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Abstract: The monitoring of forest phenology based on observations from near-surface sensors such
as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over
satellite sensors has recently gained significant attention in the field of remote sensing and vegetation
phenology. However, exploring different aspects of forest phenology based on observations from
these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains
a challenge. Accordingly, this research explores the potential of near-surface sensors to track the
temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS,
Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Veg-
etation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green
& Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The
regression analysis between time series of NDVI data from different sensors shows the high Pearson’s
correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and
significant differences in slope during green-up and senescence periods. SRS showed the most
distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the
canopy better than the other indices, with a well-defined start, end, and peak of the season, and was
most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least
correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated
against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS)
could be predicted with an accuracy of <3 days with GCC, while these metrics from VIgreen and
NDVI resulted in a slightly higher bias of (3–10) days. The observed agreement between UAVNDVI

vs. satelliteNDVI and PhenoCamGCC vs. satelliteGCC suggests that it is feasible to use PhenoCams
and UAVs for satellite data validation and upscaling. Thus, a combination of these near-surface
vegetation metrics is promising for a holistic understanding of vegetation phenology from canopy
perspective and could serve as a good foundation for analysing the interoperability of different
sensors for vegetation dynamics and change analysis.

Keywords: near-surface remote sensing; SRS; UAV; PhenoCam; MODIS; Sentinel-2; forest phenology;
seasonality; sensor comparison; NDVI; GCC

1. Introduction

Vegetation phenology describes the life cycle events that occur throughout the year
and has been identified as a way of studying ecosystem processes [1]. In particular, the
monitoring of phenology dynamics over the years at various ecological scales helps in
understanding how the plants are responding to climate change [2–4].

The study of phenology has a long history [5,6] and is founded in field observations
of phenological events (leaf shooting, flowering, leaf fall, etc.) that respond to internal
molecular mechanisms of plants driven by photoperiod, temperature and other factors [7].
Hence, systematic observations of these events provide important evidence of changes
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and trends in the climatic variables [8–10]. Traditionally, plant phenology relied on human
observations of these events made on a limited number of individual plant species, across
a small geographic extent [5,6]. Vegetation phenology has also been studied at a larger
scale using remote sensing [5,11]. The intermediate of these two platforms is ‘near-surface’
remote sensing of phenology. A specific remote sensor for this purpose is phenocameras
(also known as PhenoCams), which are digital cameras configured to capture time-lapses of
the environment, over years or even longer, and can provide a permanent and continuous
visual record of vegetation status within that environment [12]. They can be used to
monitor foliage and canopy changes, environmental conditions and, by means of spectral
indices, quantify phenology [5,12]. Other remote sensors can also monitor phenology, such
as multispectral ground sensors (Spectral Reflectance Sensor—SRS), Unmanned Aerial
Vehicles (UAVs) and satellites [12]. These are not designed specifically for phenology
monitoring, but can be used for that purpose. Particularly, satellites cover a larger area
than PhenoCams, providing insights of phenology at regional and global scales [13,14].

Near-surface remote sensing sensors collect data close to the ground to supplement
the satellite remote sensing data [15]. To detect the status of vegetation, the digital numbers
(DN) of the captured data are usually converted into spectral reflectance, quantifying
reflected radiation in different wavelength bands of the electromagnetic spectrum, typ-
ically red (R), green (G), blue (B) and near infrared (NIR). This reflectance is then used
to compute vegetation indices (VIs) [16]. UAVs can carry multispectral cameras that are
capable of generating orthomosaics, by means of photogrammetric techniques, that display
vegetation canopy from zenith positions. The reliability of derived vegetation indices from
consumer grade RGB (red, green, blue) and multispectral cameras mounted on UAV has
been demonstrated in some case studies [17,18]. Several studies have already shown the
enormous potential of UAV in monitoring the phenology dynamics in various tree species
across forest communities [2–4]. PhenoCams capture the vegetation information in RGB
bands in most of the cases, which is directly used to compute RGB VIs without converting
the DN values to reflectance. SRS [19] are used in fixed installations and measure incident
and reflected radiation from one or a few wavelength bands, as single signals, continuously
in time [20]. The measured incoming and reflected radiation signals are converted to
reflectance and used for calculation of VI products.

These near-surface platforms operate in different temporal and spatial scales and
point to the vegetation with different viewing angles, affecting the observations. For
instance, UAV cameras permit the imaging of large areas from above (nadir view), whereas
PhenoCams view smaller areas, and are usually oriented towards the horizon. Therefore,
UAVs represent the canopy and can see the understory of ecosystems (e.g., a forest), while
the PhenoCams capture the lateral view of ecosystems (i.e., viewing the protected tree
canopies vertically in a forest). Furthermore, SRS and PhenoCams present a much higher
temporal resolution (sub-hourly) than UAVs. This makes them more appropriate for
defining phenology temporal series.

Upscaling of phenology from field plots to regional and global scales can be achieved
by means of satellite remote sensing [21–23]. However, differences in spatial and temporal
scale as well as angles of observation between field and satellite sensors make upscaling
and interpretability difficult. Therefore, it is fortunate that recent years have seen an
increase in the availability of low-cost, high-quality sensor systems that can facilitate
the step from ground to satellite (i.e., UAVs and SRS). These new systems enhance the
possibility of expanding the understanding of ecological studies [12] and can be chosen
according to the user’s specific needs [24]. The inter-comparison and upscaling from
near-ground and satellite data is challenging for similar reasons to those among the cited
near-surface sensors, as satellites present different spatial and temporal resolutions and
the pre-processing is fairly different, as it involves atmospheric correction of large tiles.
Several studies have found good agreement between satellite-based remote sensing and
PhenoCams, based on different greenness indices [1,13,14,25]. However, to our knowledge,
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there is very little research comparing PhenoCam RGB-based vegetation indices to SRS,
UAV and satellite-based VIs, especially in the case of evergreen forests.

