information is available, then the selection should
be based on the expected surface temperature. Furthermore, the Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubes (FLAASH) technique exploits the rounded latitude
and date of acquisition to effectively determine the atmospheric profile (Table 7) [87,91,92].
Here, we can observe that there are only three standard profiles (MLW, SAS, and MLS)
used for Poland, being our default location that will be considered in the experimentation.

Table 6. Standard atmospheric profiles available in the MODTRAN radiative transfer tool.

Symbol Model Water Vapor (g/cm?) Ozone (atm-cm) Surf. Air Temp. (°C)
T Tropical 4.120 0.247 27
MLS Mid-Latitude Summer 2.930 0.319 21
MLW Mid-Latitude Winter 0.853 0.395 -1
SAS Sub-Arctic Summer 2.100 0.480 14
SAW Sub-Arctic Winter 0.419 0.480 —16
Us U.S. Standard 1962 1.420 0.344 15

Table 7. The rounded latitude and date of acquisition can be utilized to determine the atmospheric
profile according to the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes approach.
The latitude of Poland, being our default coordinates, are boldfaced.

Latitude Jan-Apr May-June July-Oct Nov-Dec
60 MLW MLW SAS MLW
50 MLW SAS SAS SAS
40 SAS SAS MLS SAS

3.3.2. Aerosol Model

The aerosol model is used to represent the atmospheric scattering, which takes place
due to different kinds of aerosol components: (1) dust-like, (2) water-soluble, (3) soot, (4) sea-
salt, (5) mineral, (6) sulfuric acid, (7) volcanic ash, (8) meteoric, (9) sulfate, and (10) biogenic.
Each type of aerosol affects scattering differently, but many useful cases could be defined
with only (1-4), often called the basic components of the aerosol models. There are several
inorganic ions constituting water-soluble aerosols: sodium (Na*), ammonium (NHI),
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potassium (K*), magnesium (Mg?*), calcium (Ca?"), nitrate (NO; ), and sulphate (SO ).
Similarly, only three of them are usually reported in the collected data and forecasts,
as these are the most relevant ones: sulphate, nitrate, and ammonium [93,94]. To handle
the imaging process of Central Europe [95], we focus on rural and urban sites. The imaged
area is expected to be quite vast (several dozens of kilometers in width), thus we should
not consider the whole image as having exclusively only rural or only urban properties.
For this reason, we create several mixed aerosol models using the rural and urban models
as a baseline. Additionally, we use the continental model as it may be even more accurate
for some scenes in Europe [96]. All aerosol models used in further research are summarized
in Table 8.

Table 8. Components of the investigated aerosol models in rural and urban sites of Central Europe.

Model Dust Water Soot
Rural-1 0.02 0.92 0.06
Rural-2 0.02 0.82 0.16
Rural-3 0.17 0.77 0.06
Urban-1 0.02 0.59 0.39
Urban-2 0.02 0.69 0.29
Urban-3 0.17 0.61 0.22
Continental 0.70 0.29 0.01

3.3.3. Aerosol Optical Thickness

The Aerosol Optical Thickness (AOT) is a non-unit measure which expresses how
strong is the influence of aerosols on optical phenomena [97]. The value may differ for
different wavelengths, and a single value is commonly given for the 550 nm or 500 nm
wavelength. Usually, the expected range for AOT is 0.1-1.2, where the values below
0.1 correspond to a totally clear sky (the best possible visibility). For Europe, most of
the time AOT should be within a range of 0.1-0.3, and huge pollution above the city
or a burning forest could result in values around 0.7-0.8. Importantly, this value can
vary within a scene—the radiative transfer model assumes a single AOT value, being an
average for a target, as we can give only one value for 550 nm. Therefore, we consider
AOT € {0.1, 0.25,0.7, 1.2}, corresponding to the clear sky, standard acquisition conditions,
higher pollution, and extreme scenario, respectively.

3.3.4. The Resulting Atmospheric Disturbance Variants

In Table 9, we gather the atmospheric disturbance variants that are expected for the
operational phase of Intuition-1 (note that we simulate the acquisition process that will
be performed in the future; see the scan dates). The ID 0 variant does not introduce any
disturbance into the original hyperspectral data, hence there is no correction—we only
scale the data with the solar irradiance profile.

