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Abstract: Land consumption is the increase in artificial land cover, which is a major issue for
environmental sustainability. In Italy, the Italian Institute for Environmental Protection and Research
(ISPRA) and National System for Environmental Protection (SNPA) have the institutional duty to
monitor land consumption yearly, through the photointerpretation of high-resolution images. This
study intends to develop a methodology in order to produce maps of land consumption, by the use of
the semi-automatic classification of multitemporal images, to reduce the effort of photointerpretation
in detecting real changes. The developed methodology uses vegetation indices calculated over time
series of images and decision rules. Three variants of the methodology were applied to detect the
changes that occurred in Italy between the years 2018 and 2019, and the results were validated using
ISPRA official data. The results show that the produced maps include large commission errors, but
thanks to the developed methodology, the area to be photointerpreted was reduced to 7300 km2 (2.4%
of Italian surface). The third variant of the methodology provided the highest detection of changes:
70.4% of the changes larger than 100 m2 (the pixel size) and over 84.0% of changes above 500 m2.
Omissions are mainly related to single pixel changes, while larger changes are detected by at least
one pixel in most of the cases. In conclusion, the developed methodology can improve the detection
of land consumption, focusing photointerpretation work over selected areas detected automatically.

Keywords: soil sealing; semi-automatic classification; Sentinel; NDVI; land monitoring; change
detection

1. Introduction

Soil is a natural resource that plays a fundamental role in providing environmental,
social and economic functions. “Soil is generally defined as the top layer of the earth’s
crust, formed by mineral particles, organic matter, water, air and living organisms. It
is the interface between earth, air and water and hosts most of the biosphere“ [1]. As
highlighted by the New Soil Strategy, it “is crucial for fighting climate change, protecting
human health, safeguarding biodiversity and ecosystems”. The New Soil Strategy [2] is
a European Commission initiative promoted in close coordination and complementarity
with other European initiatives [3], such as the EU Biodiversity Strategy for 2030 [4] and
Farm to Fork Strategy [5], which will include legally binding targets to protect soil and its
degradation.

Land consumption represents one of the main drivers of land degradation [6], and it is
the cause of primary ecosystem service loss, such as the capability of food production [7,8]
and the fragmentation of habitats [9], particularly when soil sealing occurs.
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Soil sealing alters the hydrological cycle and increases the hydraulic hazard in urban
areas [10], not allowing water to infiltrate and directly increasing water runoff with signifi-
cant implications (e.g., reducing the groundwater recharge and soil erosion, and increasing
the frequency of flood events).

Land consumption is nominally monitored under the name of Land Take and Soil
Sealing at the European scale, by the European Environmental Agency. Employing the
CORINE Land Cover data sets in the SOER report [11], the long-term changes over the
period 2000–2018 show that the area of artificial surfaces in Europe has changed the most,
with an increase of 7.1%.

1.1. Definitions of Land Consumption

Definitions of land consumption have become a relevant issue; sometimes, it is referred
to as land take or soil sealing, but rarely in a univocal and homogeneous way. In this
work, land consumption is defined as the replacement of non-artificial land cover with
artificial land cover related to soil sealing (e.g., construction of buildings and infrastructures,
regardless of whether they are 2D or 3D), but it is also used to indicate surfaces modified by
reversible consumption processes, such as soil excavation or compaction, where a natural
surface has been replaced by artificial material, or a natural material has been removed from
its place of origin [12] (e.g., unpaved parking, dumps and quarries), excluding vegetated
and green urban areas [13]. This effort of conceptual clarity, proposed in this paper, is
a crucial step in order to be aligned with the concept carried on by the new European
approach on land monitoring through the EIONET Action Group on Land monitoring in
Europe (EAGLE). Table A1 provides a synthesis of the meaning of terms considered in
this work.

1.2. Soil Protection Policy and Actions

In the European framework, several policies are addressed to protect land and reduce
degradation, although none of them has a binding legislative function on the planning
policies of the different Member States. Table 2 shows a synthesis of relevant actions for
soil protection at the European and global level. In order to support the monitoring of
the progress made by the Member States towards the achievement of the objectives, an
accurate cartographic reference, with a unique and shared definition of land consumption,
is necessary. In particular, the European Seventh Environment Action Programme sets
the goal of achieving no net land take by 2050 [14], while the Agenda for Sustainable
Development of the United Nations established, through its Sustainable Development
Goals (SDGs), two indicators to keep track of land consumption-related issues, such as land
degradation and urban growth. While in the SDG 11.3.1, land consumption is an explicit
variable, in the SDG 15.3.1, it falls within the broader phenomenon of land degradation,
representing a major component of the latter. It is also relevant to mention the new soil
strategy (currently under public consultation) that reaffirms the EU target of reducing the
rate of land take, urban sprawl and soil sealing to achieve no net land take by 2050.

1.3. Monitoring Land Consumption through Remote Sensing

As illustrated in the previous paragraph, land consumption assessment plays a key
role in understanding local pressures and better identifying the drivers behind it, just as
it is important to have up-to-date and accurate data available to keep track of land cover
changes. Land consumption is becoming better known and spatially localized thanks to
the remote sensing monitoring of territory and land cover mapping.

Many initiatives and programs have been undertaken in Europe to obtain information
to map land consumption and its changes; among the most relevant is the Copernicus Land
Monitoring Service (https://land.copernicus.eu, accessed on 4 March 2021), implemented
by the EEA and the JRC, which guarantees full, free and open access to earth observation
data [15] for the whole of Europe with repetitiveness and homogeneity [16].

https://land.copernicus.eu
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The artificial land cover information can be derived from CORINE Land Cover (CLC)
or from High Resolution Layers (HRLs) (https://land.copernicus.eu/pan-european, ac-
cessed on 4 March 2021). A third source encompasses Urban Atlas (the local compo-
nent of Copernicus program), a land cover and land use dataset, which contains a de-
tailed legend on urban characteristics with a Minimum Mapping Unit (MMU) of 0.25 ha.
(https://land.copernicus.eu/local/urban-atlas, accessed on 4 March 2021) (Table 1).

Table 1. Relevant Copernicus data related to land consumption.