Some commonly used indices from near-surface remote sensing instruments include
the Normalized Difference Vegetation Indices (NDVI), Green Chromatic Coordinate (GCC),
and the Normalized Difference of Green and Red (VIgreen). The NDVI is a ratio of the dif-
ference between red and infrared portions of the electromagnetic spectrum and is a measure
of the state of plant health [16]. The GCC is a very common VI for PhenoCam studies [26,27]
developed as a measure of vegetation greenness to overall image brightness [28], while the
VIgreen uses the green band in place of near-infrared in NDVI formula [29] to mimic the
NDVI values. These VIs have been found to correlate with phenology parameters [30–32].
The indices have largely proved their relation to vegetation productivity, biomass and
phenology [14,18,33], and have also been used to estimate gross primary productivity of
some vegetation types [34]. Furthermore, they can show how the seasonal cycles of a
particular vegetation type influence carbon budgets associated with an ecosystem, or relate
how such cycles differ from individual species to landscapes [26].

Comparison of data and VIs derived from different satellite platforms is a frequently
studied topic [35–37]. These studies point to the challenge of sensor inter-comparison, as
even sensors with similar spatial resolution and band configuration are not the generating
same reflectance and VI values [36,38]. However, only a few studies have considered
comparison of near-surface sensors, and near-surface against satellite sensors. Not only do
the satellite-derived VI values differ from sensor to sensor, but these satellites also have
different footprints, especially when compared to the SRS. Therefore, the challenge lies in
how to make these comparable from the perspective of comparing time series of VIs from
different sensors.

In recent years, the end-to-end (i.e., user to product) development strategy of different
near-surface remote sensing systems have simplified the data processing and VI calculation,
hence offering end-users the best decisions of use. With a view to further exploring the
performance of such sensors building upon previous research, this study aims to test the
ability of each sensor for tracking all-year phenology patterns. The main objective of this
research is to explore the different aspects of vegetation phenology based on observations
of different near-surface and satellite sensors, and to experimentally test and compare
how consistent the time series of VIs obtained from different sensors are. Furthermore,
the comparison provides insights on the reliability of VIs calculated from each sensor, the
capability of each sensor to monitor seasonal dynamics, similarities and limitations of each
index and platforms and the causes of these. This research considered three near-surface
sensors (UAV, PhenoCam and SRS) and two satellite sensors of different spatial resolution
(MODIS and Sentinel-2).

2. Study Area

The study area (Figure 1) consists of around 900 ha of mixed coniferous forest of
spruce, pine and deciduous trees at Asa Forest Research Station [39], which is part of the
Swedish Infrastructure for Ecosystem Science (SITES) project. Asa is located 37 km north
of Växjö (57◦8′59” N, 14◦44′17” E). The study area is characterized by hemiboreal climate
with mean annual temperature of 6.4 ◦C. The terrain within the area has flat topography in
the south-eastern and western part, while the north-western part has a relatively elevated
area with an altitude of approximately 212–248 metres above mean sea level (Figure 1b).
The forest stand at Asa was planted in 2006 and it has been fertilized every second year
since 2016. The variation in tree growth (height, diameter), field vegetation dynamics and
phenology studies are routinely carried out. The area surveyed by the spectral sensors
(SRS, UAV and PhenoCam) is a coniferous forest composed by Norway spruce (Picea abies).
The forest is part of the Asa High Yield Experimental Forest, which addresses questions
regarding intensive forest management at landscape level, such as fertilization and water
quality, tree species introduction and their influence on flora and fauna.
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For this study, we used data captured by a Parrot Sequoia multispectral camera (Par-

rot Drone SAS, Paris, France) [41] mounted on a Solo 3DR UAV (3DR Robotics, California, 
USA) [42]. The UAV system (UAS) payload capability comprises a Global Navigation Sat-
ellite System (GNSS), an Inertial Motion System (IMU), an accelerometer, a compass, and 
the camera system. The sensor onboard UAV captured data from an area covering around 
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Figure 1. Map showing the location of Asa Research Station (a), Digital Surface Model (DSM) of the site (b), a sample
PhenoCam image (c) and a UAV Orthomosaic (d). PhenoCam and SRS sensors are installed on tower and the ellipse south
to tower refers to the ground projected SRS footprint.

3. Data
3.1. PhenoCam

The study used data from one facing south, mounted on a tower, at a height of 7.25 m
above ground level, pointing 45◦ down from the horizontal, which captures digital imagery
of the foreground canopy inside a field-of-view (FOV) of 60◦. The PhenoCam images were
acquired by a Mobotix 5 MP RGB camera. The camera captures a coloured three-layer R, G
and B images at hourly temporal resolution from 5 a.m. to 8 p.m. all year long. The images
for the year 2018 were downloaded from the SITES project server [40]. For this study, we
used only images between 10 a.m. and 2 p.m., to avoid low solar elevation.