To visualize the impact of an atmospheric disturbance variant on an image, we render
an example band of the Houston scene for all variants in Figure 4. Similarly, the spectral
profiles averaged for all pixels, and for all PU classes (Figure 5) indicate that the image
characteristics can substantially change for different acquisition scenarios. Therefore, such
cases may potentially deteriorate the classification abilities of supervised learners, if the
discriminative features were capturing e.g., pixel intensities.
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Table 9. The atmospheric disturbance variants reflecting the assumed acquisition scenarios (Central Europe, urban and

rural areas, with Poland being our default target).

1D Scan Date Latitude Atm. Profile Aerosol Model AOT
default 2021-03-21 50 MLW Urban-3 0.50
0 2021-03-21 50 — — —
1 2021-03-21 50 MLW Rural-1 0.10
2 2021-07-15 50 SAS Rural-2 0.10
3 2021-03-21 40 SAS Rural-3 0.10
4 2021-03-21 60 MLW Urban-1 0.10
5 2021-07-15 60 SAS Urban-2 0.10
6 2021-07-15 50 SAS Urban-3 0.10
7 2021-07-15 40 MLS Rural-1 0.25
8 2021-10-21 50 SAS Rural-2 0.25
9 2021-10-21 50 SAS Rural-3 0.25
10 2021-07-15 40 MLS Urban-1 0.25
11 2021-07-15 60 SAS Urban-2 0.25
12 2021-03-21 40 SAS Urban-3 0.25
13 2021-10-21 50 SAS Rural-1 0.70
14 2021-10-21 50 SAS Rural-2 0.70
15 2021-03-21 50 MLW Rural-3 0.70
16 2021-03-21 40 SAS Urban-1 0.70
17 2021-10-21 50 SAS Urban-2 0.70
18 2021-03-21 60 MLW Urban-3 0.70
19 2021-07-15 50 SAS Rural-1 1.20
20 2021-07-15 40 MLS Rural-2 1.20
21 2021-07-15 60 SAS Rural-3 1.20
22 2021-07-15 50 SAS Urban-1 1.20
23 2021-07-15 40 MLS Urban-2 1.20
24 2021-10-21 50 SAS Urban-3 1.20
25 2021-07-15 50 SAS Continental 0.25
26 2021-03-21 50 MLW Continental 0.70
27 2021-10-21 50 SAS Continental 1.20

e By -

D21 N D 22

/J/J

Figure 4. An example part of the Houston scene with the investigated atmospheric disturbance

variants applied (band 180)—the disturbances significantly affect the output image characteristics,

hence may influence the performance of the classification algorithms.



Remote Sens. 2021, 13, 1532 16 of 30

Atmospheric disturbance variant: ID 7

1200

= Class}

Class 2

——Class’3

i “n“ /\ /‘ — Class 4

1000 [V | Class 5
w\ | N —— Class 6

‘\ Class 7

| —— Class 8

Class 9

800 ]\J Vv | |
!

Value

400

200

0 25 50 75 100 125 150 175 200
Band

Atmospheric disturbance variant: ID 24

1200

— Class1

Class 2

Class 3

— Class 4

1000 —— Class 5
—— Class 6

Class 7

—— Class 8
Class 9

800

Value
(2]
(e}
o

Figure 5. The spectral profiles (averaged across all pixels, and for all classes) of the PU classes obtained for two example
atmospheric disturbance variants (with IDs 7 and 24).

3.4. Hyperspectral Analysis in the Presence Of Noise

A hyperspectral cube can be represented as a three-dimensional tensor Y € RW*Hx5,
where W and H denote its width and height, and B is the number of bands. Then, a corre-
sponding noisy HSI (Y’) becomes:

Y =Y+N, 1)

where N is the noise signal. In this work, we consider three noise models:
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Gaussian noise—the probability density function p of a Gaussian variable x is

_ 1 w20
p(x) = o , @

where y and 02 are the mean (here, yu = 0) and variance (¢ is standard deviation,
and ¢ = 0.01 in our study). This signal-independent noise models thermal and
quantization disturbances [13].

Impulsive noise (salt-and-pepper), which simulates a situation when a sensor gets sat-
urated (it leads to obtaining “white” pixels), or when it is not able to acquire any data
(“black” pixels) [98]. In this study, we draw the “white” and “black” contamination
with equal probability.