Data CORINE Land Cover High Resolution Layers Urban Atlas

Type of information Land use/Land cover map (44 classes,
with 3 level) Percentage of sealed area

High-resolution Land
use/Land cover map (27

classes)
Coverage EU 39 EU 39 788 FUAS

Minimum Mapping
Unit

25 ha and
5 ha (changes)

20 m (pixel),
10 m only 2018

17 urban classes 0.25 ha
10 rural classes 1 ha

Reference year 1990, 2000, 2006, 2012, 2018 2006, 2009, 2012 and 2018
(under validation) 2006, 2012, 2018

Nevertheless, there are still some limits to the use of these data for the (detailed)
monitoring of land consumption (at national and local levels) with a certain frequency. In
fact, they have limits linked to the different classification systems and spatial resolution,
but above all, they do not able an annual monitoring of the phenomenon, since CLC and
Urban Atlas are updated every six years, while the imperviousness datasets are updated
every three years.

In light of these problems, the EU has proposed a new set of products attempting
to overcome these difficulties: the realization of a second generation of CLC has recently
been launched, with the objective to improve the characteristics of the current national and
European data. “CLC+”, for instance, will offer information, with thematic and spatial
details, superior to those of the current generation of CLC, and will be based on the Eagle
classification system.

The classification system developed in this study is consistent with this scheme; this
compliance will be able to support the institutional tasks of ISPRA and the SNPA in their
land monitoring activities.

The availability of more data, such as those of the Sentinel-1 and Sentinel-2 missions
within the Copernicus program, has offered new and better possibilities to extract land
cover information, detect changes from the urban environment [17] and meet the need for
the accurate and frequent request of data.

Researchers have made enormous efforts to improve change detection methodologies,
and several reviews based on satellite data have been published [18–29], only a few of
which are specifically addressed to urban detection [20,30].

Many of these studies and reviews stress the difficulty of identifying common guide-
lines for the choice of the most suitable methodology. Likewise, comparing the accuracy of
different techniques is a very hard task for several reasons: it depends, among other things,
on the spatial, spectral and temporal resolution of the sensor used and on the objective of
the research.

The most commonly used algorithms are based on image differencing; image ra-
tioing [31]; regression analysis; vegetation index differencing; change vector analysis
(CVA) [32–34]; transformation, as principal component analysis (PCA) [35]; and tasseled
cap transformation (KT) machine-learning (such as artificial neural networks, support
vector machines and decision trees) [27,36,37], i.e., those using more than one system.

Image differing or ratioing is best suited for change/no-change (binary) informa-
tion. Most of these techniques are based on the threshold value to discriminate the area
changed/not changed; the selection of the best threshold determines the accuracy of the

https://land.copernicus.eu/pan-european
https://land.copernicus.eu/local/urban-atlas
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technique used. In order to improve the performance, it is possible to combine different
fusion techniques or apply automated threshold algorithms.

Several supervised machine learning techniques are now widely used for urban
change detection purposes, and many researchers have highlighted the advantages of
these to achieve reliable handle classification [21,30–32]. However, the downside of these
methods is that it is difficult to find a large number of training areas and to set the user-
defined parameters for the algorithm, factors which play an important role in the accuracy
of the final results. In addition, machine learning techniques usually require handling
considerable quantities of data and complex computational capacity.

One major issue in urban change detection is the discrimination of the spectral dif-
ference between the bare soil and urban area. In this context, during harvesting time,
herbaceous vegetation (crops) could also be confused with urban areas. Change detection
methods that exploit time series of satellites images and the specific characteristics of
different sensors, could provide reliable information for solving these difficulties. The
combined use of optical and radar data, for example, has produced satisfactory results:
the former could provide spectral reflectance and the phenological characteristics of the
vegetation, useful to discriminate soil sealing from natural vegetation; the latter offer the
possibility to analyze the different behavior of urban surfaces with respect to scattering or
polarization to obtain information on a built-up area. In addition, radar collects data in all
weather conditions (and fills the gap in cloudy regions), a key feature when studying large
areas with a cloudy cover for a part of the year; it should be considered, however, that
radar images present speckle noise, an important element for the accuracy of classification
processes (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar, accessed on
4 March 2021).

Ban et al. [38] used both of these two sensors for urban land cover mapping in an
object-based classification method; Pasaresi et al. [39] used fused data for improving the
results of urban settlement map; Jan Haas and Yifang Ban [40] segmented the combination
of Sentinel SAR and MSI image stacking to classify the Zürich metropolitan area using
the SVM algorithm; Goldbatt et al. [41] mapped built up changes in Ho Chi Minh City,
Vietnam; Celik and Sun et al. [42,43] performed extracted urban land cover information
from Sentinel-1A SAR data and Sentinel-2 MSI based on Google Earth Engine. Iannelli and
Gamba [44] applied the Urban Extractor (UEXT) algorithm to detect the urban extraction of
Rio de Janeiro and Beijing, showing the results using Sentinel-1 and Sentinel-2. The analysis
carried out shows that much progress has been made to analyze land cover changes, and
no algorithm can be considered suitable for all change detection applications.

This research aims to develop an innovative methodology for monitoring land con-
sumption on a yearly basis, in support of the monitoring land consumption activities
performed by ISPRA-SNPA [45] for the whole Italian territory, as institutionally mandated
by Act 132/2016 (establishment SNPA, National System for the Protection of the Envi-
ronment). The current methodology includes a photointerpretation phase that requires
significant efforts in terms of time and human resources for the definition and verification
of areas subjected to land cover changes.

The study of a surface as extensive as Italy, through remote sensing data, leads to a
number of issues that need to be addressed: inhomogeneity of the territory with different
morphologic, vegetation and climatic characteristics; the greater spectral difference that
occurs over large areas and the complexity of landscape, as well as the enormous amount
of data to be managed. Furthermore, the design requirements defined by ISPRA impose an
annual update frequency and the achievement of very high accuracy values (the current
cartography reaches 99.7% global accuracy [45]).

In order to overcome these issues, this study developed a hybrid method that allows
flexibility, exploits the advantages offered by the GEE platform—able to handle a huge
amount of data—and it is unsupervised; therefore, it does not need training samples.
A decision rules process was developed, in which each rule aimed to extract specific

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar
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information from the surface according to the data used; the results are a series of masks
containing a part of urban cover.

In addition, Sentinel-1 and Sentinel-2 (multispectral optical and SAR data) were both
investigated to overcome the difficulties represented by multispectral data due to the
similarity of the spectral signature of some features, through Sentinel 1 and, at the same
time, to understand the potential of the integration of these data in the urban field. There
are several studies that have proved an increase in accuracy using fusion methods for
land cover classification and change detection analysis [40,46]; however, not many studies
have highlighted the capability of the combined use of Sentinels 1 and 2 to extract built
up changes.