3.2. Unmanned Aerial Vehicles (UAVs)

For this study, we used data captured by a Parrot Sequoia multispectral camera (Parrot
Drone SAS, Paris, France) [41] mounted on a Solo 3DR UAV (3DR Robotics, California,
USA) [42]. The UAV system (UAS) payload capability comprises a Global Navigation
Satellite System (GNSS), an Inertial Motion System (IMU), an accelerometer, a compass,
and the camera system. The sensor onboard UAV captured data from an area covering
around 10 hectares. Figure 2 illustrates the UAV platform and Parrot Sequoia sensor used
in the study.
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Figure 2. 3DR SOLO UAV and Parrot Sequoia multispectral sensor [41] (left) carried on the Solo 3DR quadcopter [42] (right).

The Parrot Sequoia camera is designed to acquire images in four spectral bands: green
(G), red (R), Red Edge (RE) and near-infrared (NIR), with wavelengths specified in Table 1.
The multispectral camera was installed under the drone facing the forest canopy. The
images were captured by 1.2 MP monochrome sensors at a bit depth of 16 bit in raw format
and later saved as .tif files.

Table 1. Spectral band information for the near-surface multispectral sensors (Parrot Sequoia onboard
UAV and Spectral Reflectance Sensors), satellite spectrometers (MODIS and Sentinel-2) and RGB
PhenoCam. Only the spectral bands which were used in the research are mentioned here.

Spectral Bands (nm)

Sensor Blue (B) Green (G) Red (R) Near-infrared
(NIR)

Parrot Sequoia - 550 ± 40 660 ± 40 790 ± 40

MODIS 469 ± 20 555 ± 20 645 ± 50 858.5 ± 35

Sentinel-2 490 ± 65 560 ± 35 665 ± 30 842 ± 115

SRS-NDVI - - 650 ± 10 810 ± 10

SRS-PRI - 531 ± 10, 570 ± 10 - -

PhenoCam 400–500 500–600 600–700 -
Note: B, G, R and NIR are defined by bands: B2, B3, B4, B8 for Sentinel-2, while B3, B4, B1, B2 for MODIS.
Spectral bands in case of PhenoCam is presented as ranges, while it is central wavelength and bandwidth for the
other sensors.

The UAV flight frequency for the study period was roughly one flight per month
from April to August 2018. The flights were not conducted in a fixed interval of time
mainly because of weather conditions. The UAV was programmed to fly at a height of
80 m above ground level with frontal and side overlap of 80%. Most of the flights were
conducted at midday (between 9 a.m. and 4 p.m.) on either clear days or evenly overcast
days. The UAV was pre-programmed to follow the waypoints that would cover up the
study area in two flights of approximately 10 min each. The camera and image settings
were kept identical for all flights, in auto mode (i.e., camera chooses shutter speed and ISO
value, while it has a fixed aperture) for exposure compensation. During the missions, the
incoming radiation was measured and recorded by the sunshine sensor mounted on top
of the UAV. The purpose of using the sunshine sensor was to normalize the images for
variations in incoming sunlight, and for calculation of reflectance.

Three Spectralon reflectance panels (Labsphere, North Sutton, NH, USA), often de-
fined as ground calibration targets (GCTs), and eight ground control points (GCPs) were
placed within the UAV survey’s coverage on all flight dates for the purpose of radiometric
calibration and georeferencing, respectively. Detailed information on all of the UAV flights
carried out during the study period is listed in Table 2.
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Table 2. Information on the UAV missions conducted during 2018 with corresponding number of images and weather
conditions. Note ‘*’represents one flight for which images were not processed due to large variation in irradiance data
during the flight.

No. Flight Date Flying Height (m) Flight Time
(Local Time) No. of Images Weather Conditions Status

1 2018-04-16 80 12:20 2233 Cloudy X

2 2018-04-25 80 10:30 2170 Cloudy X

3 2018-05-04 80 14:15 2088 Partly cloudy X

4 2018-05-15 80 13:00 2756 Cloudy X

5 2018-06-12 80 12:35 2716 Cloudy X

6 2018-06-26 80 09:45 2734 Mixed (Sunny, cloudy) *

7 2018-07-09 80 12:15 2772 Sunny X

8 2018-07-26 80 12:00 2736 Sunny X

9 2018-08-28 80 13:45 2780 Cloudy X

Data Source: data.fieldsites.se. All datasets have unique PID which are mentioned in Appendix A (Table A1).

3.3. Spectral Reflectance Sensors (SRS)

The SRS used for this study were two two-band Decagon radiometers designed to
measure the incident and reflected radiation in green, red and near-infrared (NIR) wave-
lengths suitable for the computation of NDVI (SRS-NDVI, hereafter) and photochemical
reflectance index (PRI) (SRS-PRI, hereafter). The SRS-NDVI system is comprised of a pair
of sensors: the SRS hemispherical, and the SRS field-stop lens sensor. The first type has a
hemispherical 180◦ FOV, and is installed looking up to measure incident radiation, whereas
the second type has a FOV confined to 36◦ for measuring downward reflected radiation
from the forest canopy.

The SRS are mounted on the same tower as the PhenoCam, at the same height of
7.25 m, above the canopy of the spruce forest. Upward and downward-looking sensors
measure the incident and reflected canopy radiance, respectively, simultaneously every
10 s, at a wavelength band specified in Table 1, with data aggregated to 10-min intervals.
The data have been obtained from the SITES data portal [43].