Poisson (shot) noise, with the probability density function f given as:

—Arx
p(x) = N, 3)

x!

where A denotes the expected (average) value. Poisson noise is inherently related to
light measurements, and can be used for modeling signal-dependent photon noise [99].

To verify the ability of coping with noisy data, we contaminate only test () subsets.

Hence, we do not modify the corresponding training data, and the models are trained

over
tion,

non-contaminated sample. We randomly pick (#p - [¥]) test pixels for contamina-
where 7p € {0.1,0.2,...,0.5}—in Figure 6, we render an example for the PU scene,

and visualize all ground-truth pixels, alongside those pixels that would be contaminated
by the investigated noise distributions for all #p values. For all affected pixels (selected

rand

omly), we inject noise into all hyperspectral bands. A set of example spectral profiles

for all classes (averaged across all pixels) in PU are gathered in Figure 7 for p = 0.1 and
np = 0.5. Although the shape of the spectral curves remains unchanged, we can spot

visib

le local fluctuations, especially when the number of contaminated test pixels is large

(yp = 0.5). It is in contrast to simulating different atmospheric disturbance variants which
often leads to significantly varying spectral characteristics (Figure 5).

Contaminated test pixels

All test pixels
N7 /

np = 0.1

np = 0.2 np = 0.3 np = 0.4 np = 0.5

Figure 6. All ground-truth pixels in PU (rendered in white), alongside those pixels that would be affected by our noise

contamination for all investigated #p values (p € {0.1,0.2,...,0.5}). For simplicity, we present all pixels with ground-truth

labels, not just the test pixels that would result from our patch-based data splits—in the experimental study, we contaminate

test sets only.
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Figure 7. The spectral profiles (averaged across all pixels) of all PU classes (for brevity, we omit the color legends in the
plots—different colors present different classes) in the original data and the data contaminated with all noise distributions
for yp = 0.1 and 5p = 0.5. We normalize the values to the [0, 1] range for readability.

4. Experimental Results and Discussion

In this section, we discuss our experimental setup (Section 4.1), and present the
experimental results obtained in our two experiments. The objective of Experiment 1
(Section 4.2) was to understand the impact of varying atmospheric conditions (affecting
the acquired hyperspectral cubes) on the classification abilities of deep models, whereas in
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Experiment 2 (Section 4.3) we investigated the influence of different noise distributions
that were injected into the test data on the models.

4.1. Experimental Setup

Our deep models were implemented in Python 3.6 with Tensorflow 1.12—the
implementations are available at https://github.com/ESA-PhiLab/hypernet/ (last access:
25 March 2021). The training (ADAM optimizer [100] with the learning rate of 0.001,
B1 = 0.9, and B, = 0.999) terminated if after 15 consecutive epochs the accuracy over the
validation set V (10% of all training pixels) did not increase.

To quantify the classification performance of the deep models, we reported the overall
accuracy (OA) and the balanced accuracy (BA), where BA is the average of recall ob-
tained on each class, and the values of the Cohen’s kappa coefficient (). This coefficient
shows us how much better the classifier was than a random one which guessed the label
based on the available data distribution, and it is givenasx =1 — i:iz , where p, and p,
are the observed and expected agreement (assigned vs. correct class label), respectively,
and —1 < x < 1[101]. In this paper, we will report (100 - k) when we refer to x. As men-
tioned in Section 3.2, there were folds in which there were classes that were not captured
within the corresponding training samples, but they were present in the test sets. Since
the underlying models were unable to learn such classes from the training samples, we
additionally calculated the prime metrics (OA’, BA’, and «’), for which we excluded the
classes that are included in ¥ of a given fold, but were not captured in its T. All the metrics
reported in this paper were obtained for the test sets ¥ (unless stated otherwise), and they
were averaged across all folds (for each configuration and for each fold, we ran training
five times and averaged the results). Finally, although refining training sets, e.g., through
selecting the best subsamples of all available training examples could enhance the abilities
of supervised learners (both deep learning-powered and classical [36]), we exploited all
available training examples in this work. This approach helped us focus on understanding
the behavior of the CNN models in specific scenarios (different atmospheric conditions
and noisy test data), when trained over the full T’s.