2. Materials and Methods

The methodology presented in this study uses Sentinel-1 GRD and Sentinel-2 images
to automatically detect land cover changes caused by land consumption.

The methodology is based on the following assumptions, as well as on the observation
of test areas and the literature:

1. Land consumption can follow the removal of vegetation cover, if present before the
change, and, therefore, causes a decrease in vegetation indices, such as NDVI.

2. Built-up areas, such as buildings, infrastructures, or even construction sites, are
characterized by high backscattering values, due to multiple reflections or the double-
bounce effect [47]. Therefore, land consumption can increase the backscatter if the
land cover is characterized by low or intermediate roughness, such as low-vegetation
and bare soils before changing.

3. Land consumption can be detected if at least one of the above assumptions is verified.

Based on these assumptions, a fully automatic workflow was developed (Figure 1)
using multitemporal acquisition of Sentinel-1 GRD and Sentienel-2 images, in order to
detect changes that occurred between 2018 and 2019 in the study area of Italy. Sentinel-1
imagery allows us to calculate the backscatter in the polarizations VV and VH, which are
influenced by several factors, such as the geometry, dielectric properties and roughness of
surfaces [48].

Figure 1. Overview of the classification methodology.

Sentinel-2 images allow us to evaluate spectral characteristics of land surface, related
to land cover materials. Previous studies, which monitored land consumption related to
the removal of vegetation based on the Normalized Difference Vegetation Index (NDVI),
were calculated from Sentinel-2 images [13].

NDVI is defined as follows:

NDVI =
(NIR − Red)
(NIR + Red)

(1)
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NIR is the reflectance in the near infrared band, and Red is the reflectance of the red
band. NDVI ranges from −1 (abiotic cover) to +1 (totally vegetated areas). In general,
mixed areas of vegetation cover and non-vegetated cover have an NDVI range between 0.1
and 0.9.

Decision rules are defined to estimate changes at a pixel size of 10 m, setting fixed
threshold values on composites (e.g., median, maximum and differences) of multitemporal
images. This method does not require a training area. A Digital Terrain Model (DTM)
was used to calculate the slope and refine the calculation to avoid errors related to the
morphology of mountain areas, where identifying changes is harder due to shadows.

It is worth noting that these classifications of changes are intended to be used to
support the ISPRA monitoring of land consumption, in order to reduce the time of pho-
tointerpretation as well as reducing the area to be manually analyzed.

As the acquisition orbit influences the angle of view of Sentinel-1 images, the ascending
and descending orbits are considered separately, to preserve the information related to
object configuration and orientation on the ground.

The backscatter of VH polarization can partially improve the detection of low vegetation
or crop [49], while the VV polarization can be more sensitive to soil variations [50], although
these considerations should be further investigated for buildings and infrastructures.

The methodology was developed on Google Earth Engine (Javascript language pro-
gram). The same methodology was applied using the QGIS Semi-Automatic Classification
Plugin in a DIAS environment (ONDA https://www.onda-dias.eu, accessed on 4 March
2021), in order to test the classification in an environment different from Google Earth
Engine. The DIAS environment allows us to directly access the Copernicus imagery archive
(European Commission, 2018), avoiding downloading images and providing a server for
cloud computing (i.e., 16 Cores 2.3 GHz and 60 GB of RAM). This DIAS experimenta-
tion was in the framework of the Habitat Mapping project (by the Italian Institute for
Environmental Protection and Research and the Italian Space Agency).

The output classifications were validated through the photointerpretation of very
high-resolution images that allowed us to identify real changes.

2.1. Images Preprocessing

Using Sentinel-1 GRD and Sentinel-2 images requires a few preprocessing steps in
order to obtain the backscatter values and reflectance values. In addition, it is worth
noticing that Sentinel-1 GRD and Sentinel-2 grids are not aligned and have different spatial
resolutions. Sentinel-1 data were resampled to a spatial resolution of 10 m and aligned to
the Sentinel-2 grid to use both images in the same workflow. WGS 84 UTM coordinates
were used.

2.1.1. Sentinel-1

Google Earth Engine provides Sentinel-1 GRD images already converted to backscatter
values, following the steps described on the website (https://developers.google.com/earth-
engine/sentinel1, accessed on 15 February 2021), which are as follows:

• Application of orbit file;
• Removal of GRD border noise (low intensity and invalid data);
• Thermal noise removal to reduce discontinuities between sub-swaths;
• Backscatter intensity calculation using radiometric calibration;
• Terrain correction (orthorectification using the SRTM 30-meter DEM);
• Conversion of backscatter coefficient to dB.

In the DIAS testing, the same methodology was applied to obtain backscatter values
from Sentinel-1 GRD images.

2.1.2. Sentinel-2

Sentinel-2 level L1C images were used for 2018 and 2019, as the Google Earth Engine
L2A image archive was not complete at the time of the research. A cloud mask was applied

https://www.onda-dias.eu
https://developers.google.com/earth-engine/sentinel1
https://developers.google.com/earth-engine/sentinel1
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to the images with a simple algorithm described on the Google Earth Engine website (https:
//developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2, accessed on
4 March 2021). These cloud mask products generally underestimate clouds [51].

Furthermore, the atmospheric disturbance affecting L1C pixels can increase the uncer-
tainty of spectral signatures, so thresholds were selected trying to avoid omission errors in
favor of commission errors.

2.2. Detection of Changes Caused by Land Consumption

This methodology of change detection involves the acquisition of multitemporal
Sentinel-1 GRD and Sentinel-2 images acquired in 2 years and already preprocessed ac-
cording to the previous paragraph, in 2018 and 2019. According to the assumptions of this
study related to land consumption changes, the following methods were used:

• Sentinel-2 images to calculate NDVI differences in the two years for changes involving
the removal of vegetation cover; Sentinel-1 GRD was also used to improve the detection.

• Sentinel-1 GRD to calculate differences in backscatters caused by buildings, infrastruc-
tures or construction sites.

For the sake of simplicity, these two methods are explained in two separate paragraphs,
even though the model is unique.

2.2.1. Land Consumption Related to the Removal of Vegetation

The identification of land consumption was conducted by ISPRA through photointer-
pretation. In order to produce the composites, the acquisition periods between 1st March
and 31st July (periods must be the same in the 2 years) were considered. In this period, in
Italy, vegetation is at its maximum vegetative growth, guaranteeing the distinction between
land consumption and bare soil [13]. In addition, the range is large enough to ensure the
availability of cloud-free images.

