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Abstract: Land surface temperature (LST) is a vital physical parameter in geoscience research and
plays a prominent role in surface and atmosphere interaction. Due to technical restrictions, the spa-
tiotemporal resolution of satellite remote sensing LST data is relatively low, which limits the potential
applications of these data. An LST downscaling algorithm can effectively alleviate this problem and
endow the LST data with more spatial details. Considering the spatial nonstationarity, downscaling
algorithms have been gradually developed from least square models to geographical models. The
current geographical LST downscaling models only consider the linear relationship between LST
and auxiliary parameters, whereas non-linear relationships are neglected. Our study addressed this
issue by proposing an LST downscaling algorithm based on a non-linear geographically weighted
regressive (NL-GWR) model and selected the optimal combination of parameters to downscale the
spatial resolution of a moderate resolution imaging spectroradiometer (MODIS) LST from 1000 m to
100 m. We selected Jinan city in north China and Wuhan city in south China from different seasons as
study areas and used Landsat 8 images as reference data to verify the downscaling LST. The results
indicated that the NL-GWR model performed well in all the study areas with lower root mean square
error (RMSE) and mean absolute error (MAE), rather than the linear model.

Keywords: land surface temperature (LST); non-linear geographically weighted regressive (NL-
GWR); spatial downscaling; indices selection

1. Introduction

Land surface temperature (LST) is one of the most important parameters for climate
research and has been widely used in many research fields [1,2], including urban heat
island monitoring [3], hydrological cycle [4], and climate change assessment [5], etc. In
recent years, the spatial heterogeneity of land cover in urban areas has been drawing
more and more research interest, which requires satellite remote sensing LST data with
a higher spatiotemporal resolution [6]; however, there are many difficulties in acquiring
high spatiotemporal data. According to the spatial and temporal resolution, the current
remote sensing data can be divided into two categories. One is the data with finer tem-
poral resolution and coarser spatial resolution. For instance, the temporal resolution of
the FY-4/AGRI satellite is 15 min/full replay, but its spatial resolution of the thermal
infrared band is 4 km; the temporal resolution of the Himawari-8/AHI is the same as
FY-4/AGRI and its spatial resolution of the thermal infrared band is 2 km [7]; both the
advanced very high-resolution radiometer (AVHRR) and the moderate resolution imaging
spectroradiometer (MODIS) have a temporal resolution of twice a day, and the spatial
resolution of thermal infrared bands are 1.1 and 1 km, respectively [8,9]. The other data
category has finer spatial resolution and coarser temporal resolution. The Landsat satellite
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thematic mapper (TM), enhanced thematic mapper plus (ETM+), and thermal infrared
sensor (TIRS) have a spatial resolution in thermal infrared bands of 120, 60 and 100 m,
respectively, whereas their temporal resolutions are about 16 days; the imaging frequency
of advanced spaceborne thermal emission and reflection radiometer (ASTER) is 16 days
and the spatial resolution of its thermal infrared band is 90 m [10–12]. In general, a spatial
resolution of 100 m and the temporal resolution of once or twice per day is desirable for
research on urban heat source distribution; however, the spatiotemporal resolution of
satellite remote sensing data cannot achieve this requirement [13]. There are two solutions
capable of improving the spatial resolution of thermal infrared images. One solution is to
improve the hardware, e.g., improving detector fabrication to increase the spatiotempo-
ral resolution of the satellite remote sensors; however, this would have high production
costs and take a significant amount of time. The second solution would be to improve
image processing, which uses the visible-near infrared band of higher resolution data
and selects an appropriate algorithm to improve the spatial resolution of the thermal
infrared band [14]. LST disaggregation algorithms are widely applied to improve spatial
resolution by unmixing the thermal infrared pixel. LST disaggregation is divided into two
categories: temperature unmixing and thermal sharpening. The temperature unmixing
means unmixing the LST of components while maintaining a constant spatial resolution of
the pixels. Thermal sharpening refers to improving the spatial resolution by enhancing the
spatial details of LST. Among these solutions, LST downscaling belongs to the category of
thermal sharpening [15]. During the development of these algorithms, LST downscaling
has branched out the following aspects: image fusion model, statistical linear regression
model, modulation model, and hybrid model.

The downscaling algorithms based on the image fusion model obtain higher spa-
tial resolution data with continuous time series by fusing the remote sensing data with
different temporal and spatial resolutions. Fasbender et al. [16] proposed a Bayesian fu-
sion method, which was proved to have a high accuracy and practicality when fusing
visible and near-infrared bands of ASTER together. The spatial and temporal adaptive
reflectance fusion model (STARFM) was proposed by Gao et al. [17], and achieved good
results in reflectivity image fusion; however, when applied to LST data, the STARFM can
only increase the spatial resolution of the effective LST data and is not continuous in the
time series. Zhu et al. [18] put forward the flexible spatiotemporal data fusion (FSDAF)
model, which required fewer auxiliary parameters to achieve a high prediction accuracy
when there is little change in land covers. In the past few years, with the progress and
development of artificial intelligence, machine learning methods were applied to image
fusion by scholars. Bindhu et al. [19] proposed the backpropagation (BP) neural network to
fit the non-linear downscaling non-linear DisTrad (NL-DisTrad) algorithm, which achieved
excellent downscaling results when applied to estimating evapotranspiration. Dong et al.
applied the neural network to image super-resolution reconstruction, then improved the
super-resolution convolution neural network (SRCNN) model and proposed the accelerat-
ing the fast super-resolution convolutional neural network (FSRCNN) model, which can
input low-resolution images into the network directly [20,21]. Ledig et al. [22] proposed
the generative adversarial network (GAN), which has been widely applied to research. Re-
cently, some researchers improved this model, including the dilated convolution generative
adversarial network (DCGAN), Wasserstein generative adversarial network (WGAN), and
boundary equilibrium generative adversarial network (BEGAN) [23–25]. Shao et al. [26]
verified the GAN in thermal infrared image reconstruction. The results showed that this
method could improve the image’s subjective visual effect while maintaining objective
quality evaluation.

The algorithms based on the modulation model are used to distribute LST with a
coarse resolution to each sub-pixel proportionally. Guo et al. [27] summarized past studies
and proposed the pixel block intensity modulation (PBIM) algorithm, which selects the
panchromatic band as the scale factor. The PBIM algorithm can retain the original thermal
spectrum information and integrate detailed information into the thermal infrared band.
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Stathopoulou et al. [28], based on the PBIM method, used emissivity and two LST data types
to simulate LST with high resolution to downscale the LST and achieved better results.

The algorithm based on a hybrid model utilizes many types of models. Zhukov
et al. [29] proposed an multisensor multiresolution (MMT) method based on spectral
decomposition to downscale the TM data and used the ASTER data to verify the down-
scaling results. Deng et al. [30] applied the spectral unmixing and thermal mixing (SUTM)
algorithm to downscale the LST in urban areas.

Due to easier performance and better efficiency, the LST downscaling algorithms
based on statistical models have been widely used in recent research. These algorithms
can be divided into three types. The first one builds a statistical model between LST and
NDVI to achieve the LST downscaling. The second one considers the complexity of the
land covers and use variety auxiliary parameters for LST downscaling. The third one
considers the spatial non-stationarity between LST and auxiliary parameters and applies
the geographical model instead of the global model to downscale LST. These three types of
models are under the assumption of scale invariability.