4.2. Experiment 1: Hyperspectral Analysis in Varying Atmospheric Conditions

The objective of this experiment was to verify if the spectral and spectral-spatial
CNN s (we focus on 1D-CNN and 2.5-CNN here) are able to cope with various atmospheric
conditions that may affect the resulting hyperspectral cube during its acquisition. We use
the atmospheric variants discussed in Section 3.3 to radiometrically process the original
datasets, and to simulate the corresponding atmospheric condition through employing the
6S model. In 6S, the corrected reflectance p’ is [102,103]:

r_ Y
C T ey @

where y = (x,; - L) — xp, and x,, x3, and x, are the coefficients obtained from the model,
being the inverse of the transmittance, the intrinsic atmospheric radiance, and the spherical

albedo of the atmosphere, respectively, and L is the observed (original) radiance. In
Figure 8, we visualize all processing steps and artifacts generated in this experiment.
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Figure 8. A flowchart of Experiment 1. Blue rectangles indicate the input data, the red ones are the actions, and the gray

ones present the artifacts, with the final outcome annotated with light gray.

The processed datasets are distributed across the folds gathered in Table 10 (these
folds were independent from the folds discussed in Section 3.2)—here, we considered
two additional scenarios. In (I) we randomly divided the atmospheric variants into folds,
and in (II) we manually selected the most challenging atmospheric conditions, being the
variants with IDs: 13,17, 18, 21, 22, 24, and 27 (Table 9). Finally, we divided the folds into
the following groups with the training and test folds over which the deep models were
trained and tested, respectively (note that the training data within Group 0 contained only
ID 0, being the original hyperspectral cube without any additional atmospheric profile,
aerosol model or AOT applied, hence can be considered a baseline scenario):

*  Group 0 (GO)—Training folds (T): Variant 0, test folds (¥): all other variants.

*  Group 1 (G1)—Training folds (T): Fold 1, Fold 2, Fold 3, test folds (¥): Fold 4.

e Group 2 (G2)—Training folds (T): Fold 1, Fold 2, Fold 4, test folds (¥): Fold 3.

*  Group 3 (G3)—Training folds (T): Fold 1, Fold 3, Fold 4, test folds (¥): Fold 2.

*  Group 4 (G4)—Training folds (T): Fold 2, Fold 3, Fold 4, test folds (¥): Fold 1.

e Group 5 (G5)—Training folds (T): Fold 1, Fold 2’, Fold 3’, test folds (¥): Fold 4’.

Table 10. The distribution of atmospheric condition variants (for details, see Table 9) across the folds.

Fold Variants in Fold

Fold 1 1 8 9 13 16 23 26
M Fold 2 2 4 6 11 17 20 21

Fold 3 5 10 12 14 15 19 24

Fold 4 3 7 18 22 25 27 Default

Fold 1 1 3 8 9 16 23 26
) Fold 2’ 2 4 6 7 11 20 25

Fold 3’ 5 10 12 14 15 19 Default

Fold 4’ 13 17 18 21 22 24 27

Since in this experiment we were interested in understanding the differences obtained
using models trained and tested over differently processed samples (and not necessarily
in confronting different architectures with each other), we performed Monte Carlo cross-
validation for 1D-CNN (over IP, SV, PU, and Houston), and maintained the number of
training pixels sampled from each variant as suggested in [6]. Note that the same pixels
were sampled to a training set from each atmospheric correction variant. Hence, if a pixel
with coordinates (7, j) in a hyperspectral cube was selected for inclusion in T, the very
same pixel was picked from all atmospheric condition variants. On the other hand, we
exploited our patch-based splits discussed in Section 3.2 for 2.5D-CNN (we focused on IP,
SV, and PU), in order to avoid any training-test information leakage (it did not happen for
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spectral models [16]). Here, we did not exploit Houston for 2.5D-CNN, as its training time
would become infeasible due to extremely large T’s, especially for the version B of this
dataset (see the example training times for the original T of such spectral-spatial models in
Section 4.3). In Tables 11 and 12, we present the average training and inference times of both
models run on NVIDIA GTX 1060 (we did not impose the maximum number of training
epochs, and exploited the early stopping only), together with their numbers of trainable
parameters, and the floating point operations (note that the number of parameters may
have varied for the very same architecture, as it was also dependent on the characteristics
of the target data, as presented in Table 1). Although we were unable to confront these
times across the models directly because they were trained over different data splits, we
could appreciate the fact that both CNNs offered fast operation. It makes them potentially
applicable in a variety of Earth observation use cases, where rapid inference is critical to
ensure short response times.