Since Sentinel-2 images are provided as granules (the minimum partition of the image
with size 100 × 100 km2), the steps in the workflow are intended to be performed for
each granule. Italy is covered by about 80 granules in the WGS 84 UTM 32 and UTM
33 coordinates.

Three experimental versions were developed and tested (called "approaches"), to as-
sess the benefit of different periods, conditions and thresholds, although the basic approach
is the same. In detail, two basic conditions were defined for the detection of changes
based on NDVI values, which were used in all three approaches alone or accompanied by
other rules:

- In the first approach, potential changes related to the application of only the two basic
conditions are identified for the period between 1st March and 31st July.

- In the second approach, a third condition is added, in order to filter commission errors
related to seasonal variation of vegetation cover in agricultural areas. The reference
period is still between 1st March and 31st July.

- The third approach applies the two basic conditions, varying the reference period to
evaluate how the amplitude of the reference period influences the identification of
changes. In particular, in addition to the period between 1st March and 31st July, the
period from 1st June to 31st December is considered.

The first two approaches are based on thresholds already tested in the
bibliography [13,52], while for the third approach, different thresholds were tested to
distinguish the most probable changes (relative to more restrictive NDVI values, called
“main range”) from less probable ones (relative to a less restrictive “additional range”
of NDVI).

The three approaches are detailed below.
The first approach considers that land consumption related to the removal of vegeta-

tion had NDVI difference values greater than 0 between the two years and lower NDVI

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
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values in the second year. Starting from these considerations, the following two conditions
were defined:

NDVI DIFFERENCE ≥ 0.2 (2)

And
MAXIMUM NDVI Year 2 < 0.5 (3)

The first condition (i.e., NDVI DIFFERENCE ≥ 0.2) implies a reduction in vegetation
cover, while the second condition (i.e., MAXIMUM NDVI Year 2 < 0.5) verifies the scarcity
of vegetation. The threshold values are conservative and derive from the literature and
empirical testing [13]. Pixels with NDVI values that meet these conditions have a probable
change in land cover caused by land consumption.

Sentinel-2 images were processed according to these steps:

1. First, the NDVI was calculated for every image;
2. The maximum NDVI value per pixel was calculated for each year, obtaining two

rasters (MAXIMUM NDVI rasters);
3. These 2 maximum NDVI rasters were used to calculate a raster of NDVI difference

between the 2 years (NDVI DIFFERENCE = MAXIMUM NDVI Year 1–MAXIMUM
NDVI Year 2);

4. Starting from the products of points 2 and 3, a binary mask was created where both
conditions are met.

The second approach (Figure 2), in addition to the two conditions defined in the
first one, uses Sentinel 1 data to identify agricultural areas. In fact, these areas can be
erroneously classified as land consumption due to their spectral behavior (e.g., fallow land
cultivated in the first year, and uncultivated in the second year).

Figure 2. Workflow of the methodology of land consumption related to vegetation removal with
arable land filter.

An ARABLE LAND filter was defined and tested to identify agricultural land to be
excluded from change detection rules as defined in the first approach.

In order to create this raster, Sentinel-1 images with polarization VH were used,
according to the following steps:

1. Four collections of Sentinel-1 VH images were distinguished by ascending and de-
scending orbit and by the 2 years of acquisition:

• Ascending year 1;
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• Descending year 1;
• Ascending year 2;
• Descending year 2.

The sum of ascending percentage and descending percentage allows us to consider
both as viewing geometries, which can cause shadowing and, therefore, affect backscatter
values [53]. The images for the 2 years were not used to estimate any difference but to
verify the same condition in both years; this could fail the detection of fallow land that
exhibits low backscatter values in 1 year only.

2. A raster was created for each of the four collections, indicating the number of times
the backscatter was <−20 dB for each pixel.

The −20dB value is conservative, as fallow land is characterized by backscatter values
lower than −11 dB [54]. This value entails the presence of commission errors (agricultural
areas with backscatter values higher than −20 dB), but limits the omission errors that
would occur, excluding land consumption associated with low backscatter values from
the masks.

Commission errors would be eliminated during the manual digitization of the changes,
while omission errors would not be considered during photointerpretation, as it focuses on
inspecting the masks of potential changes.

Four rasters were obtained:

• Ascending percentage year 1;
• Descending percentage year 1;
• Ascending percentage year 2;
• Descending percentage year 2.

A raster, ARABLE LAND, was calculated according to the following condition:

(Ascending Percentage Year 1 + Descending Percentage Year 1) > 30% (4)

And

(Ascending Percentage Year 2 + Descending Percentage Year 2) > 30% (5)

The ARABLE LAND layer is a binary raster whose pixels have a value of 1 if the above
conditions are verified; otherwise, the value equals 0.

The ARABLE LAND binary raster represents the areas that verified the condition
in 30% of observations (ascending and descending). The threshold was defined by trial
and error. These areas are excluded from the masks of potential change as they could be
agricultural areas.

It is worth noting that the scope of this ARABLE LAND layer is not classifying arable
land in general but detecting the portion of arable land that can be confused with land
consumption due to the temporary removal of vegetation.

In the second approach, ARABLE LAND, it is added to the two previous conditions:

NDVI DIFFERENCE between year 1 and year 2 ≥ 0.2 (6)

And
MAXIMUM NDVI Year 2 < 0.5 (7)

And
ARABLE LAND = 0 (8)

The third condition (i.e., ARABLE LAND = 0) has the purpose to exclude false changes
that occurred in arable land.

The third approach considers that the amplitude of the reference period influences
the identification of changes. Specifically, following the conditions defined above, it is
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not possible to identify the changes that occurred during the reference interval of the
second year as, if the period is particularly large, the omitted changes can be numerous.

If the change occurred between the start of year 1 (start date 1) and the start of year
2 (start date 2), these can be detected because the MAXIMUM NDVI Year 2 is lower than
Year 1 and the difference between the two MAXIMUM NDVI rasters is positive (Figure 3).

Figure 3. Scheme of change that occurred between start date 1 and start date 2 detected by the
methodology; the upper chart represents the NDVI values of a pixel at different acquisition times; the
lower chart represents the maximum NDVI value resulting from the acquisition periods of the 2 years.

If the change occurred after the start of year 2 (i.e., between March and June) (Figure 4), it is
not detected because, even if the NDVI values decrease during the second year, the MAXIMUM
NDVI year 2 is affected by the NDVI values before the change, and the difference between the
two MAXIMUM NDVI rasters is not sufficient. This change will be detected the following year
(e.g., comparing Year 2 and Year 3), because it happens between the start of year 2 and the start
of year 3, as illustrated in the previous example (Figure 3).