Kustas et al. [31] proposed disaggregation procedures for the radiometric (DisTrad) al-
gorithm, which constructs a relationship between LST and NDVI to downscale the MODIS
LST spatial resolution from 1000 to 250 m. Agam et al. [32] improved the DisTrad algorithm
and proposed an algorithm for sharpening thermal imagery (TsHARP). This algorithm
considered the non-linear relationship between LST and NDVI by adding the NDVI2 into
the regression relationship. Yang et al. [33] pointed out that a single factor cannot reflect the
difference of LST in different land covers and considered building a regressive relationship
between LST and multiple factors. The downscaling results showed that this algorithm was
better than DisTrad and indicated that selected multiple parameters would better explain
LST. Zhu et al. [34] proposed an improved hierarchical regression method and compared it
with DisTrad and TsHARP algorithms, and results showed that this method had obvious
advantages and obtained higher accuracy than the other algorithms. Eswar improved the
DisTrad algorithm to select NDVI, fractional vegetation cover (FVC), normalized difference
water index (NDWI), and soil-adjusted vegetation index (SAVI) as the auxiliary parameters,
and the results showed that the FVC and NDWI had higher accuracy for humid areas,
whereas the NDVI was more suitable for dry areas [35]. Stefania et al. [36] considered the
NDVI, SAVI, normalized difference built-up index (NDBI), and urban index (UI) param-
eters and selected different parameter combinations for LST downscaling, obtaining the
optimal parameter combination for LST downscaling. Qi et al. proposed a new method to
combine multiple variable and machine learning algorithms to downscale LST in urban
areas [37]. Wang et al. compared and analyzed the downscaled results based on multiple
linear regression (MLR), TsHARP, and random forest (RF) methods and indicated that the
RF model is applicable to downscaling research in heterogeneous regions [38]. The above
downscaling algorithms for LST are examples of global models that build relationships
with a global scope and assume stable relationships between LST and auxiliary parameters;
however, the non-stationarity relationship between independent variables and dependent
variables was not considered. Researchers have paid attention to the non-stationarity
between LST and auxiliary parameters and proposed geographical models to downscale
LST in recent years. Duan et al. [39] proposed LST downscaling algorithm based on the
geographically weighted regressive (GWR) model, which was the first time a geographical
model was proposed to downscale LST and achieved better downscaling results than the
global TsHARP algorithm. After that, scholars have made improvements to the GWR
model. Pereira et al. [40] proposed the geographically weighted regressive kriging (GWRK)
model, which downscales the LST of ASTER; Peng et al. [41] considered both the spatial
and temporal non-stationarity and proposed the geographically temporally weighted re-
gressive (GTWR) model, which was compared with the GWR and TsHARP models and
obtained better downscaling results; Wang et al. [42] considered spatial non-stationarity
and autocorrelation simultaneously and proposed the geographically weighted autoregres-
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sive (GWAR) model to downscale the spatial resolution of MODIS LST from 1000 to 100 m
and achieved good downscaling results.

Based on the above, the statistical downscaling models evolved from a linear model to
a geographical non-linear model, added different auxiliary parameters, and considered the
non-stationarity relationship between LST and auxiliary parameters. However, the research
into GWR and its improved models only considered the geographical linear relationship
between LST and auxiliary parameters; the geographical non-linear relationship was
overlooked. In this study, we addressed the complexity of the land covers in urban
areas, and proposed a non-linear geographically weighted regressive (NL-GWR) model to
downscale the MODIS LST.

2. Study Area and Data Preparation
2.1. Study Area

In this study, we selected two Chinese provincial capital cities, Jinan and Wuhan, as
the study areas. Figure 1 shows the false-color images generated from Landsat 8 data of
the study areas.
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Figure 1. Landsat 8 false-color images (R: band 5, G: band 4, B: band 3) in Jinan and Wuhan.

Jinan is a typical city in the North China Plain. The selected study area covers a total
area of 7998 km2. Jinan has a warm temperate continental monsoon climate with a cold
winter and hot summer. The annual average temperature is approximately 13.8 ◦C, where
the lowest and highest temperatures are −19.7 and 42.5 ◦C, respectively. The average
annual precipitation is approximately 685 mm. The study area selected in this paper is the
Jinan urban area, and the main types of land cover include building, vegetation, water, and
bare soil.

Wuhan covers a total area of 8569 km2. Wuhan represents cities in the mid-south of
China where rivers and lakes are widely distributed. It has a subtropical monsoon humid
climate, which has abundant rainfall, sufficient heat, and four distinct seasons. The weather
is hotter and wetter than Jinan, with an annual average temperature of about 15.8 to 17.5 ◦C,
and the annual precipitation is 1150–1450 mm. The land covers are similar to Jinan.

2.2. Datasets and Preprocessing

The remote sensing data used in this study include Landsat 8 raw reflectance data
and MODIS LST data. Three pairs of images were collected for each study area to test
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the algorithm’s performance in different seasons. Table 1 shows the main characteristics
of these images in Jinan and Wuhan. Table 1 indicates that the Landsat and MODIS
images were acquired within half an hour time. Due to the short time difference, the solar
geometries, orbital parameters, and the viewing (near-nadir) of the MODIS Terra platform
are highly consistent those of the corresponding Landsat 8.

Table 1. The Landsat 8 and moderate resolution imaging spectroradiometer (MODIS) land surface
temperature (LST) data collected in this study.

Study Area Acquisition Time
(Landsat 8 Data)

Acquisition Time
(MODIS LST Data)

Jinan
11 July 2014 02:48:23 11 July 2014 03:00:00

25 April 2015 02:47:51 25 April 2015 02:55:00
10 December 2017 02:48:40 10 December 2017 03:00:00

Wuhan
23 January 2014 02:57:26 23 January 2014 04:00:00

24 July 2016 02:56:17 24 July 2016 03:05:00
30 October 2017 02:56:36 30 October 03:05:00

2.2.1. MODIS Data

The MODIS LST product selected in this study is the MOD11_L2, collection 6 data
with a spatial resolution of 1000 m; the MODIS LST data were downloaded from the NASA
website (http://reverb.echo.nasa.gov/ accessed on 31 October 2020). The MOD11_L2,
collection 6 product contained segmented data with a spatial resolution of 1000 m and was
generated by the split-window algorithm. Extended validation works indicated that the
accuracy of the MOD11_L2 product is approximately 1 K [43–45] and is widely used in
LST downscaling algorithm research.

2.2.2. Landsat 8 Data

The Landsat 8 data of this study were downloaded from the geospatial data cloud
(http://www.gscloud.cn/ accessed on 31 October 2020). The downloaded data were
systematically processed with radiometric and geometric correction. In this study, the
Landsat 8 data were processed with calibration and atmospheric correction modules
from the ENVI 5.3 software to derive surface reflectance. In addition, accurate geometric
correction between MODIS and Landsat 8 data was necessary. In this study, we used
the image-to-image module of ENVI 5.3 software for geometric correction. The Landsat
8 data were selected as the reference images, and feature points such as road and river
intersections were chosen as control points to correct MODIS images. Thus, the conjugated
pixels from different sensor were matched and stacked to ensure the geometric consistency
between images.

In this study, the MODIS LST was vital to model the relationship in the coarse spatial
resolution. The Landsat 8 data serve two purposes in this study. One is to provide
auxiliary parameters for establishing model, the auxiliary parameters including NDVI,
SAVI, NDBI, UI and NDWI. These auxiliary parameters were retrieved from Landsat 8
data and resampled to 100 m and 1000 m for establishing the fine resolution and coarse
resolution downscaling model, respectively. The resample method of spatial aggregations
is adopted in this study to upscale the auxiliary parameters to coarse resolution of 100 m
and 1000 m, so the values of coarse pixels are simply spatial means of the fine pixels.
Another purpose is to provide validation reference data. The Landsat 8 LST was retrieved
by the Mono-window algorithm and served as the validation data to verify and analyze
the LST downscaling results.