3.4. Earth Observation Satellite Data

A time series of MODIS NDVI global product MOD13Q1 V6 [44] was obtained over
the study area for the year 2018. This product, available as an image collection in Google
Earth Engine (GEE) [45], provided NDVI values on a per-pixel basis generated every
16 days at 250 m spatial resolution. In addition, for greenness change estimates from visible
bands, the MOD09A1 V6 [46] product, also available in GEE [47], was used, which provides
surface spectral reflectance of MODIS Terra bands 1–7 at 500 m resolution corrected for
atmospheric conditions.

In addition, from the GEE archive, a time series of surface reflectance in red and near-
Infrared bands were derived from Sentinel-2A (bands 4 and 8, respectively) [48], which
were used to compute NDVI at 10 metres spatial resolution. For the MODIS product, VI
values of a single pixel were extracted. The comparison of UAV and Sentinel-2A vegetation
indices with MODIS were based on a spatial average of all pixels that falls within ground
projected footprint of the MODIS pixel. For the case of Sentinel-2A comparison against SRS,
it was equivalent to the spatial average of all pixels within the ground projected footprint
of the SRS.

4. Methodology

Our workflow comprised four processing steps: (1) data collection, (2) data ex-
traction/processing, (3) data smoothing, and (4) phenophase transition dates estima-
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tion. Finally, an inter-comparison of smoothed time series information from all plat-
forms and evaluation of correlations between data types was carried out. The details
are described after the methodology chart (Figure 3). All the stated python script for
PhenoCam image processing and Google Earth Engine (GEE) codes for extracting re-
flectance and different VIs that were written as a part of this research are available in
https://github.com/shangharsha2929/ASA.git (accessed on 7 March 2021).

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 25 
 

 

4. Methodology 
Our workflow comprised four processing steps: (1) data collection, (2) data extrac-

tion/processing, (3) data smoothing, and (4) phenophase transition dates estimation. Fi-
nally, an inter-comparison of smoothed time series information from all platforms and 
evaluation of correlations between data types was carried out. The details are described 
after the methodology chart (Figure 3). All the stated python script for PhenoCam image 
processing and Google Earth Engine (GEE) codes for extracting reflectance and different 
VIs that were written as a part of this research are available in https://github.com/shang-
harsha2929/ASA.git (accessed on 7 March 2021). 

 
Figure 3. Graphical representation of the data processing methods (steps 1–4). T1, T2, T3 and T4 refers to time series of 
different VIs obtained from (1) UAV, (2) PhenoCam, (3) MODIS and Sentinel-2A, and (4) SRS, respectively. Time series 
from these platforms are then treated with Savitzky Golay filtering to remove residual irregular change in VIs, curve 
fitting, phenophase transition estimations and intercomparison following step 5. 

4.1. Phenocam Image Processing 
First, the PhenoCam images that appeared disoriented, very bright (i.e., affected by 

solar glare), foggy, blurred, or had stripes covering more than 90% area of the image were 
removed manually before processing the images. In addition, snow-covered images were 
also filtered out so that the VI values from those could be computed separately. All the 
images that passed these quality control filters were used to compute the time series of 
vegetation indices. As per the experiment conducted by [31], the images captured at dawn 

Figure 3. Graphical representation of the data processing methods (steps 1–4). T1, T2, T3 and T4 refers to time series of
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4.1. Phenocam Image Processing

First, the PhenoCam images that appeared disoriented, very bright (i.e., affected by
solar glare), foggy, blurred, or had stripes covering more than 90% area of the image were
removed manually before processing the images. In addition, snow-covered images were
also filtered out so that the VI values from those could be computed separately. All the
images that passed these quality control filters were used to compute the time series of
vegetation indices. As per the experiment conducted by [31], the images captured at dawn
and dusk experience low levels of diffuse sunlight, and are inclined to have lower VI
values, compared to those recorded at middle day. With this finding in mind, of all valid
images, only images between 10 a.m. to 3 p.m. (solar time) were used in the analysis.

Secondly, a rectangular region of interest (ROI) was defined within each digital image
representing a sample of the spruce forest, from which the time series of RGB Digital

https://github.com/shangharsha2929/ASA.git
https://github.com/shangharsha2929/ASA.git
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Number (DN) triplets were extracted. The ROI was constant for all images. An effort
was made to confirm that the time series was not affected by camera movements, which
would result in a different ROI. When camera movements were detected, these images
were processed separately by using a revised ROI that fit the same area of spruce forest.
Figure 4 depicts the ROI selected for the study.
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The DN values distributed across all the pixels in the corresponding ROI were ex-
tracted with a python code (involves use of OpenCV and NumPy module) that extracted
the mean DN values of RGB bands across the defined ROIs. Then, the extracted mean DN
values were fed into Equations (1) and (2) to compute GCC and VIgreen, respectively.

GCC =
DNG

(DNR + DNG + DNB)
, (1)

VIgreen =
(DNG − DNR)

(DNG + DNR)
, (2)

where DNR = mean red DN, DNG = mean green DN and DNB = mean blue DN for the
chosen ROI.

With the calculation of these indices, the impact of variations in scene illumination is
minimized [2,31,34,49].

For most of the applications, a very high temporal resolution (e.g., sub-hourly resolu-
tion, like in our study) seems unnecessary. This is because, in general, the vegetation colour
over such short period of time remains relatively constant. With this consideration in mind,
we preferred to calculate 3-day averages [49] of all the valid images for the vegetation
indices mentioned above.

4.2. UAV Image Processing

First, the sunshine sensor data from all UAV flights were retrieved from the images’
metadata and then plotted, to check the incoming light conditions for each single band (G,
R, RE and NIR).