Figure 4. Scheme of change occurred after start date 2 that can be identified with the shift period.

The third approach aimed at detecting the changes that occurred between March (i.e.,
start date 2) and June (i.e., start date 2 shift) of year 2, as illustrated in Figure 4. To this end,
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a second observation period was defined between 1st June and 31st December, called the
SHIFT PERIOD.

Moreover, a different set of NDVI thresholds were applied, in order to differentiate
possible changes from NDVI variations due to agricultural practices (Figure 5). In detail,
the "main range" refers to the maximum NDVI year 2 values lower than 0.3, while the
"additional range" refers to the maximum NDVI year 2 values between 0.3 and 0.4. This
distinction allows us to distinguish more probable changes (main range) from less probable
ones (additional range), attributing two distinct codes to the two types and increasing the
flexibility in the use of masks during photointerpretation. The thresholds were established
through trial and error.

Figure 5. Workflow of the methodology of land consumption related to vegetation removal with the
shift period.

The changes occurred between March and June of year 2 and were detected with the
following condition:

NDVI DIFFERENCE SHIFT ≥ 0.2 (9)

And
MAXIMUM NDVI Year 2 shift ≤ 0.3 (10)

The first condition (i.e., NDVI DIFFERENCE SHIFT ≥ 0.2) describes a change in NDVI
max linked to a possible change that occurred before 1st June of the second year. The
second condition (i.e., MAXIMUM NDVI Year 2 < 0.3) confirms the absence of vegetation
in the pixel after June 1st of the second year.

The definition of the shift period allows us to introduce a further condition in addition
to the two basic ones.

The changes in the standard period (i.e., occurring before the 1st March of year 2)
were identified according to the following conditions:

NDVI DIFFERENCE ≥ 0.2 (11)

And
MAXIMUM NDVI Year 2 ≤ 0.3 (12)
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And
MAXIMUM NDVI Year 2 shift < 0.4 (13)

The third condition considers that the reduction in NDVI associated with the appear-
ance of the change exists even after the reference period.

Possible changes related to the NDVI values of the additional range for the second year
(between 0.3 and 0.4, characterized by more uncertainties because occurred in partially
vegetated areas) were also analyzed, modifying the initial thresholds.

The identification of changes occurred between March and June of year 2 relating to
the additional range of NDVI, takes place through the following conditions:

NDVI DIFFERENCE SHIFT ≥ 0.2 (14)

And
MAXIMUM NDVI Year 2 shift ≤ 0.4. (15)

Changes in the standard period (i.e., occurring before the 1st March of year 2) relating
to the additional range of NDVI were identified according to the following conditions:

NDVI DIFFERENCE ≥ 0.2 (16)

And
0.3 < MAXIMUM NDVI Year 2 ≤ 0.4 (17)

And
MAXIMUM NDVI Year 2 shift < 0.4. (18)

2.2.2. Land Consumption Related to Buildings and Infrastructures

Land cover changes related to buildings and infrastructures can increase the backscat-
ter values, although these values are influenced by several factors, such as the height and ori-
entation of buildings. The developed workflow tries to exploit the availability of Sentinel-1
images in order to compare backscatter variations of two periods
(Figure 6). It is worth highlighting that roads or squares without buildings have gen-
erally lower backscatter values which are, therefore, not detected with this method. VV
polarization of Sentinel-1 images was used because building backscatter emerges from
the background more than VH polarization [55], and then, it could be more suitable for
building detection.

The calculations involve the following steps:

1. Four collections of Sentinel-1 VV images were distinguished by ascending and de-
scending orbit and the 2 years of acquisition.

2. For each collection, the median was calculated and converted the dB to natural values,
obtaining 4 rasters:

• ASCENDING MEAN year 1;
• DESCENDING MEAN year 1;
• ASCENDING MEAN year 2;
• DESCENDING MEAN year 2.

The differences between the median values of the two years were calculated for the
ascending and the descending orbit:

ASCENDING MEDIAN DIFFERENCE = ASCENDING MEDIAN Year 2–ASCENDING
MEDIAN Year 1

DESCENDING MEDIAN DIFFERENCE = DESCENDING MEDIAN Year 2–DESCENDING
MEDIAN Year 1

Difference values greater than 0 mean that backscatter values increased during this
period.
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3. Slope in degrees was calculated from the SRTM DEM (Shuttle Radar Topography Mis-
sion) Version 4 [56], in order to exclude areas whose backscatter values are influenced
by high slope.

The following conditions were evaluated to produce the map of land consumption
related to buildings and infrastructures:

ASCENDING MEDIAN DIFFERENCE ≥ 0.1 (19)

And
ASCENDING MEDIAN Year 1 < -9 DB (20)

And
DESCENDING MEDIAN DIFFERENCE ≥ 0.1 (21)

And
DESCENDING MEDIAN Year 1 < -9 DB (22)

And
SLOPE < 20 (23)

And
MAXIMUM NDVI Year 2 < 0.5 (24)

1 

 

 

Figure 6. Workflow of the methodology of land consumption related to buildings and infrastructures.

The threshold values 0.1 and −9 dB were evaluated as optimal values to distinguish
real changes after several trial and errors. The concurrent conditions for ascending and
descending orbits aim at excluding a partial increase in backscatter values related to
variations in vegetation and the particular geometry of objects on the ground. The condition
ASCENDING (DESCENDING) MEDIAN DIFFERENCE ≥ 0.1 allows us to identify pixels
where the construction of a new building caused significant variations in backscatter, while
the condition ASCENDING (DESCENDING) MEDIAN Year 1 <−9 dB excludes areas that
were already built during the first year (therefore, having high backscatter values), such as
buildings under construction or restoration.
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This could potentially exclude land consumption over forested areas (characterized
by high backscatter values), yet these changes should be detected in the methodology
described in the previous paragraph considering the NDVI difference.

In addition, areas with slope values greater than 20 degrees were excluded from the
detection because usually flat land is urbanized, and backscatter values are negatively
affected by high slope.

The last condition (MAXIMUM NDVI Year 2 < 0.5) uses the NDVI calculation from
Sentinel-2 described in the previous paragraph, aiming at excluding vegetated pixels that
had a backscatter increase from the classification, for instance, due to forest growth.

The changes derived with this method (Figure 7) were, therefore, combined with those
identified in the previous paragraph using Sentinel-2, producing three maps (one for each
approach) of possible changes related to land consumption.