Table 11. The average training (7r) and inference (7y) times (both in seconds) obtained using 1D-
CNN for all investigated datasets (1ID-CNN has 1.2 million trainable parameters, and 50 MFLOPs in
all scenarios). The Ty metric reflects the total inference time over all test pixels.

Set— IP SV PU Houston
T 76.41 112.26 66.80 490.23
Ty 1.28 1.21 0.81 34.26

Table 12. The average training (7r) and inference (Ty) times (both in seconds) obtained using 2.5D-
CNN for all sets, together with the numbers of trainable parameters (#P, millions), and the floating
point operations (in mega FLOPs). The Ty metric reflects the total inference time over all test pixels.

Set T Ty #P MFLOPs
P 7225.66 1.61 0.33 6.23
Sv 2036.66 3.95 1.56 45.55
PU 569.31 1.51 0.78 20.96

In Figures 9 and 10, we collect the results obtained over all investigated splits using 1D-
CNN and 2.5-CNN, respectively. We indicate the metrics elaborated over both training and
test folds (containing different atmospheric condition variants). Additionally, we present
the differences between such measures—the negative values above the bars show the drop
in the corresponding quality metric for the test folds, when compared with the training ones.
We can observe that both models trained over Variant 0 manifested significantly worse
generalization abilities over other atmospheric variants (G0). Although the drop in all
metrics was observable in the pairwise comparison (training vs. test folds) for other groups,
the most notable deterioration happened for the most challenging G5 group. Finally,
we could appreciate that the prime metrics, being the ones that were calculated without
taking into account the test classes which were not included in the corresponding training
sets, were higher than the non-prime counterparts (encompassing all classes). Therefore,
including such classes in test sets, and using them while calculating quality metrics, may
have resulted in over-pessimistic classification performance estimations, as the underlying
models were unable to learn these classes, and penalizing them for not recognizing such
pixels unnecessarily decreased the measures.
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Figure 9. The results obtained using 1D-CNN for all investigated groups in the Monte-Carlo cross-
validation setting. We present the metrics obtained over both training and test sets, alongside the
differences between the metrics elaborated for T and ¥.

O Training set @ Test set

Training/test configuration

Figure 10. The results obtained using 2.5D-CNN for all investigated groups using our patch-based
training-test data splits. We present the metrics obtained over both training and test sets, alongside
the differences between the metrics elaborated for T and Y.

Although the results indicated that the generalization abilities of the models trained
over specific data samples, processed using various atmospheric conditions, may not have
easily transferred to high-quality classification in the case of test imagery acquired in sig-
nificantly different imaging scenario, we could observe that including such preprocessed
training samples in T led to notably better generalization (see the GO groups vs. all other
groups for both spectral and spectral-spatial architectures). Thus, expanding training sets
with such artificially synthesized data samples (reflecting the target acquisition condi-
tions) in the training-time augmentation step could help us obtain models successfully
operating in different atmospheric conditions. This ultimately allowed us to omit (or at
least reducing) the on-board atmospheric correction step while still enabling us to deliver
high-quality classification. Additionally, ensembling different architectural advances into
deep classification ensembles potentially brought additional improvements in the overall
performance of such multi-classifier systems [104], as such models were inherently able
to learn different features (e.g., spectral, spatial, or a combination of both in the case of
models benefiting from 3D convolutional kernels).

4.3. Experiment 2: Hyperspectral Analysis in the Presence Of Noise

The objective of this experiment was to quantify the robustness of spectral and spectral-
spatial models against various noise distributions that were injected into the test hyper-
spectral data. The entire processing chain is shown in Figure 11—we could observe that
in this experiment, we did not contaminate the training pixels. Therefore, the CNNs (we
investigated 1D-CNN, 2.5-CNN, and 3D-CNN, as gathered in Table 13) were trained over
the original training samples in our patch-based data splits. Since all the deep models were
trained and tested using the same validation approach, we could directly compare their
performance. Table 14 presents the average training and inference times of all models (on
NVIDIA Tesla T4), their numbers of trainable parameters and the floating point operations.
Although all of the models classified the incoming pixels in a very short time, the spectral
CNN consistently delivered the fastest operation. We could also observe that—due to the
small numbers of training pixels—the training process performed over the original data
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converged quickly for all CNNs. It was in contrast to our previous experiment, in which the
training samples were substantially extended through simulating atmospheric conditions.
As before, the number of trainable parameters could vary for the very same CNN, as it
depended on the characteristics of the analyzed hyperspectral data.