The remote sensing inversion methods for LST are maturing and, the accuracy is con-
stantly improving. Scholars have proposed different LST inversion methods for different
remote sensing data. The common methods include a radiative transfer equation algorithm,
Mono-window algorithm, and split-window algorithm [46–49]. MODIS LST usually uses
the day/night algorithm and the split-window algorithm, whereas the Landsat series satel-

http://reverb.echo.nasa.gov/
http://www.gscloud.cn/
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lites use the Mono-window algorithm with the support of in situ measured surface and
atmosphere parameters. Compared with the radiative transfer equation, the Mono-window
algorithm includes the influence of the surface and atmosphere in the calculation formula,
making the application more convenient [50,51].

The United States Geological Survey (USGS) demonstrated that the calibration of the
TIRS band 11 of Landsat 8 is temporarily unstable; therefore, the Mono-window algorithm,
in combination with band 10 of Landsat 8, was used to retrieve LST data. The formula of
the Mono-window algorithm is written as follows [52]:

TS =
a10(1− C10 − D10) + [b10(1− C10 − D10) + C10 + D10]T10 − D10Ta

C10
(1)

where TS, T10 and Ta represent land surface temperature, the brightness temperature of
TIRS band 10, and effective average temperature of the atmosphere, respectively. Both a10
and b10 are constant. For band 10 of Landsat 8, the a10 and b10 can be seen in Table 2 [53].

Table 2. The value of a10 and b10.

Range of LST (◦C) a10 b10 R2

20–70 70.1775 0.4581 0.9997
0–50 62.7182 0.4339 0.9996
−20–30 55.4276 0.4086 0.9996

The coefficient C10 and D10 can be calculated by the following equations:

C10 = ε10τ10 (2)

D10 = (1− τ10)[1 + (1− ε10)τ10] (3)

where ε10 and τ10 represent the land surface emissivity and atmospheric transmittance,
respectively. It can be indicated that the effective atmospheric average temperature, at-
mospheric transmittance and surface emissivity are three significant parameters required
when using the Mono-window algorithm to retrieve the land surface temperature. In
general, the effective mean atmospheric temperature is obtained using the near-surface
temperature by using a linear equation. Many factors influenced the atmospheric transmit-
tance, including water vapor, aerosol, wavelength and ozone, although the atmosphere is
the most important factor [54]. Two steps were used to estimate the surface emissivity. The
first step used the land cover map to distinguish different land cover types in 30 m spatial
resolution. The second step was the NDVI threshold method, used to estimate the surface
emissivity [55].

3. Method
3.1. Introduction of Non-Linear Geographically Weighted Regressive Model

The relationships between LST and auxiliary parameters are complex and require
in-depth exploration and research [56]. The development of the least square method starts
from building linear relationship between LST and a single parameter to a linear relation-
ship with multiple auxiliary parameters and further considering non-linear relationship.
The traditional least square method ignores the non-stationarity in the relationship between
the LST and auxiliary parameters. As an extension of the least square model, the GWR
model is proposed as the typical model to consider the non-stationarity in downscaling
LST; however, the non-linear relationship is ignored in the GWR model. In this study, we
proposed a non-linear geographically weighted regressive (NL-GWR) model to address
this issue. Compared with the GWR model, the NL-GWR added a non-linear auxiliary
parameter in the process of building the model. The formula of NL-GWR is as follows:

yi = β0(ui, vi) + β1(ui, vi)x2
i1 + β2(ui, vi)xi1 + β3(ui, vi)xi2 + . . . + βn(ui, vi)xin + εi (4)
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where,yi means dependent variable; xi1, xi2, xin represent different independent variables;
x2

i1 represents the quadratic of parameters, enabling the non-linear relationship between
LST and auxiliary parameters; n is the count of independent variables; (ui, vi) repre-
sents the coordinate of the ith pixel.β0(ui, vi) refers to the intercept of the regression; the
β1(ui, vi),β2(ui, vi) and βn(ui, vi) are the 1st, 2nd, and nth regression coefficients of the
pixel, respectively. εi is the random error. Fotheringham et al. used Tobler’s first law of
geography to determine the weight and proposed the weighted least square method to
estimate the regression parameters [57]. The formula of regression parameters is as follows:

β̂(ui, vi) = (XTW(ui, vi)X)
−1

XTW(ui, vi)Y (5)

where β̂ is the estimated value of β; X, Y are the vectors of independent and dependent
variables, respectively; W(ui, vi) represents the kernel function, which is used to ensure
the weight of observation pixel. The weight of the observation pixel close to pixel i will be
larger, as the contribution of the observation pixel far away from pixel i will be relatively
small, the weight will also be relatively smaller. The kernel function selected in this study
is obtained by the following formula:

Wij = exp(−
dij

2

b2 ) (6)

where dij is the Euclidean distance between the pixel i and j; b is the adaptive bandwidth,
which can calculate by the cross-validation (CV) method of local regression analysis [58].
The relationship between CV and bandwidth can be shown as follows:

CV =
1
n∑ n

i = 1
[
yi − ŷ 6=i(b)

]2 (7)

where ŷ 6=i(b) means that the regression parameter estimation does not include the re-
gression pixel itself and builds the relationship between the around pixels. When the
relationship between the bandwidth and CV is built, the minimum CV corresponds to the
optimal bandwidth.

3.2. LST Downscaling Algorithm Based on NL-GWR Model

In this study, we proposed the LST downscaling algorithm based on the NL-GWR
model; a flow chart of the NL-GWR model downscaling LST algorithm is shown in Figure 2.

As shown in Figure 2, the NL-GWR model downscaling LST algorithm can be divided
into three parts: data processing, LST downscaling model establishment, and verification
and analysis of the downscaling results.

(1) Data processing. Firstly, the Landsat 8 reflectance data needed preprocessing, includ-
ing radiometric calibration, atmospheric correction and geometric correction, etc., and
then calculated the auxiliary parameters, including NDVI, SAVI, NDBI, UI, and NDWI
using the Landsat 8 data, and resampled these indices to 1000 and 100 m, respectively.
The data with a spatial resolution of 1000 and 100 m are the input parameters for
fitting relationship in the coarse resolution and the fine resolution, respectively. For
the MODIS LST data (MOD11_L2, collection 6 data), we used the MODIS reprojection
tool (MRT) to registered to a UTM WGS 1984 reference system. In addition, then, the
MODIS LST data were used to establish model in 1000 m resolution.

(2) LST downscaling model establishment. We used the coarse resolution auxiliary
parameters and the MODIS LST to establish the NL-GWR model at a resolution of
1000 m, which is as follows:

LSTi
CR = β0(ui, vi) + βCR

1 (ui, vi)index2CR
i1 + βCR

2 (ui, vi)indexCR
i1

+ βCR
3 (ui, vi)indexi2

CR + · · ·+ βCR
n (ui, vi)indexCR

i(n−1) + εi
CR (8)
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where the superscript CR denotes the data with a coarse resolution. LSTi
CR is the

MODIS LST at the pixel i; indexi1
2CR, indexi1

CR, indexi2
CR and indexCR

i(n−1) represent
the quadratic and linear components of the auxiliary parameters at the pixel i, re-
spectively. β1

CR, β2
CR, β3

CR, βn
CR are the coefficient of quadratic component and

coefficient of multiple one power parameters, respectively; εi
CR is the fitting error at a

coarse resolution.
Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 2. Flow chart of the non-linear geographically weighted regressive (NL-GWR) model 
downscaling LST algorithm. 