Figure 7. Land consumption example related to buildings and infrastructures. Images (a) and
(b) show the Sentinel-2 image for 2018 and 2019; image (c) reports the potential change identified by
the mask; images (d–h) indicate the areas where the considered conditions are verified (green) and
not verified (grey). The information related to the slope is not shown, as the whole area illustrated
has a slope of <20%.

3. Results

The methodology was applied to the whole Italian territory (about 301,000 km2),
which covers about 80 Sentinel-2 tiles; the three approaches were performed in sequence as
indicated in the previous section.

The first approach yielded about 5 million possible change polygons covering about
3200 km2 (1.1% of the national territory). The second approach produced far fewer polygons
of possible change, about 1 million polygons extending for 200 km2 (0.1% of the national
territory). The third approach led to about 13 million polygons, involving 7300 km2 (2.4%
of the national territory), although many of the changes are related to the additional NDVI
range, especially in Southern Italy (blue area in Figure 8).



Remote Sens. 2021, 13, 1586 15 of 26

Figure 8. Raster of the possible land consumption produced by the third approach.

As expected, the addition of the condition on arable land led to a strong reduction in
possible change surface detected. Whilst the timeframe extension, with the additional ob-
servation period (shift period) caused, on the other hand, a massive increase in the number
and in the extension of detected changes. Nevertheless, this additional period allowed for
the detection of even large changes that were not detected by the other approaches.

Comparison with the Real Changes Photointerpreted by ISPRA-SNPA

The three approaches results were compared to the land consumption map produced
by ISPRA-SNPA for 2019. About 33,000 real changes were classified by ISPRA-SNPA by
photointerpretation (Figure 9), covering about 57 km2 of land consumed between 2018 and
2019 [57]. It should be noted that the photointerpretation was performed for the whole
Italian territory, in order to classify all the real changes and assess errors, for each approach,
due to the variability of geographical conditions.

The correspondence between real and potential changes was assessed both quanti-
tatively and qualitatively. The assessment was also carried out at the pixel level, since
the purpose of the methodology is to highlight the presence of potential change to the
photointerpreter, which is in charge of outlining geometries (Figure 10).
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Figure 9. Land consumption changes (2018–2019) monitored by ISPRA-SNPA.

Figure 10. Example of change photointerpreted by ISPRA-SNPA and the change detected with
the developed methodology. (a) Copernicus Sentinel-2 image (2018) before the land consumption
highlighted with blue contour; (b) Copernicus Sentinel-2 image (2019) after the land consumption.
(c) The area of potential changes identified with the third approach (yellow) is compared with the
photointerpreted polygon (blue).

The accuracies of three detection approaches when compared to interpreted changes
are shown in Table 2. The highest overall accuracy was achieved in the third approach
(59.8% of real changes detected), followed the first (50.7%), while the worst performance
was obtained by the second (31%).
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Table 2. Count of real changes identified by at least one pixel.

Approach Undetected
Changes

Detected
Changes Total Percentage Of

Detection

First 16245 16702 32947 50.7
Second 22742 10205 32947 31.0
Third 13257 19690 32947 59.8

Filtering changes by their extension, considering only those above a threshold of
100 m2 (i.e., one pixel), the first approach detection improved, detecting 58.9% of changes
(Table 3). In the same way, the second approach resulted in 37.6% of changes detected. The
highest percentage of detection was provided by the third approach (i.e., 70.4%). Therefore,
as can be seen from the comparison between Tables 2 and 3, the exclusion of single isolated
pixels can lead to an improvement, justified by mixed pixel abundance, which is common,
especially in coarse spatial resolution data. Single pixel omission, however, does not affect
the detection of large areas that are usually highlighted by more than one pixel.

Table 3. Count of real changes with surface > 100 m2 identified by at least one pixel.

Approach Not Detected
Changes

Detected
Changes Total Percentage Of

Detection

First 10163 14572 24735 58.9
Second 15426 9309 24735 37.6
Third 7332 17403 24735 70.4

To better understand the relation between detected changes and change area, changes
were grouped in classes based on the area (i.e., ≤100 m2, between 100 and 500 m2, between
500 and 1000 m2, between 1000 and 1500 m2, between 1500 and 2000 m2, >2000 m2).
Table 4 illustrates the changes identified by the third approach. The number of changes
detected by the masks exceeds 90% for changes larger than 500 m2, reaching over 98% for
the largest changes. The resumed results are also good for small changes (i.e., between 1
and 5 pixels), which are detected at almost 85%.

Table 4. Count of real changes identified in the third approach, by at least one pixel, grouped by
class of area.

Class of Area Not Detected
Changes Detected Changes Percentage of

Detection

≤100 m2 11983 11304 48.5
between 100 m2 and 500 m2 1126 6236 84.7

between 500 m2 and 1000 m2 113 1205 91.4
between 1000 m2 and 1500 m2 22 420 95.0
between 1500 m2 and 2000 m2 3 188 98.4

>2000 m2 10 337 97.1

The omissions are mainly related to the smallest changes, which are less than one
pixel in size. This is partly due to the reflectance of the mixed pixels. The larger omissions
mainly concern photovoltaic fields, in which the NDVI does not reach the set thresholds.
The main causes can be intuitively identified in mixed cover (bare soil between panels) and
light-absorbing material behavior. Their detection is a further research direction proposal,
as they are an important source of land consumption, especially in areas with significant
irradiation values.

The third approach generated the largest number of changes and the largest surface to
be investigated, due to the greater presence of false positives. In this sense, the use of the
masks produced by the third approach requires the inspection of a 56% larger surface than
that detected with the first approach (7300 against 3200 km2).
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From the comparison between the interpreted changes (Figure 9) and the masks
obtained with the third approach (Figure 8), it can be seen that the false positives are
concentrated in Southern Italy.

In this regard, the introduction of the shift period made it possible to increase the
percentage of changes detected in the northern regions, but has introduced numerous false
changes, especially in the south of Italy. In fact, the use of two ranges of NDVI ("main
range" and "additional range") allows us to distinguish the less probable changes during
the photointerpretation process.

As illustrated in Figure 11, the NDVI method caused a false positive in agricultural
fields that were vegetated in the first year and permanently plowed in the second year,
resulting visually in exposing bare soil. Analogue issues were found with the method for
detecting land consumption related to buildings and infrastructures using SAR data, due
to the movement of large vehicles, such as trucks or buses, in parking lots.