Input HSIs

Ground-truth pixel-wise
labels

Splitting

Training ‘)[ Training ]—) Trained model
set T

1

( A
Test set Contamination Pixel-wise . . .
. . Tr Evaluation Evaluation metrics
b 4 with noise classification
(- J

Figure 11. A flowchart of Experiment 2. Blue rectangles indicate the input data, the red ones are the actions, and the gray

ones present the artifacts, with the final outcome annotated with light gray.

The results averaged across all datasets, splits, and executions are presented in
Table 13—here, we gather the metrics elaborated for original (uncontaminated) test sets.
The best classification performance was delivered by a spectral CNN, with a visible margin
in all metrics (when compared with the spectral-spatial 2.5D-CNN and 3D-CNN architec-
tures). This was attributed to the fact that most of the training sets were fairly small in the
patch-based splits (for IP, SV, PU, and the version A of Houston), hence the spectral-spatial
architectures were unable to effectively learn from such T. On the other hand, for the
version B of Houston, 1D-CNN was outperformed by both 2.5D-CNN and 3D-CNN—we
obtained the following tuples (OA’, BA’, k) over the uncontaminated test data for ID-CNN,
2.5D-CNN, and 3D-CNN, respectively (the best results are boldfaced): (59.85, 47.67, 47.11),
(62.06, 49.11, 50.88), and (62.34, 52.08, 52.00). In order to improve the performance of
spectral-spatial models in such scenarios, we could benefit from e.g., training-time data
augmentation that would allow us to increase the size and representativeness of small
training sets [56]. In this paper, however, we focused on investigating the models trained
over original T’s (without artificially synthesized examples).

Table 13. The results obtained using all investigated deep models, and averaged across all datasets
(for uncontaminated test sets), folds, and executions. We boldface the best result for each metric.

Metric 1D-CNN 2.5D-CNN 3D-CNN
OA 66.37 58.41 59.95
BA 55.40 45.77 49.00

K 58.39 49.00 51.09
OA’ 69.18 62.19 63.75
BA’ 64.75 55.15 58.68

K’ 61.25 53.33 55.42

Table 14. The average training (7r) and inference (Ty) times (both in seconds) obtained using 1D-CNN, 2.5D-CNN, and 3D-
CNN for all sets (for brevity, we refer to the A and B versions of Houston as H(A) and H(B), respectively), together with the
numbers of trainable parameters of the corresponding convolutional models (#P, millions), and the floating point operations

(in mega FLOPs). The Ty metric reflects the total inference time over all test pixels.

1D-CNN 2.5D-CNN 3D-CNN
Set T Ty #P MFLOPs T Ty #P MFLOPs Tr Ty #P MFLOPs
P 14.56 0.58 1.27 52.98 12.84 0.80 0.33 6.43 36.15 1.55 2.58 72.58
SV 23.84 1.94 1.27 53.47 19.28 6.74 1.64 48.31 59.32 7.09 2.63 74.06
PU 7.28 1.00 091 23.68 10.57 2.18 0.50 11.85 16.24 3.11 1.39 36.80
H(A) 35.99 8.24 0.67 8.24 30.62 70.24 0.34 6.44 57.67 80.77 0.74 17.26
H(B) 281.63 6.64 0.67 8.24 333.04 42.96 0.34 6.44 572.86 59.29 0.74 17.26
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To analyze the robustness of these models against different noise distributions (Gaus-
sian, impulsive, and Poisson), we gather the results obtained for #p = {0.1,0.2,...,0.5} in
Table 15. We present the differences between the metrics elaborated for original (uncon-
taminated) and noisy test sets—the green cells present the cases in which the models were
the most “robust” against the specific noise distribution (and number of affected pixels),
whereas the orange cells show the highest drops in the corresponding metrics. In Table 16,
we gather the results obtained for the test sets contaminated with Gaussian noise with
zero mean and various standard deviations (here, #7p = 0.1 and remained unchanged for
different 0’s). Therefore, we verified what was the impact of noise of varying intensity
on the generalization of all investigated CNNs. The results showed that the more intense
noise injected into ¥’s adversely affected the capabilities of the models—for all of them
we could observe that their classification performance significantly decreased. Finally,
different models are robust against different types of noise. In Table 15, we can see that
2.5D-CNN manifested the best robustness against the Poisson noise, whereas it was outper-
formed e.g., by 3D-CNN once the impulsive noise was present in the test data. It indicated
that coupling such models together in a multi-classifier system that would be elaborating
the final class label based on the class labels obtained by the base models (in this case,
2.5D-CNN and 3D-CNN) could further boost the generalization capabilities of the separate
models in the target (noisy) environment. Building the deep ensembles, containing the
classifiers of different architectures and potentially trained over different training samples,
was thus our current research effort.