As shown in Figure 2, the NL-GWR model downscaling LST algorithm can be di-
vided into three parts: data processing, LST downscaling model establishment, and veri-
fication and analysis of the downscaling results. 
(1) Data processing. Firstly, the Landsat 8 reflectance data needed preprocessing, includ-

ing radiometric calibration, atmospheric correction and geometric correction, etc., and 
then calculated the auxiliary parameters, including NDVI, SAVI, NDBI, UI, and NDWI 
using the Landsat 8 data, and resampled these indices to 1000 and 100 m, respectively. 
The data with a spatial resolution of 1000 and 100 m are the input parameters for fitting 
relationship in the coarse resolution and the fine resolution, respectively. For the 
MODIS LST data (MOD11_L2, collection 6 data), we used the MODIS reprojection tool 
(MRT) to registered to a UTM WGS 1984 reference system. In addition, then, the 
MODIS LST data were used to establish model in 1000 m resolution. 

(2) LST downscaling model establishment. We used the coarse resolution auxiliary pa-
rameters and the MODIS LST to establish the NL-GWR model at a resolution of 1000 
m, which is as follows: 

     
   

2
1 10 1 2

2 ( 1)3

, , ,

, ,

CR CRCR CR CR
i ii i i i i i i

CR CRCR CR CR
i i i i i i n in

LST u v u v u vindex index

u v index u v index

  

  

  

      
 (8)

where the superscript CR denotes the data with a coarse resolution. CR
iLST  is the MODIS 

LST at the pixel i; 2
1 1 2 ( 1), and CR CR CR CR
i i i i nindex index index index ， represent the quadratic and linear 

components of the auxiliary parameters at the pixel i, respectively. 1 2 3, , ,CR CR CR CR
n     are 

the coefficient of quadratic component and coefficient of multiple one power parameters, 
respectively; CR

i is the fitting error at a coarse resolution. 
Secondly, the coefficients and error are interpolated to 100 m, which was used to 

build a regressive relationship at the fine resolution in the Kriging interpolation module 
in ArcMap 10.2 software. 

Finally, we assumed that the fitting relationship between LST and auxiliary parame-
ters is irrelevant to the spatial resolution in the LST downscaling algorithm, which means 

Figure 2. Flow chart of the non-linear geographically weighted regressive (NL-GWR) model downscaling LST algorithm.

Secondly, the coefficients and error are interpolated to 100 m, which was used to
build a regressive relationship at the fine resolution in the Kriging interpolation module in
ArcMap 10.2 software.

Finally, we assumed that the fitting relationship between LST and auxiliary parameters
is irrelevant to the spatial resolution in the LST downscaling algorithm, which means the
fitting relationship established for the coarse spatial resolution can be directly used for
fine resolution modeling [37,59,60]; therefore, the relationship between LST and auxiliary
parameters for the fine resolution can be expressed as follows:

LSTj
FR = βFR

0
(
uj, vj

)
+ βFR

1
(
uj, vj

)
index2FR

j1 + βFR
2

(
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)
indexj1
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+ βFR
3

(
uj, vj

)
indexj2

FR + · · ·+ βFR
n

(
uj, vj

)
indexFR

j(n−1) + ε j
FR (9)

where the superscript FR represents the data at a fine resolution in Formula (9); the LSTj
FR

is the downscaled LST based on the NL-GWR model.

1. Verification and analysis of the downscaling results. The LST from Landsat 8 retrieved
by the Mono-window algorithm was used as reference data to verify the downscaled
LST, and root mean square error (RMSE) and mean absolute error (MAE) were chosen
as evaluating indicators. RMSE is the deviation between the observed value and its
predicted value and illustrates the sample’s dispersion degree. MAE represents the
average value of the absolute error between the predicted value and the observed
value. The smaller of RMSE and the MAE, the better the downscaling results.
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4. Selection of Optimal Index
4.1. Candidates of the Remote Sensing Indices

NDVI can reflect the influence of the vegetation and eliminate the interference of soil
and atmosphere [61]. The purpose of proposing SAVI is to correct the sensitivity of NDVI
to the soil background. Compared with NDVI, SAVI adds the soil adjustment coefficient L
into the formula, which is determined according to actual conditions. The range of SAVI is
[0,1], and L = 1 means the vegetation coverage is high and the influence of soil background
is low; L = 0 means the vegetation coverage is small. Normally, L = 0.5 can eliminate the
influence of soil background, so L = 0.5 was selected in this study [62]. Zha et al. used
the NDBI to describe the intensity of urbanization and distinguish building information.
The range of NDBI is [−1,1], and areas of NDBI greater than 0 are considered urban land
cover [63]. Urban index (UI) was proposed by Kawamura et al. to extract urban areas [64].
NDWI was used to extract water information in the study areas. NDWI is a measurement
of liquid water molecules interacting with solar radiation [65] and was adopted in our
study as an indicator of water information in the study area. The calculation formulas of
the remote sensing indices used in this study are shown in Table 3.

Table 3. Remote sensing indices used and their calculation formulas.

Indices Abbreviation Formulation

Normalized Difference Vegetation Index NDVI NDVI = RNIR−RRED
RNIR+RRED

(10)
Soil-Adjusted Vegetation Index SAVI SAVI = (RNIR−RRED)(1+L)

RNIR+RRED+L (L = 0.5) (11)
Normalized Difference Built-up Index NDBI NDBI = RSWIR1−RNIR

RSWIR1+RNIR
(12)

Urban index UI UI = RSWIR2−RNIR
RSWIR2+RNIR

(13)
Normal Difference Water Index NDWI NDWI = RGREEN−RNIR

RGREEN+RNIR
(14)

In Table 3, RNIR, RRED, RSWIR1, RSWIR2 and RGREEN are the reflectance values of the
near-infrared band, red band, the first shortwave infrared band, the second shortwave
infrared band, and green band, respectively, and correspond to band 5, band 4, band 6,
band 7, and band 3 of Landsat 8, respectively.

4.2. Optimal Index Combination of Research Areas
4.2.1. Downscaling with Single Remote Sensing Index

In this analysis, NDVI, SAVI, NDBI, UI, and NDWI were selected as auxiliary parame-
ters to downscale the LST. The purpose of our first analysis was to choose the most sensitive
parameter among the auxiliary parameters for building the downscaling relationship. For
the selection of the optimal auxiliary parameters, we choose the stationary least square
method that can explain the fitting accuracy of the auxiliary parameters and LST through
the R2 of fitting. We used the forward approach by successively adding significant terms
into the model to select the optimal indices. The NDVI can reflect the influence of the vege-
tation and eliminate the interference of soil and atmosphere and is an important index for
urban area LST downscaling. Therefore, we selected the NDVI as the first index, establish
regressive relationship between Landsat LST and NDVI and calculate the R2. Then, we
added other index into regressive relationship and count R2. At last, according to the R2,
we determined the optimal combination of auxiliary parameters. As all studied images
have similar characteristics, one image for each city (Jinan: 11 July 2014 and Wuhan: 24 July
2016) was used to demonstrate the statistics of optimal index selection in Figures 3–7 and
Tables 4–7.



Remote Sens. 2021, 13, 1580 10 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

band, and green band, respectively, and correspond to band 5, band 4, band 6, band 7, 
and band 3 of Landsat 8, respectively. 