Figure 11. Example of commission errors in the masks obtained by applying the third approach.
(a) Copernicus Sentinel-2 image (2018) before the land consumption; (b) Copernicus Sentinel-2 image
(2019) after the land consumption. (c) The area inside the blue polygon represents a true change
correctly detected, while the other red areas are commission errors of the mask.

However, the third approach is preferable, as it identifies most of the large changes,
keeping the area to be inspected at 2.4% of the total national surface.

4. Discussion

The methodology was developed as part of the land consumption monitoring con-
ducted by ISPRA for the whole Italian territory; therefore, the project requirements influ-
enced this methodology.

The update must ensure very high accuracy values, since the current National Land
Consumption Map has an overall accuracy of 99.7% [45]; therefore, it was conducted by
means of both manual inspection of the entire national territory and photointerpretation of
the changes.

The extent of the study area and in particular the required level of accuracy were a main
constraint in the development of a change detection methodology based on photointerpretation.

Many methodologies based on supervised classification, as machine learning methods,
allow excellent accuracy to be achieved, but they are still lower than the required values.
Furthermore, the application of these methodologies on a large scale requires a huge
number of training areas.

The proposed methodology is based on photointerpretation, identifying areas with
potential changes and thus reducing the extent of the area that must be inspected by the
photointerpreter. This method is, therefore, time-effective, as well as cost-effective, by
significantly reducing costs for the purchase of VHR images.

In this sense, a set of rules based on conservative thresholds was defined, in order to
favor limit omissions.
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The additional project requirement of the reference period conditioned the definition
of the thresholds. The updating of the data institutionally must be referred to a flexible
time period between March and July (e.g., in order to detect changes that occurred between
the nominal year and the previous one). It is worth highlighting that this flexible period
allows the unavailability of very high-resolution images (with a precise acquisition date)
during the photointerpretation of changes performed by ISPRA-SNPA to be overcome.

This period centered in May influenced several choices of the present methodology
due to the impact of seasonality on the vegetation and, therefore, on the spectral character-
istics of land before and after land consumption.

The first approach defines a series of basic conditions for the detection of land con-
sumption, allowing for the identification of 58.9% of real changes larger than a pixel.

The second approach adds to the conditions of the first approach a raster condition
based on Sentinel-1 data that tries to identify arable land. This was in order to exclude
the arable land from change detection and further reduce the photointerpretation area
to about 200 km2. Nevertheless, this condition also excluded several actual changes
(about 69% of real changes were omitted, equal to a decrease of 3000 km2 of possible
change area compared to the first approach) and did not respect the objective of avoiding
omission errors.

The third approach applied the same methodology of the first approach with the
addition of a shifted period starting from June, in order to also detect the changes that
occurred after the start of year 2. This additional period increased the area of possible
changes to about 7300 km2, but provided the highest detection of land consumption (59.8%
of the changes in the size of a pixel, 70.4% of those larger than one pixel and over 84% of
those larger than 500 m2). The omission errors are mainly related to single pixel changes,
which are difficult to detect due to the spectrally mixed pixel. Larger omissions are mainly
related to land consumption over areas with scarce vegetation and very low NDVI in year
1, and, therefore, with a very low NDVI difference with year 2.

The third approach provides more flexibility in the monitoring of land consumption,
also identifying changes between March and June and providing a code distinction of the
most probable changes.

The developed methodology is based on the assumptions about the impact of land
consumption on NDVI and backscatter values. The use of this methodology could be
adapted to other European countries with a climate similar to Italy, adapting the thresholds
and temporal ranges to local characteristics and vegetation phenology. In other countries
where the climate is particularly arid, the above assumptions would be not valid, and
therefore, the methodology would not be applicable, although this requires further studies.

The methodology is not designed to accurately detect the shape of changes but
to support photointerpretation in their identification. This approach derives from the
requirements imposed by ISPRA’s land consumption monitoring activity, in terms of
accuracy, updating the frequency and extension of the study area.

The main products that provide information related to land consumption have charac-
teristics and requirements different from the ISPRA’s product, which influence the adopted
methodology for both the creation of the data itself and for the identification and changes.

Copernicus products offer a mapping of the land cover, with specific classes for the
classification of land consumption, but they are updated with a much lower frequency than
the ISPRA’s data and offer lower levels of accuracy. In detail, CORINE Land Cover [58]
and Urban Atlas [59] are updated every six years through photointerpretation, while the
HRLs are updated every three years [60] through the use of complex calculation tools
and different types of data, many of which are not free and with resolutions higher than
Sentinel (such as RapidEye data).

Several classification products have been developed to map urban land on a global
scale, such as the Global Human Settlement Layer (GHSL) [61], the Global Urban Footprint
(GUF) [62] or the Global human-made Impervious Surface (GMIS) [63]. While these and
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other datasets provide essential information about urbanization, they do not allow the
monitoring of the phenomena, since they typically characterize it in specific points in time.

The developed methodology, while not allowing the direct mapping of land consump-
tion, guarantees a 97.6% reduction in the area to be photointerpreted. The simplicity of
calculation does not require the definition of training areas, compared to more refined
methods, such as machine learning supervised methods.

5. Conclusions

This study developed a methodology to automatically detect land consumption, in
order to ease and fasten the photointerpretation of actual changes in Italy that is performed
by ISPRA-SNPA. The methodology uses Sentinel-1 and Sentinel-2 images, provided freely
by Copernicus, acquired in two reference years to detect the land consumption that oc-
curred in 1 year. The methodology was applied during the period from March to July,
which was selected due to the ISPRA-SNPA institutional requirements.

The automatic workflow using decision trees and fixed threshold values allowed us to
detect the changes that occurred between 2018 and 2019 in Italy, with a spatial resolution
of 10 m. It is worth highlighting that the priority was to avoid omission errors, allowing
commission errors (false changes) that will be photointerpreted and excluded from actual
changes. The apparently large surface of possible changes (i.e., over 7000 km2) is about 2.3%
of the Italian surface (e.g., about 302,000 km2), therefore reducing the photointerpretation
effort to a very limited extent.

This methodology can substantially reduce the photointerpretation effort (focusing on
changes highlighted by the automatic classification), and can allow for the use of Sentinel-2
RGB composites avoiding the cost of commercial images. Nevertheless, the use of very
high-resolution images can improve the detection of small changes, especially considering
that pixel size changes are often omitted by the automatic classification.