The UAV flights that presented irregular and complex light variability during the
flight (Figure 5c) were discarded. The data that presented constant light, under sunny
(Figure 5a) or overcast sky (Figure 5b), were further processed. The information regarding
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the flights that were accepted or rejected for further processing is listed in Table 2. Based
on this information, UAV data were characterized in three ways: (1) consistent sunny
incoming light, (2) consistent cloudy incoming light, with slight variation, and (3) complex
incoming light recorded during the mission. The three different cases are depicted as a, b
and c in Figure 5, respectively.
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After categorizing the flights, the individual images of each flight data were subjected
to exposure calibration, vignetting correction and irradiance normalization. These correc-
tions were carried out in accordance with a recently developed methodology [50]. To adjust
for different exposure settings of images, exposure calibration according to Equation (3)
provided by Parrot Sequoia was performed.

Lp = f 2 DN − B
Aεγ + C

, (3)

where Lp is pseudo-radiance defined in an arbitrary unit common to all Sequoia cameras,
the aperture f-number (f = 2.2 for Sequoia), the digital number of a pixel (DN), exposure
time (ε), ISO value (γ) and A, B, C are calibration coefficients provided in the image
metadata.

Vignetting is defined as a radial fall-off in pixel values that results in darker areas near
the edges of images [17]. The method for minimizing the vignetting effect was based on
the use of vignetting polynomial [51] derived from the EXIF/XMP metadata of the Sequoia
images. The vignetting polynomial estimation as explained in [50] was based on finding a
correction factor for each pixel from a large number of images captured over a Lambertian
surface and these pixel-wise correction factors fitted by a polynomial.

Only flight data showing the consistent irradiance throughout the mission (Figure 6a)
was processed for the exposure and vignetting correction. Similarly, the flight data that
showed variation in irradiance data that could be handled by normalizing for incoming
light condition from sunshine sensor data (Figure 6b) were normalized using a polynomial
trend of degree ‘n’ or spline trend, based on the nature of the data [50]. The best fit
polynomial or splines were selected based on visual inspection by manually fitting to
the data. The degree of polynomial was chosen in such a way that it fit the irradiance
data with coherence at the start and end of each flight. This is because the GCT images
were captured only at the beginning and end of the mission, which were later used for
radiometric calibration of the derived orthophotos. The detailed process regarding the
exposure, vignetting and irradiance normalization are explained in [50].
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A significant number of pixels reached the top of the spectral range (saturation) in the
images of each flight, mostly in the G band and least in the NIR band. This problem is also
mentioned by [50,52]. The saturated pixels were generally over bright surfaces (i.e., rocks
or gravel soil) on the ground. As these saturated pixels influence the orthophotos, they
were masked out [50].
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All the flight images that had undergone the process of these corrections were there-
after imported into Photoscan 1.4.2 (Agisoft, St. Petersburg, Russia), a photogrammetry
software package for image orthorectification (Table 3).

Table 3. Main parameters used in Agisoft Photoscan 1.4.2. under different steps of image processing
to create orthophotos from each set of flight data.

Steps Parameters

Align Photos Accuracy: High; Pair selection: Ground control; Point limit: 40,000;
Constrain features by mask: No.

Build Dense Point Cloud Quality: High; Depth filtering: Aggressive; Reuse depth maps: No.

Build DEM Source data: Dense point cloud; Interpolation: Enabled.

Build Orthophoto Surface: DEM data; Blending mode: Mosaic(default).

Five out of eight GCPs were used to produce a georeferenced orthomosaic with a nom-
inal spatial resolution of 0.07 m. The other three GCP markers were used as check points,
which resulted in a root mean squared error (RMSE) of 0.02 m. Only one orthomosaic
(dated 2018-07-17) was georeferenced in Photoscan and this was then used as a reference to
co-register the rest of the orthomosaics (eight in total) by using same GCP markers.

Finally, the orthomosaics were subjected to radiometric calibration using the empirical
line method suggested by [53]. The method relies on mean pixel values of three Spectralon
reflectance panels (GCTs) present in the images and their standard reflectance values. The
standard reflectance values were black (5%), dark grey (20%) and light grey (50%). The
standard reflectance value of these panels, together with the mean DN of the same panel
extracted from a set of images, were used to convert the orthomosaics into reflectance, by
establishing a linear relationship between the measurements.

The radiometrically corrected orthomosaics were then used to compute NDVI maps,
for all flights. NDVI, with a dynamic range of −1 to +1 [16] was calculated according to
Equation (4):

NDVI =
ρNIR − ρRED
ρNIR + ρRED

, (4)

where ρNIR = near-infrared reflectance, and ρRED = visual red reflectance. The values
around 0 represent bare soil and values of 1 refers to vigorous vegetation. The footprint of
the SRS was projected on top of the NDVI maps to extract the values of NDVI of the UAV
flights, for comparison with other sensors.

Figure 6 shows the spatial variation of NDVI over the study area. Low-lying areas in
the NE part of the region represent wet bare lands, which are characterized by intermediate
NDVI values. The patterns of trees are clearly visible and are characterized by high NDVI
values. It shows low NDVI values within the forest representing bare soil. Higher NDVI
values in open areas refer to the presence of low-lying vegetation such as bushes and ferns.
Lower values are in the SW, representing rock outcrop, and along a barren stream on the
eastern side.