4.2. Optimal Index Combination of Research Areas 
4.2.1. Downscaling with Single Remote Sensing Index 

In this analysis, NDVI, SAVI, NDBI, UI, and NDWI were selected as auxiliary param-
eters to downscale the LST. The purpose of our first analysis was to choose the most sen-
sitive parameter among the auxiliary parameters for building the downscaling relation-
ship. For the selection of the optimal auxiliary parameters, we choose the stationary least 
square method that can explain the fitting accuracy of the auxiliary parameters and LST 
through the R2 of fitting. We used the forward approach by successively adding significant 
terms into the model to select the optimal indices. The NDVI can reflect the influence of 
the vegetation and eliminate the interference of soil and atmosphere and is an important 
index for urban area LST downscaling. Therefore, we selected the NDVI as the first index, 
establish regressive relationship between Landsat LST and NDVI and calculate the R2. 
Then, we added other index into regressive relationship and count R2. At last, according 
to the R2, we determined the optimal combination of auxiliary parameters. As all studied 
images have similar characteristics, one image for each city (Jinan: July 11, 2014 and Wu-
han: July 24, 2016) was used to demonstrate the statistics of optimal index selection in 
Figures 3–7 and Tables 4–7. 

 
Figure 3. R2 statistics of establishing regression relationship with different combination of indices. 
(a) and (b) are the R2 statistics of Jinan (July 11, 2014) and Wuhan (July 24, 2016), respectively. 

Figure 3. R2 statistics of establishing regression relationship with different combination of indices. (a) and (b) are the R2

statistics of Jinan (11 July 2014) and Wuhan (24 July 2016), respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. Downscaling results at a resolution of 100 m using different parameter combinations in Jinan (11 July 2014). (a) 
is the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the downscaling results based on GWR and NL-
GWR models and with the parameter combinations of NDVI + NDBI, NDVI2 ＋ NDBI, NDVI ＋ NDBI2, NDVI2 ＋ NDVI 
＋ NDBI, and NDBI2 ＋ NDBI ＋ NDVI, respectively. 

 
Figure 5. Downscaling results at a resolution of 100 m using different parameter combinations in 
Wuhan (July 24, 2016). (a) is the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the 
downscaling results based on GWR and NL-GWR models and with the parameter combinations of 
NDVI + NDBI, NDVI2 ＋ NDBI, NDVI ＋ NDBI2, NDVI2 ＋ NDVI ＋ NDBI and NDBI2 ＋ 
NDBI＋NDVI, respectively. 

Figure 4. Downscaling results at a resolution of 100 m using different parameter combinations in Jinan (11 July 2014). (a) is
the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the downscaling results based on GWR and NL-GWR
models and with the parameter combinations of NDVI + NDBI, NDVI2 + NDBI, NDVI + NDBI2, NDVI2 + NDVI + NDBI,
and NDBI2 + NDBI + NDVI, respectively.



Remote Sens. 2021, 13, 1580 11 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. Downscaling results at a resolution of 100 m using different parameter combinations in Jinan (11 July 2014). (a) 
is the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the downscaling results based on GWR and NL-
GWR models and with the parameter combinations of NDVI + NDBI, NDVI2 ＋ NDBI, NDVI ＋ NDBI2, NDVI2 ＋ NDVI 
＋ NDBI, and NDBI2 ＋ NDBI ＋ NDVI, respectively. 

 
Figure 5. Downscaling results at a resolution of 100 m using different parameter combinations in 
Wuhan (July 24, 2016). (a) is the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the 
downscaling results based on GWR and NL-GWR models and with the parameter combinations of 
NDVI + NDBI, NDVI2 ＋ NDBI, NDVI ＋ NDBI2, NDVI2 ＋ NDVI ＋ NDBI and NDBI2 ＋ 
NDBI＋NDVI, respectively. 

Figure 5. Downscaling results at a resolution of 100 m using different parameter combinations in
Wuhan (24 July 2016). (a) is the Landsat 8 LST retrieved by Mono-window algorithm; (b–f) are the
downscaling results based on GWR and NL-GWR models and with the parameter combinations of
NDVI + NDBI, NDVI2 + NDBI, NDVI + NDBI2, NDVI2 + NDVI + NDBI and NDBI2 + NDBI + NDVI,
respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. Error distribution between reference Landsat 8 LST and the downscaling results in Wu-
han, July 24, 2016. (a,b) are the NL-GWR model results with NDVI2+NDBI and 
NDVI2+NDBI+NDWI parameter combinations, respectively. 

 
Figure 7. The histogram of error image corresponding to Figure 6. (a,b) are the error statistics of the parameter combination 
of NDVI2 + NDBI and NDVI2 + NDBI + NDWI. 

As shown in Figure 3, the trend of the two areas is consistent. Compared with only 
using NDVI, when SAVI was added as index, the R2 barely increased at all. Then, when 
NDBI was added as index, the R2 has great improved, from 0.3224 to 0.6657 (Jinan, July 
11, 2014) and from 0.2756 to 0.5857 (Wuhan (July 24, 2016). Later on, When UI was added 
into the regressive relationship, the R2 has little improvements. Finally, added NDWI into 
the regressive relationship, there were even a slight decrease in R2. According to this anal-
ysis, SAVI, UI and the NDWI is not selected as the downscaling index. In total, we chose 
the NDBI, NDVI, and their quadratics as the auxiliary parameters in this study. 

4.2.2. Least Square Regression with Combined Remote Sensing Indices 
Having analyzed each auxiliary parameter’s sensitivity, we chose the optimal index 

combination of research areas. At first, we assumed that there are stationary relationships 
between the auxiliary parameters and LST and tested the performance of the combination 
of parameters in the sense of least square relationship. At a spatial resolution of 1000 m, 
we built a least square relationship between Landsat 8 LST and NDVI+NDBI, 
NDVI2+NDBI, NDBI2+NDVI, NDVI2+NDVI+NDBI, and NDBI2+NDBI+NDVI. The results 
of the two study areas are shown in Tables 3 and 4. 

As shown in Tables 4 and 5, the two parameter combinations of NDVI2+NDVI+NDBI 
and NDBI2+NDBI+NDVI achieved better results in the global least square regression. The 
combination of NDVI2+NDBI also obtained better results in the Jinan area. In the global 
model, the fit results are better, obtain a better R2, and lower RMSE when there are more 

Figure 6. Error distribution between reference Landsat 8 LST and the downscaling results in Wuhan,
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As shown in Figure 3, the trend of the two areas is consistent. Compared with only
using NDVI, when SAVI was added as index, the R2 barely increased at all. Then, when
NDBI was added as index, the R2 has great improved, from 0.3224 to 0.6657 (Jinan, 11 July
2014) and from 0.2756 to 0.5857 (Wuhan 24 July 2016). Later on, When UI was added into
the regressive relationship, the R2 has little improvements. Finally, added NDWI into the
regressive relationship, there were even a slight decrease in R2. According to this analysis,
SAVI, UI and the NDWI is not selected as the downscaling index. In total, we chose the
NDBI, NDVI, and their quadratics as the auxiliary parameters in this study.
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4.2.2. Least Square Regression with Combined Remote Sensing Indices

Having analyzed each auxiliary parameter’s sensitivity, we chose the optimal index
combination of research areas. At first, we assumed that there are stationary relationships
between the auxiliary parameters and LST and tested the performance of the combination
of parameters in the sense of least square relationship. At a spatial resolution of 1000 m,
we built a least square relationship between Landsat 8 LST and NDVI + NDBI, NDVI2 +
NDBI, NDBI2 + NDVI, NDVI2 + NDVI + NDBI, and NDBI2+ NDBI + NDVI. The results of
the two study areas are shown in Tables 3 and 4.