Table 15. The differences between the values obtained for the original—uncontaminated—test sets, and the noisy ones for
all classification quality metrics obtained using all deep models. The green colors indicate the smallest differences (hence the
highest “robustness” against the corresponding noise distribution), whereas the orange cells highlight the largest differences.

1D CNN
Gaussian Impulsive Poisson
1p — 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

10.28 15.41 20.62
9.72 14.68 19.47
11.95 17.87 23.66
9.56 15.00 20.43
9.97 1591 21.71
11.51 18.03 24.52

8.33 12.51 16.61 20.83
8.04 12.13 16.07 20.12
9.94 14.91 19.76 24.74
7.54 11.96 16.28 20.74
7.76 12.62 17.29 22.10
8.87 14.22 19.44 24.79

2.5D CNN
Gaussian Impulsive Poisson
np — 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

8.97 13.43 17.90 22.32
7.98 11.87 15.78 19.68
9.88 14.69 19.43 2415
9.55 14.32 19.07 23.84
9.61 14.25 18.94 23.69
11.57 17.17 22.68 28.13

3D CNN
Gaussian Impulsive Poisson
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.3 0.4 0.5

7.74 11.61 15.46 19.33
8.43 12.65 16.92 21.19
10.01 15.04 20.07 25.22
8.09 12.12 16.14 20.18
10.06 15.06 20.16 25.26
11.06 16.61 22.06 27.67

9.17 12.22 15.22
9.85 13.17 16.45
11.55 15.43 19.29
9.71 12.94 16.12
11.60 15.50 19.37
12.46 16.62 20.76
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Table 16. The differences between the values obtained for the original—uncontaminated—test sets, and the noisy ones,

obtained for the Gaussian noise with zero mean and various standard deviations (¢) for all classification quality metrics

obtained using all deep models. The green colors indicate the smallest differences (hence the highest “robustness” against

the corresponding noise distribution), whereas the orange cells highlight the largest differences.

1D-CNN 2.5D-CNN 3D-CNN

o — 0.01 005 010 025 050  0.01 005 010 025 0.50 0.01 005 010 025 0.50
OA 0.87 246 325 414 459 0.08 026 0.60 142 217 0.07 1.11 217 332 3.64
BA 0.98 244 320 402 454 013 038 074 1.59  2.32 —-004 113 235 364 399
K 1.12 3.01 393 496 551 010 036 0.82 1.87  2.82 0.03 125 258 419 473
OA’ —0.35 1.31 216 311 3.61 0.08 029 0.61 147 227 0.07 117 232 356 391
BA’ —0.60 112 202 3.00 362 016 045 0.88 187 276 —0.05 126 271 431 475
K’ —0.71 1.31 233 349 412 010 038 0.84 1.94  3.00 0.04 135 282 462 523