4.3. Satellite Data Processing

An automated approach was developed to extract the NDVI values for the study area,
from the global MODIS NDVI product MOD13Q1 on the GEE platform (Figure 7). The
NDVI from Sentinel-2A was not directly available in GEE; therefore, the corresponding
band values required to compute NDVI (R and NIR reflectance from bands 4 and 8,
respectively) were used. In addition, all three RGB band values of MODIS (MOD09A1
product) and Sentinel-2A, for the common area similar to SRS were extracted and later
used to compute GCC and VIgreen by using GEE. These GCC and VIgreen values were
downloaded as .csv files, which were further used on to compute the seasonality events.
The cloudy pixels, in the case of Sentinel-2 images, were masked out using available cloud
mask band ‘QA60’ within GEE platform.
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4.4. Spectral Reflectance Sensor Data Processing

The irradiance data from SRS were calibrated using calibration factors of 0.250 (R)
and 0.260 (NIR) in the case of SRS-NDVI sensor, and 0.259 (570 nm) for the SRS-PRI sensor
following methodology in [54]. A subset of measurements was extracted from the full time
series, which covered exactly between the same hours as the period used for the PhenoCam
(9 a.m. to 3 p.m.). The calculation of SRS-NDVI was done on reflectance, calculated as a
ratio from incoming and reflected radiation, by dividing the downward-looking by the
upward-looking sensor data. The data was averaged in similar time aggregates as the
PhenoCam, i.e., 3-day averaged NDVI values. In addition to the NDVI, VIgreen was
computed in a similar fashion to the PhenoCam, combining the red band from the NDVI-
SRS and one of the green bands at 570 nm from the SRS-PRI sensor. The footprint of the
SRS was computed using the sensor characteristics (i.e., FOV: 36◦, height: 7.25 m, off-nadir
angle: 45◦) and the tower coordinates. The same footprint was used across all sensors to
extract time series of VI values for effective comparison.

4.5. Curve Fitting to Time Series Data

The original time series data obtained from different platforms (UAV, PhenoCam,
satellite and SRS) were processed with the Savitzky-Golay filter [4,55,56] to remove residual
irregular changes of VI values in the annual cycle. This process was performed using a
first-degree polynomial with a window size of 3 (in the case of UAV-derived NDVI time
series) and 5 (in case of the PhenoCam, satellite and SRS-based VI time series). Of all the
different curve fitting methods explained in [57], univariate spline interpolation was used
to fit the time series data [49] from all studied platforms, as it led to the best fit.

The phenology transition dates estimation was based on the fitted spline curves, which
were calculated based on the rate of change in curvature [4,57,58]. The rate of change in
curvature (k) is defined in Equation (4) as:

k =
f ′′ (t)(

1 + ( f ′(t))2
)3/2 (5)

where f ′(t) and, f ′′(t) are the first and second order derivatives, respectively of the
spline fit.

The phenological transition dates for the green-up phase were defined as the times at
which the rate of change in curvature exhibits local minima or maxima. These extremes
were used to extract start, end, and middle of the spring season (SOS, MOS, and EOS,
respectively), in a similar fashion to [11,57]. The local extreme values approximately
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correspond to 10, 50 and 90% of amplitude in the spring green-up phase of vegetation
growth [57].

4.6. Sensor Inter-Comparison

The time series data and phenophase transition dates from the studied platforms
were analysed at three levels: (1) graphical comparison of VI time series from the different
sensors, (2) regression analyses between the time series information, and (3) estimation
of the biases in number of days of the transition dates, compared to visual inspection
of PhenoCam photos. All three steps were applied to curve-fitted time series data. For
regression analysis, using root mean square deviation (RMSD) and Pearson’s correlation
coefficient were used.

NDVI was originally planned as the common VI to compare across the different
studies sensors, as it has been widely used in many remote sensing studies. However,
since NDVI cannot be calculated from PhenoCam data, as it does not have NIR band, GCC
was used instead to compare PhenoCam VIs against satellite derived indices. In the same
manner, GCC cannot be calculated for SRS, as a blue band is not available. Therefore,
VIgreen was used as a common VI to compare data from all platforms, as red and green
bands were available for all studied sensors. Since the different VI ranges are expressed in
different units and scale, they were normalized by using the min-max normalization [59],
as a means to match all the values to be in the range of 0–1, for graphical comparison of
VIs across different sensors, except for the comparison of NDVI from different platforms
(Section 5.2.). For NDVI, we used the original values (between −1 and 1) and not the
normalized ones. For the regression analysis, also original VI values were used.

The calculation of RMSD and correlation coefficients included fitted time series data
during the green-up, growing and senescence phases (DOY 70−300) across all systems.
This was done to avoid the snow season and focus on the vegetation growing season.

For estimating bias in transition dates, SOS was defined as the DOY when the green
sprouts started to be visible on the PhenoCam images, while EOS was defined as the day
when sprouts were fully developed and could no longer be differentiated from the rest of
the branches. In SOS, the sprouts are easily recognizable as they are bright green, while EOS
was defined when the sprouts get a darker colour, similar to the rest of the tree (Figure 8).
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Since the studied forest was evergreen and the changes in vegetation could not be
differentiated with a human eye, it was not possible to define the dates for other seasonality
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events (i.e., end of the growing season and beginning of the senescence phase). The
agreement between the phenophase dates from all sensors were compared against visual
inspection data in the PhenoCam imagery, and the phenophase dates calculated statistically,
expressed as bias in number of days.