As shown in Tables 4 and 5, the two parameter combinations of NDVI2 + NDVI
+ NDBI and NDBI2 + NDBI + NDVI achieved better results in the global least square
regression. The combination of NDVI2 + NDBI also obtained better results in the Jinan
area. In the global model, the fit results are better, obtain a better R2, and lower RMSE
when there are more parameters. Furthermore, the statistical results show that adding the
quadratic of the auxiliary parameter can improve the least squares relationship’s accuracy;
therefore, it is necessary to consider the non-linear relationship between LST and auxiliary
parameters.

Table 4. Least squares relationship results in Jinan (11 July 2014).

Relationship R2 RMSE (◦C)

LST = a + bNDVI + cNDBI 0.66 1.38
LST = a + bNDVI2 + cNDBI 0.71 1.26
LST = a + bNDVI + cNDBI2 0.60 1.61

LST = a + bNDVI2 + cNDVI + dNDBI 0.75 1.15
LST = a + bNDBI2 + cNDBI + dNDVI 0.72 1.22

Table 5. Least squares relationship results in Wuhan (24 July 2016).

Relationship R2 RMSE (◦C)

LST = a + bNDVI + cNDBI 0.42 0.96
LST = a + bNDVI2 + cNDBI 0.54 0.72
LST = a + bNDVI + cNDBI2 0.60 0.63

LST = a + bNDVI2 + cNDVI + dNDBI 0.70 0.59
LST = a + bNDBI2 + cNDBI + dNDVI 0.71 0.54

4.2.3. Geographical Weighted Regression with Combined Remote Sensing Indices

In fact, there is spatial non-stationarity between LST and the auxiliary parameters
during the modeling process, which means the relationship will change when the geo-
graphic location changes [66]. In this section, we considered the non-stationary between
auxiliary parameters to establish model. The GWR model takes the spatial location into
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account in the modeling process that can reflect the independent variable’s change rule on
the dependent variable with the spatial location.

Tables 6 and 7 show the GWR and NL-GWR models’ statistical results in the two
study areas. As shown in Tables 5 and 6, the geographical model’s statistical results are
better than the least square model. Furthermore, by comparing Tables 3, 4, 5, and 6, we
can see that adding the quadratic of the parameters into the model has a great effect on
the improvement of results; therefore, considering the non-stationarity of the parameters
with a geographical model and the non-linear relationship between LST and auxiliary
parameters can improve the results, especially in the Wuhan area, where the coefficient of
the determination of R2 of the geographical model increased significantly.

Table 6. Geographical model results of Jinan (11 July 2014).

Relationship R2 RMSE (◦C)

LST = a(ui, vi) + b(ui, vi)NDVI + c(ui, vi)NDBI 0.80 0.99
LST = a(ui, vi) + b(ui, vi)NDVI2 + c(ui, vi)NDBI 0.86 0.85
LST = a(ui, vi) + b(ui, vi)NDVI + c(ui, vi)NDBI2 0.81 0.98

LST = a(ui, vi) + b(ui, vi)NDVI2 + c(ui, vi)NDVI + d(ui, vi)NDBI 0.81 0.94
LST = a(ui, vi) + b(ui, vi)NDBI2 + c(ui, vi)NDBI + d(ui, vi)NDVI 0.83 0.89

Table 7. Geographical model results of Wuhan (24 July 2016).

Relationship R2 RMSE (◦C)

LST = a(ui, vi) + b(ui, vi)NDVI + c(ui, vi)NDBI 0.60 0.76
LST = a(ui, vi) + b(ui, vi)NDVI2 + c(ui, vi)NDBI 0.82 0.39
LST = a(ui, vi) + b(ui, vi)NDVI + c(ui, vi)NDBI2 0.77 0.60

LST = a(ui, vi) + b(ui, vi)NDVI2 + c(ui, vi)NDVI + d(ui, vi)NDBI 0.79 0.53
LST = a(ui, vi) + b(ui, vi)NDBI2 + c(ui, vi)NDBI + d(ui, vi)NDVI 0.76 0.57

5. Results and Discussion
5.1. Downscaling Results

Figures 4 and 5 show the downscaling results at a spatial resolution of 100 m using
different parameter combinations. Among them, Figures 4a and 5a are the Landsat 8
LST retrieved with the Mono-window algorithm applied to Jinan (11 July 2014) and
Wuhan (24 July 2016), respectively; Figures 4 and 5b are the downscaling results based on
GWR and NL-GWR models with the parameter combination of NDVI + NDBI, NDVI2 +
NDBI, NDVI + NDBI2, NDVI2 + NDVI + NDBI, and NDBI2 + NDBI + NDVI, respectively.
Figures 4 and 5b are the traditional GWR model, whereas Figures 4 and 5c–f added the
quadratic of the parameters considering the non-linear relationship between LST and
auxiliary parameters.

As shown in Figure 4, the downscaling results with different parameter combinations
are consistent with the reference Landsat 8 LST visually speaking. Compared to the
NL-GWR model, the GWR model results only consider the linear relationship between
the LST and NDVI + NDBI parameter combination, which is substandard in the Yellow
River passing through in the north of the Jinan area. The LST of the water is higher
than the reference LST because there is a negative linear correlation between the LST and
NDVI in the area with high vegetation coverage; however, the NDVI and LST is not a
linear relationship in the area with abundant soil moisture. In the previous studies of
geographical models, the non-linear relationship of the heterogeneous urban areas and
areas with abundant soil water content is neglected, which caused large downscaling errors.
The difference is quite large in the north of the study area, where a reservoir is marked
with a black rectangle in Figure 4, and different combinations of parameters have different
results around the reservoir. As shown in the Landsat 8 LST (Figure 4a), the LST of the
reservoir is the lowest, but the LST of downscaling results in Figure 4d,e is slightly higher.
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From the visible results, the NL-GWR model’s result with the parameter combination
NDVI2 + NDBI is closest to the reference data and shows the best visible results.

As Figure 5 shows, Wuhan has a similar visual effect to Jinan. The downscaling
image trend is consistent with the reference image, but the downscaled LST has a certain
smoothing effect in some areas. Two possible reasons can explain this phenomenon. One
reason could be that the processes of regression and interpolation are both based on
the minimum mean square error (MMSE) method. There is a common problem for the
MMSE method, i.e., that low values tend to be overestimated and high values tend to be
underestimated. Another reason is that, in the process of spatial aggregation from 100 to
1000 m of NDBI and NDVI, values of NDVI and NDBI will be replaced by the average
values of surrounding pixels, making the resampled image smoother than the original
image; this may cause the smoothing effect of the downscaling results. The downscaling
LST is the highest in the Yangtze River’s tributary when the NDVI + NDBI is used as
the auxiliary parameter combination (marked with a black rectangle in the figure). This
situation is not consistent with the reference image, which causes a relatively significant
error. By considering the non-linear relationship between LST and auxiliary parameters,
the LST of the tributaries has decreased. In the visual images, the downscaling results
of the NL-GWR downscaling model with the NDVI2 + NDBI parameter combination are
closest to the reference image; this result is consistent with the Jinan area.

In the Wuhan study area, the Yangtze River runs through it, and there are many
lakes. Given that there is much water in and around Wuhan, it is intuitive to add the
NDWI index into the downscaling model; therefore, the NDWI was added into the optimal
parameter combination NDVI2 + NDBI to downscale the LST and verify the accuracy of
the downscaling results. The downscaling results of NDVI2 + NDBI and NDVI2 + NDBI +
NDWI downscaling were evaluated by analyzing their errors. Figure 6a,b show the error
distributions between reference Landsat 8 LST and the downscaling results of the NL-GWR
model with NDVI2 + NDBI and NDVI2 + NDBI + NDWI as parameter combinations,
respectively. The error range of Figure 6a,b is –4~4 ◦C. In Figure 6a, the large errors are
mainly in rivers, lakes, and high soil water content, and the intersecting areas of different
land cover when using the NDVI2 + NDBI parameter combination. Though the errors of
using the NDVI2 + NDBI + NDWI parameter combination decreased in the lake, river, and
high soil water content areas, in the vegetation, building and other areas were increased, as
shown in Figure 6b.