In the future, the integration of object segmentation of very high-resolution images
could provide fully automatic mapping of changes, considering that this methodology
would require mainly the red and infrared bands for NDVI calculation. Moreover, further
research is required to overcome the omission errors of single pixel changes, especially
for assessing how NDVI threshold values could improve the results, especially for mixed
pixels. Finally, the purpose of reducing the extent of false positive changes will require
more research in developing a methodology for masking areas such as the arable land
affected by changes that are not related to land consumption.
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Appendix A

Table A1. Relevant definitions related to land cover, land use and land consumption.

Land Consumption (Land Take)

The replacement of a non-artificial land cover
to an artificial land cover, both permanent and
reversible [13], as explained below. Artificial

surfaces that have been changed by, or are
under the influence of, human activities

resulting in a land consumption process can be
sealed or non-sealed [13,64]. We refer to the

portion of territory undergoing this process as
land consumed.

Permanent Land Consumption (Soil Sealing)

The part of the space that is covered with
artificial constructions, such as a building, or

surfaces, such as a pavement. It includes
buildings, paved roads, railways, airports

(paved areas), ports (paved areas), other paved
or sealed surfaces, waste dumps and paved
greenhouses. It can be considered as Sealed

Artificial Surfaces and Constructions. As
defined in the Land Cover Component of the

Eagle Matrix class 1.1.1 [64].

Reversible Land Consumption

Any process where natural surface material
has been replaced by artificial material or

where natural material has been removed from,
forming a non-impervious and non-built-up

surface as stated in the Eagle class 1.1.2
Non-sealed Artificial Surface [64]. It includes

soil compaction; excavation; temporary
impervious coverage, e.g., unpaved roads,

construction sites, courtyards or sports fields;
permanent deposits of material; photovoltaic

fields; and quarries not yet restored.

Land Cover

The physical and biological cover of the Earth’s
surface, including artificial surfaces,

agricultural areas, forests, (semi)natural areas,
wetlands and water bodies. It is an abstraction

of reality as the Earth´s surface is populated
with landscape elements. [65]

Land Use

The territory characterized according to its
current and future planned functional

dimension or socioeconomic purpose (e.g.,
residential, industrial, commercial, agricultural,
forestry and recreational). Land Use is different
from Land Cover, dedicated to the description
of the surface of the Earth by its (bio)physical

characteristics [65].
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Table 2. Relevant initiatives in the framework of soil protection: the objectives they intend to achieve are indicated with the
target year.

Strategic Documents and
Policy Guidelines Year Soil Aspects Objectives and Targets Target Year

Thematic strategy on the
protection of soil [1] 2006

Prevent further degradation of soil,
preserve its functions and restore

degraded soil + integrate soil
protection into relevant EU policies.

Soil Directive N/A

Roadmap to a resource
efficient Europe (EU)

[15]
2011

Reduce soil erosion, increase soil
organic matter and promote

remedial work on
contaminated sites.

Achieve no net land take
by 2050.

2020
/2050

Soil Sealing Guidelines [16] 2012

Guidelines explicitly focus on
limiting, mitigating and

compensating for the effects of
soil sealing.

N/A

The Seventh Environment
Action Programme (7th

EAP) [17]
2013 EU policies help to achieve no net

land take by 2050.
Achieve no net land take by

2050. 2050

The 2030 Agenda for
Sustainable Development

and its 17 Sustainable
Development Goals

(SDGs), United Nations
[18]

2015

The agenda points to 17 Sustainable
Development Goals (SDGs), and 169

associated targets on the theme of
protection, conservation and
sustainable management of

natural resources.

Goal 15.3 "land
degradation neutrality"

Goal 11 “Make cities and human
settlements inclusive, safe, resilient

and sustainable “.

Target 15.3.1: by 2030, achieve a
land degradation-neutral world;

target 11.3.1: by 2030, the
increase in the population
should be aligned to the

expansion of built-up area;
target 11.7: by 2030 to “provide

universal access to safe,
inclusive and accessible, green

and public spaces...".

2030

The European Green Deal
[3] 2019

The European Green Deal is a
response to tackle climate change

growth and environmental
degradation and aims at a revision
of relevant legislative measures to
deliver on the increased climate

ambition, following the review of
land use and land use change and

forestry regulation.

EU biodiversity strategy [4] 2020

The strategy contains specific
actions to protect nature and reverse
the degradation of ecosystems and

aims to
prevent the loss of biodiversity and

ecosystem services in the EU by
2030; it includes positive

implications for a wide number of
soil threats and functions.

Legally protect a minimum of
30% of the EU’s land and (sea)

area; restore degraded
ecosystems by adopting

sustainable soil management
practices limiting urban sprawl

and greening urban and
peri-urban areas.

2030



Remote Sens. 2021, 13, 1586 23 of 26

Table 2. Cont.

Strategic Documents and
Policy Guidelines Year Soil Aspects Objectives and Targets Target Year

Healthy soils – new EU soil
strategy [2] 2020

Update of the current soil strategy to
address soil degradation (currently
under public consultation), protect

soil fertility, reduce erosion and
sealing, increase organic matter,

identify contaminated sites, restore
degraded soils.

Achieve land degradation
neutrality by 2030;

reduce the rate of land take,
urban sprawl and sealing to

achieve no net land take by 2050.

2030 and
2050

Caring for soil is caring
for life [19] 2020

Proposal to the European
Commission to reduce land

degradation, conserve and increase
soil organic carbon stocks, no net

soil sealing, re-use of urban soil for
urban development, reduce soil

pollution and enhance restoration,
prevent erosion, improve soil

structure, reduce the EU global
footprint on soils, increase soil

literacy in society across
Member States.

Target 1.1: 50% of degraded land
is restored;

Target 3.1: switch from 2.4% to
no net soil sealing; Target 3.2: the

current rate of soil re-use is
increased from current 13 to 50%
to help meet the EU target of no
net land take by 2050; Target 5.1:
stop erosion on 30–50% of land

with unsustainable
erosion rates.

2030

Farm to Fork Strategy [5] 2020

Accelerate our transition to a
sustainable food system that should

have a neutral or positive
environmental impact, help to

mitigate climate change, reverse the
loss of biodiversity; all actions will

contribute to improve
soil protection.

Ensuring that the food chain,
covering food production,

transport, distribution,
marketingand consumption

have a neutral or positive
environmental impact.

Land Degradation
Neutrality -Unccd [20] 2015 Halt the ongoing loss of healthy

land through degradation.

Reaching the state whereby the
amount and quality of land

resources necessary to support
ecosystem functions and services

remains stable or increases
within specified temporal and
spatial scales and ecosystems.

2030
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