5. Results
5.1. Spline Fit Time Series of VIs Derived from Different Sensors

The time series of different VIs fitted with the spline interpolation technique are
depicted in Figure 9. The snow period at the beginning and end of the year (blue rectangles
in the figure based on PhenoCam images) influenced the VI values in almost all of the sensor
types. The middle of the season peak is much more pronounced in GCC (Figure 9a–c) and
VIgreen (Figure 9d–f), with well-defined seasonal start, peak, and end, and similar in shape,
in general, across different sensors. The exception is VIgreen for SRS (Figure 9g), which
does not show a clear peak in the middle of the growing season, nor pronounced slopes
at the beginning and end of it. The fitted curve for Sentinel-2 NDVI (Figure 9i) is flatter
compared to VIgreen and GCC, with less pronounced slopes at the beginning and end of
the growing season. Nevertheless, as per VIgreen and GCC, the shape of NDVI is similar
across sensors. UAV-based VI values show the spline fit only during the middle part of
growing season as the flights were conducted only during that period (Figure 9k).
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Figure 9. Time series and corresponding spline fit of normalized values of (a) PhenoCam-GCC, (b) MODIS-GCC,
(c) Sentinel-2-GCC, (d) PhenoCam-VIgreen, (e) MODIS-VIgreen, (f) Sentinel-2-VIgreen, (g) SRS-VIgreen, (h) MODIS-
NDVI, (i) Sentinel-2-NDVI, (j) SRS-NDVI, (k) UAV-VIgreen, and (l) UAV-NDVI. Grey circles represent the normalized raw
VI values from respective sensors. Phenophase dates are marked by the vertical dashed lines (legend). The SOS and EOS
from visual assessments of PhenoCam images are also shown for comparison purposes.

In the following sections, we plot each of the VIs for the different sensors, for a more
detailed comparison.
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5.2. Comparison of NDVI Derived from Different Sensors

Figure 10 shows a plot of spline fitted curves from UAVNDVI, SRSNDVI, MODISNDVI
and Sentinel-2NDVI. The plot indicates that the four datasets follow the similar trend in
general throughout the growing season. However, they differ at the start and end of the
time series, as they show significant different slopes and offset. The discrepancy between
the SRSNDVI, Sentinel-2NDVI and MODISNDVI is most pronounced at the beginning of the
year until end of February, being the satelliteNDVI values lower than the SRSNDVI values,
and significantly lower for Sentinel-2NDVI also at the end of the season, from October to
December. These low NDVI values could be due to the snow cover, higher decline in
satellite data as they are viewing more snow-covered ground than the SRSNDVI, which
also show reflectance leaves and branches. Additionally, there can be a different light
scattering at the top of the atmosphere, observed by the satellites, than near the ground,
as observed by the SRSNDVI. After May, we observe a stabilization of NDVI values until
the end of October (please note that, for the UAVNDVI sensor, the time series ends in
September). There is, however, certain offset between NDVI values across sensors, ranging
from 0.8 (UAVNDVI) to 0.9 (SRSNDVI) at the peak of the season. As NDVI ranges from −1 to
1, this difference accounts for a 5% difference in reflectance between UAVNDVI and SRSNDVI.
The green-up phase (March to May) is depicted very differently across sensors. In this
time of the year, the differences cannot be attributed to snow. The slope for satellite data is
significantly higher than for SRSNDVI, and the offset rises to a 25% between MODISNDVI
(0.4) and SRSNDVI (0.9).

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 25 
 

 

Sentinel-2-NDVI, (j) SRS-NDVI, (k) UAV-VIgreen, and (l) UAV-NDVI. Grey circles represent the normalized raw VI val-
ues from respective sensors. Phenophase dates are marked by the vertical dashed lines (legend). The SOS and EOS from 
visual assessments of PhenoCam images are also shown for comparison purposes. 

5.2. Comparison of NDVI Derived from Different Sensors 
Figure 10 shows a plot of spline fitted curves from UAVNDVI, SRSNDVI, MODISNDVI and 

Sentinel-2NDVI. The plot indicates that the four datasets follow the similar trend in general 
throughout the growing season. However, they differ at the start and end of the time se-
ries, as they show significant different slopes and offset. The discrepancy between the 
SRSNDVI, Sentinel-2NDVI and MODISNDVI is most pronounced at the beginning of the year 
until end of February, being the satelliteNDVI values lower than the SRSNDVI values, and 
significantly lower for Sentinel-2NDVI also at the end of the season, from October to Decem-
ber. These low NDVI values could be due to the snow cover, higher decline in satellite 
data as they are viewing more snow-covered ground than the SRSNDVI, which also show 
reflectance leaves and branches. Additionally, there can be a different light scattering at 
the top of the atmosphere, observed by the satellites, than near the ground, as observed 
by the SRSNDVI. After May, we observe a stabilization of NDVI values until the end of 
October (please note that, for the UAVNDVI sensor, the time series ends in September). 
There is, however, certain offset between NDVI values across sensors, ranging from 0.8 
(UAVNDVI) to 0.9 (SRSNDVI) at the peak of the season. As NDVI ranges from −1 to 1, this 
difference accounts for a 5% difference in reflectance between UAVNDVI and SRSNDVI. The 
green-up phase (March to May) is depicted very differently across sensors. In this time of 
the year, the differences cannot be attributed to snow. The slope for satellite data is signif-
icantly higher than for SRSNDVI, and the offset rises to a 25% between MODISNDVI (0.4) and 
SRSNDVI (0.9). 

 

Figure 10. NDVI values comparing seasonal trends from Sentinel-2NDVI, MODISNDVI, SRSNDVI and UAVNDVI. All the 
NDVI values are computed for the ground projected footprint of the SRS (dashed red polygon in Figure 6). 