Figure 7 shows the histogram of the error image, and Figure 7a,b correspond to
Figure 6a,b. The number of pixels in the interval of [−1,1] in Figure 7a is higher than that
in Figure 7b. We selected the mean value and standard deviation (StdDev) as evaluation
indicators. The mean value was calculated based on all pixels and is preferably as close to 0
as possible, which indicates unbiased prediction. By comparing Figure 7a,b, we found that
the mean values are 0.1271 and −0.2289 ◦C and the StdDev values are 1.6390 and 1.7131,
respectively. So, the mean value of Figure 7a is closer to 0, and the StdDev of Figure 7a is
smaller than (b), which means that the dispersion is also smaller.

In summary, adding the NDWI into the downscaling model can improve the down-
scaling results of water areas; however, the errors of the other land covers have increased.
The downscaling results with NDVI2 + NDBI have a larger error in the water areas, but the
overall accuracy is higher than that of adding the NDWI and obtaining better downscaling
results. The conclusion is that NDWI is not needed in LST downscaling applications.

The visual results show that the downscaling results are improved when considering
the non-linear relationship between LST and auxiliary parameters. It is necessary to
consider the non-linear relationship in the geographical downscaling model. In the two
study areas, the parameter combination of NDVI2 + NDBI obtained the best visual results,
and adding the NDWI into the parameter combination does not improve the error statistics
of the NL-GWR model.
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5.2. Landsat 8 LST as the Reference Data

It is necessary to quantitatively verify the downscaling effect of different parameter
combinations instead of relying on simple visual inspection. Ideally, the land surface tem-
perature detected in the ground is the most accurate and direct source for verification data;
however, LST cannot accurately be measured from the ground due to its extreme variability
as well as scale effect, not to mention the impractical workload to collect representative
samples for the whole study area. As a compromise, the inversed high-resolution LST from
Landsat 8 data is usually selected as the reference data in the LST downscaling studies.

Significant amounts of research have shown that if there is no ground monitoring data,
the LST accuracy retrieved by the MODIS can be used as a reference [67–69]. Peng and
wang et al. proved that the relationship between the MODIS LST and the LST retrieved by
the Landsat 8 is preferable and that the RMSE is less than 2 ◦C [41,42]. Duan et al. used
the ASTER LST as reference data to evaluate the downscaling LST based on the GWR
model and demonstrated an error of 2.1 K for the ASTER LST and MODIS LST, which is
bigger than the RMSE found between MODIS LST and Landsat 8 retrieved LST at a 1000 m
spatial resolution [39]. For this reason, the Landsat 8 LST retrieved by the Mono-window
algorithm can be used as reference data to verify the accuracy of downscaling results.

In this study, the Landsat 8 LST was used as reference data to verify the downscaling
LST, with RMSE and MAE used as indicators for verification. The statistics of RMSE and
MAE of Jinan and Wuhan are shown in Tables 8 and 9, respectively. The results are based
on the GWR and NL-GWR models with different parameter combinations.

As shown in Tables 8 and 9, the following conclusion can be drawn from the six
datasets: the quantitative analysis results are consistent with the visual results; the NL-GWR
model with the parameter combination of NDVI2 + NDBI obtains the best downscaling
LST. In all the datasets, RMSE and MAE are smaller when considering the non-linear
relationship between LST and auxiliary parameters. In the perspective of seasonality,
the summer data achieved better downscaling results than other seasons and gained the
smallest RMSE (Jinan (11 July 2014): 1.3208 ◦C, Wuhan (24 July 2016): 1.4957 ◦C) and MAE
(Jinan: 0.9208 ◦C, Wuhan: 1.0686 ◦C). The statistical results show that consideration of the
non-linear relationship improves the accuracy of downscaling results.

Table 8. Accuracy statistics of downscaling results in Jinan.

Parameter
Combination

11 July 2014 25 April 2015 10 December 2017

RMSE MAE RMSE MAE RMSE MAE

NDVI + NDBI 2.4997 1.4054 2.5516 1.4687 2.3328 1.3574
NDVI2 + NDBI 1.3208 0.9208 1.4858 0.9721 1.5231 1.0063
NDVI + NDBI2 1.8926 1.2451 1.7976 1.1526 2.1810 1.2762

NDVI2 + NDVI + NDBI 2.0224 1.3708 2.1364 1.3840 2.3180 1.4308
NDBI2 + NDBI + NDVI 1.6921 1.1764 2.1221 1.2765 2.3100 1.2364

Table 9. Accuracy statistics of downscaling results in Wuhan.

Parameter
Combination

23 January 2014 24 July 2016 30 October 2017

RMSE MAE RMSE MAE RMSE MAE

NDVI + NDBI 2.9117 2.1017 2.8165 1.9757 2.0343 1.4837
NDVI2 + NDBI 1.7235 1.2384 1.4957 1.0686 1.4168 1.1172
NDVI + NDBI2 2.5611 2.1609 3.0211 1.1524 1.6821 1.2407

NDVI2 + NDVI + NDBI 2.5039 2.1436 2.0224 1.2844 1.8566 1.2280
NDBI2 + NDBI + NDVI 2.5445 2.2140 2.5254 1.6298 1.7975 1.2451

Figures 8 and 9 show the density scatter plots between the reference Landsat 8 LST and
the downscaling LST-based NL-GWR model with the parameter combination of NDVI2 +
NDBI in the six pairs of study images with a 100 m spatial resolution.



Remote Sens. 2021, 13, 1580 16 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 20 
 

 

Combination RMSE MAE RMSE MAE RMSE MAE 
NDVI+NDBI 2.4997 1.4054 2.5516 1.4687 2.3328 1.3574 
NDVI2+NDBI 1.3208 0.9208 1.4858 0.9721 1.5231 1.0063 
NDVI+NDBI2 1.8926 1.2451 1.7976 1.1526 2.1810 1.2762 

NDVI2+NDVI+NDBI 2.0224 1.3708 2.1364 1.3840 2.3180 1.4308 
NDBI2+NDBI+NDVI 1.6921 1.1764 2.1221 1.2765 2.3100 1.2364 

Table 9. Accuracy statistics of downscaling results in Wuhan. 

Parameter 
Combination 

1/23/2014 7/24/2016 10/30/2017 
RMSE MAE RMSE MAE RMSE MAE 

NDVI+NDBI 2.9117 2.1017 2.8165 1.9757 2.0343 1.4837 
NDVI2+NDBI 1.7235 1.2384 1.4957 1.0686 1.4168 1.1172 
NDVI+NDBI2 2.5611 2.1609 3.0211 1.1524 1.6821 1.2407 

NDVI2+NDVI+NDBI 2.5039 2.1436 2.0224 1.2844 1.8566 1.2280 
NDBI2+NDBI+NDVI 2.5445 2.2140 2.5254 1.6298 1.7975 1.2451 

As shown in Tables 8 and 9, the following conclusion can be drawn from the six da-
tasets: the quantitative analysis results are consistent with the visual results; the NL-GWR 
model with the parameter combination of NDVI2+NDBI obtains the best downscaling 
LST. In all the datasets, RMSE and MAE are smaller when considering the non-linear re-
lationship between LST and auxiliary parameters. In the perspective of seasonality, the 
summer data achieved better downscaling results than other seasons and gained the 
smallest RMSE (Jinan (11 July 2014):1.3208 °C, Wuhan (24 July 2016): 1.4957 °C) and MAE 
(Jinan: 0.9208 °C, Wuhan: 1.0686 °C). The statistical results show that consideration of the 
non-linear relationship improves the accuracy of downscaling results. 