To further verify if the differences were statistically important, we executed the Fried-
man’s test (with post Dunn’s) over the per-class accuracies. The results indicate that
injecting Gaussian, impulsive and Poisson noise into the test data deteriorates the clas-
sification ability of 1D-CNN for virtually all cases (the differences were not statistically
important at p < 0.05 only for the Gaussian distribution and #p = 0.1). On the other
hand, both 2.5D-CNN and 3D-CNN delivered accurate classification for the Gaussian
contamination (for all #p’s), without any significant degradation (at p < 0.05). Finally,
the presence of the impulsive and Poisson noise resulted in statistically important drops in
per-class accuracies for all architectures. The statistical analysis indicated that specific noise
distributions may have easily affected the capabilities of the deep models trained over
original ground-truth data. Thus, designing either additional regularization techniques
for making CNNs robust against e.g., impulsive noise (modeling the sensor failures) or
developing on-board denoising approaches should be considered important steps while
deploying such machine learning algorithms in the target environment. It is worth men-
tioning that augmenting original training samples with simulated-noise injections has been
shown as an effective way of enhancing the generalization abilities of CNNs in a statis-
tically significant manner [56]. In this scenario, contaminated hyperspectral pixels were
included in the training sets by using the training-time augmentation, hence the models
were trained over T’s that encompass noisy data. Such data augmentation techniques
could be easily exploited at the inference time, in order to benefit from the ensemble-like
approach, in which a CNN model (trained over the original or augmented training sets)
classified not only the original test pixel, but also its noise-contaminated variants. Finally,
the class label was elaborated through aggregating all labels, e.g., in the voting process.

5. Conclusions

On-board deep learning, albeit becoming a well-established tool for analyzing multi-
and hyperspectral image data in various fields, is still challenging to be deployed in
practical Earth observation scenarios, due to numerous technological challenges related
to the execution environment. In this paper, we tackled one of them, being the utilization
of such techniques in varying atmospheric conditions and in the presence of noise which
are inherit to the in-orbit operation. We provided a range of simulations of atmospheric
conditions that were likely to be faced while imaging Central Europe urban and rural areas
(with Poland being our default target location), alongside different noise simulations. These
simulations were used to verify the classification abilities of spectral and spectral-spatial
CNNs over hyperspectral data that may manifest different characteristics when compared
to the training data (possibly acquired in different conditions), or over data contaminated
with noise.

Our experimental study, performed over several hyperspectral benchmarks that
were preprocessed using our simulators, revealed that synthesizing artificial training
samples that resemble atmospheric variants helps significantly boost the generalization
abilities of deep models, hence improve their robustness against test data acquired in



Remote Sens. 2021, 13, 1532

26 of 30

different imaging circumstances. This observation may ultimately lead to mitigating the
necessity of employing on-board atmospheric corrections that precede deep learning-
powered analysis. On the other hand, our experiments indicated that noise contamination
may be an important obstacle in delivering precise hyperspectral classification, especially if
the noise is impulsive or follows the Poisson distribution. We, however, anticipate that the
training-time data augmentation may greatly improve the robustness of CNNs, especially
if the expected noise distributions are known in advance (e.g., thanks to the available
and/or simulated sensor characteristics) [56]. We believe that the noise and atmospheric
simulations should become a standard tool in testing campaigns of satellites exploiting
on-board artificial intelligence, as they are key to estimating the expected robustness of
deep learning techniques deployed in such extreme execution environments. Additionally,
they could help us verify the machine learning algorithms before uploading them onto the
operating satellites, in the case of reconfigurable missions, such as Intuition-1, that would
allow us to update the analysis engine during the operational phase of the satellite.

Since capturing new ground-truth datasets is tedious, time-consuming, and costly,
designing new approaches that effectively deal with limited amounts of labeled training
data is a vital research area. Additionally, there are approaches, especially exploiting
tensor-based techniques [57-60] and semi-supervised learning [50], that were proven highly
effective and possible to train from small T’s, and could be efficiently implemented in FPGA-
and GPU-based architectures. Our current research efforts are focused on understanding
the robustness of CNNs against small training samples in the HSI analysis tasks [105],
and will also include confronting classical machine learning and deep learning algorithms
in such scenarios. We anticipate that obtaining the models that are robust against varying
atmospheric conditions, noise, and limited training sets will be an important milestone
towards fast adoption of on-board machine learning in a range of remote sensing and Earth
observation applications.
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The following abbreviations are used in this manuscript:

AOT Aerosol Optical Thickness
AVIRIS  Airborne Visible/Infrared Imaging Spectrometer
BA Balanced accuracy
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CNN Convolutional neural network

FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
HSI Hyperspectral image

i Indian Pines

OA Overall accuracy

PU Pavia University

ROSIS Reflective Optics System Imaging Spectrometer

SVM Support vector machine

SV Salinas Valley
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