Figures 8 and 9 show the density scatter plots between the reference Landsat 8 LST 
and the downscaling LST-based NL-GWR model with the parameter combination of 
NDVI2+NDBI in the six pairs of study images with a 100 m spatial resolution. 

 
Figure 8. Density scatter plots between the reference Landsat 8 LST and the downscaling LST with 
a spatial resolution of 100 m in Jinan: (a) 11 July 2014; (b) 25 April 2015; (c) 10 December 2017. 

Figure 8. Density scatter plots between the reference Landsat 8 LST and the downscaling LST with a spatial resolution of
100 m in Jinan: (a) 11 July 2014; (b) 25 April 2015; (c) 10 December 2017.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 9. Density scatter plots between the reference Landsat 8 LST and the downscaling LST with 
a spatial resolution of 100 m in Wuhan: (a) 23 January 2014; (b) 24 July 2015; (c) 30 October 2017. 

Figures 8 and 9 show that all fitting coefficients of determination are above 0.90 and 
obtain satisfactory fitting results, indicating that the NL-GWR model can achieve better 
downscaling results than the GWR model and improve the accuracy of the downscaling 
algorithm. This conclusion provides new approaches to the study of downscaling algo-
rithms. 

6. Conclusion 
Due to the spatial heterogeneity of the urban area’s underlying surface, it is necessary 

to gain LST data with high spatial and temporal resolutions; however, high spatial and 
temporal resolution can not be simultaneously achieved by current satellite sensors. To 
solve this problem, we proposed an NL-GWR model, which simultaneously considers the 
spatial non-stationarity and non-linearity in order to downscale the spatial resolution of 
MODIS LST from 1000 to 100 m and verify the downscaling results comparing with the 
Landsat 8 retrieved LST. 

In this study, Jinan and Wuhan were selected as study areas. We selected the auxil-
iary parameters among the NDVI, SAVI, NDBI, UI, and NDWI, and chose the NDVI and 
NDIBI as auxiliary parameters; then, we selected the different combinations of NDVI + 
NDBI, NDVI2 + NDBI, NDVI + NDBI2, NDVI2 + NDVI + NDBI, and NDBI2 + NDBI + NDVI 
to downscale LST; lastly, by comparing and verifying the downscaling results from dif-
ferent parameter combinations, we concluded that the NL-GWR model with the NDVI2 + 
NDBI parameter combination obtained the best downscaling results. Due to Wuhan’s 
many water bodies, we tried to add NDWI into the downscaling parameter combination. 
The downscaling results were improved for areas containing water, but the error in other 
areas increased; therefore, the NDWI was not used as an auxiliary parameter in this study. 
The retrieved Landsat 8 LST by the Mono-window algorithm was used as reference data 
to verify the LST downscaling results. In six datasets, the coefficients of determination 
between downscaling LST and the Landsat 8 LST both reached above 0.90. The downscal-
ing algorithm based on the NL-GWR model has achieved better downscaling results than 
the former GWR model, which only considers linear relationships.  

Although the NL-GWR model proposed in this study has achieved good downscal-
ing results, many problems still need to be improved in subsequent studies. In this study, 
only the auxiliary parameters’ quadratic parameters were added to the model the non-
linear relationship between LST and auxiliary parameters, although more non-linear re-
lationships, e.g., exponential or rational functions, could be considered. Another aspect 
that needs improvement is that more indices besides NDVI, SAVI, NDBI, UI, and NDWI 
should be considered to adapt to the urban land cover diversities. These problems need 
to be further explored in the future studies.  

We consider our study a successful attempt to build a non-linear relationship in ge-
ographically weighted regressive algorithms where the downscaling result’s accuracy is 

Figure 9. Density scatter plots between the reference Landsat 8 LST and the downscaling LST with a spatial resolution of
100 m in Wuhan: (a) 23 January 2014; (b) 24 July 2015; (c) 30 October 2017.

Figures 8 and 9 show that all fitting coefficients of determination are above 0.90 and
obtain satisfactory fitting results, indicating that the NL-GWR model can achieve better
downscaling results than the GWR model and improve the accuracy of the downscaling
algorithm. This conclusion provides new approaches to the study of downscaling algo-
rithms.

6. Conclusions

Due to the spatial heterogeneity of the urban area’s underlying surface, it is necessary
to gain LST data with high spatial and temporal resolutions; however, high spatial and
temporal resolution can not be simultaneously achieved by current satellite sensors. To
solve this problem, we proposed an NL-GWR model, which simultaneously considers the
spatial non-stationarity and non-linearity in order to downscale the spatial resolution of
MODIS LST from 1000 to 100 m and verify the downscaling results comparing with the
Landsat 8 retrieved LST.

In this study, Jinan and Wuhan were selected as study areas. We selected the auxiliary
parameters among the NDVI, SAVI, NDBI, UI, and NDWI, and chose the NDVI and
NDIBI as auxiliary parameters; then, we selected the different combinations of NDVI
+ NDBI, NDVI2 + NDBI, NDVI + NDBI2, NDVI2 + NDVI + NDBI, and NDBI2 + NDBI
+ NDVI to downscale LST; lastly, by comparing and verifying the downscaling results
from different parameter combinations, we concluded that the NL-GWR model with the
NDVI2 + NDBI parameter combination obtained the best downscaling results. Due to
Wuhan’s many water bodies, we tried to add NDWI into the downscaling parameter
combination. The downscaling results were improved for areas containing water, but the
error in other areas increased; therefore, the NDWI was not used as an auxiliary parameter
in this study. The retrieved Landsat 8 LST by the Mono-window algorithm was used as
reference data to verify the LST downscaling results. In six datasets, the coefficients of
determination between downscaling LST and the Landsat 8 LST both reached above 0.90.
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The downscaling algorithm based on the NL-GWR model has achieved better downscaling
results than the former GWR model, which only considers linear relationships.

Although the NL-GWR model proposed in this study has achieved good downscaling
results, many problems still need to be improved in subsequent studies. In this study, only
the auxiliary parameters’ quadratic parameters were added to the model the non-linear
relationship between LST and auxiliary parameters, although more non-linear relationships,
e.g., exponential or rational functions, could be considered. Another aspect that needs
improvement is that more indices besides NDVI, SAVI, NDBI, UI, and NDWI should be
considered to adapt to the urban land cover diversities. These problems need to be further
explored in the future studies.

We consider our study a successful attempt to build a non-linear relationship in
geographically weighted regressive algorithms where the downscaling result’s accuracy is
significantly improved due to the introduction of non-linear terms. Two cities with different
climate, as well as different seasonal data, were investigated, and the proposed method gets
better downscaling results in all datasets. Therefore, we believe that the NL-GWR model
can be applied to other urban area around the world. However, in extremely heterogeneous
areas such as mountains, using nonlinear term in LST downscaling may introduce unstable
result and may need extra constraints. It is also recommended that before applying this
algorithm to scenarios other than urban areas, selection of more auxiliary parameters
and optimization of their combination should be performed. For example, slope angle
or incoming solar radiation may be more relevant in mountainous areas than NDBI. The
overall procedure was repeatable, and the data are available for many different practices,
thus providing a new urban heat island study tool.
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