According to the Pearson’s regression analysis, the NDVI values from all sensors 
were positively correlated with each other (Table 4). The correlation between UAVNDVI 
and MODISNDVI was the lowest (r = 0.75; RMSD = 0.08), while the highest correlation was 
found between MODISNDVI and Sentinel-2NDVI (r = 0.92; RMSE = 0.08), indicating a better 
fit between the two satellite datasets. 

Figure 10. NDVI values comparing seasonal trends from Sentinel-2NDVI, MODISNDVI, SRSNDVI and UAVNDVI. All the
NDVI values are computed for the ground projected footprint of the SRS (dashed red polygon in Figure 6).

According to the Pearson’s regression analysis, the NDVI values from all sensors were
positively correlated with each other (Table 4). The correlation between UAVNDVI and
MODISNDVI was the lowest (r = 0.75; RMSD = 0.08), while the highest correlation was
found between MODISNDVI and Sentinel-2NDVI (r = 0.92; RMSE = 0.08), indicating a better
fit between the two satellite datasets.
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Table 4. Pearson’s correlation coefficient (r) and RMSD in NDVI units computed between UAVNDVI,
SRSNDVI, MODISNDVI and Sentinel-2NDVI. N is sample size (total number of time series data).

Sensor A vs. Sensor B Pearson’s Correlation Coefficient (r) RMSD N

UAV—SRS 0.84 * 0.14 42
UAV—MODIS 0.75 * 0.08 18

UAV—Sentinel-2 0.77 * 0.06 44
MODIS—Sentinel-2 0.92 ** 0.08 21

SRS—MODIS 0.81 ** 0.09 28
SRS—Sentinel-2 0.79 ** 0.07 61

** p < 0.001; * p < 0.05.

5.3. Comparison of GCC from Different Sensor Types

The PhenoCamGCC, MODISGCC and Sentinel-2GCC followed quite similar seasonal
pattern (Figure 11). The plot shows that the canopy GCC signal followed a similar green-up
response, while the GCC trajectories separate a little after reaching the peak of the growing
season (PhenoCamGCC vs. satelliteGCC) and during the senescence phase (MODISGCC
against the rest). Additionally, the peak of PhenoCamGCC is separated by a vertical offset of
around 0.2 units from the satelliteGCC (0.78–0.9). Moreover, the peak of the season is slightly
different for PhenoCamGCC (around June 1st) than for satelliteGCC (around 24 June).
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Figure 11. GCC values are presented to compare seasonal trends derived from PhenoCamGCC (green), MODISGCC (red),
and Sentinel-2GCC (blue) sensors. The y axis is a normalized scale from indices’ minimum to maximum values (to make it
easy for effective visualization and comparison with other VI profiles).

The Pearson’s correlation coefficients computed between the GCC values from these
sensors are presented in Table 5. PhenoCamGCC was in good agreement with MODISGCC
and Sentinel-2GCC as reflected in high positive correlation coefficients (0.93 and 0.97, re-
spectively) with approximately 10% deviation on an average.
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Table 5. Pearson’s correlation coefficient (r) and RMSD between PhenoCamGCC, MODISGCC and
Sentinel-2GCC. N is sample size.

Sensor A vs. Sensor B Pearson’s Correlation Coefficient (r) RMSD N

PhenoCam—MODIS 0.93 ** 0.11 42
PhenoCam—Sentinel-2 0.97 ** 0.09 88

MODIS—Sentinel-2 0.93 ** 0.10 43
** p < 0.001; * p < 0.05.

5.4. Comparison of VIgreen from Different Sensor Types

Plots of VIgreen for all the sensor types are shown in Figure 12. The time series
obtained from PhenoCamVIgreen, UAVVIgreen, MODISVIgreen, and Sentinel-2VIgreen appeared
to follow a similar seasonal pattern, compared to the one obtained from SRSVIgreen, where
the time series are flatter along the growing season. A detailed comparison shows that
for PhenoCamVIgreen the green-up phase starts later (DOY~ 125) and the slope is almost
vertical. Another significant difference is observed in UAVVIgreen, which peaks later than
PhenoCamVIgreen and satelliteVIgreen data, around DOY = 200 vs. DOY~150. Additionally,
the VIgreen values differ in the senescence phase; the slope is more pronounced and starts
earlier for PhenoCamVIgreen; it is a gradual slope for MODISVIgreen, and also a steep slope
and later slope for Sentinel-2VIgreen and UAVVIgreen.
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Figure 12. VIgreen values are presented to compare seasonal trends of greenness derived from PhenoCamVIgreen (green),
MODISVIgreen (red), Sentinel-2VIgreen (blue), SRSVIgreen (black), and UAVVIgreen (magenta) sensors. The y axis is a normalized
scale from indices’ minimum to maximum values (to make it easy for effective visualization and comparison with other
VI profiles).

The Pearson’s correlation coefficients computed for VIgreen from these sensors are
presented in Table 6. PhenoCamVIgreen, MODISVIgreen and Sentinel-2VIgreen were not so
strongly correlated (r = 0.63, 0.64 and 0.58, respectively) with SRSVIgreen, while the rest of
sensor types are moderately correlated among each other (r > 0.7).
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Table 6. Pearson’s correlation coefficient (r) and RMSD for PhenoCamVIgreen, MODISVIgreen, Sentinel-
2VIgreen, SRSVIgreen, and UAVVIgreen. N is sample size.

Sensor A vs. Sensor B Pearson’s Correlation Coefficient (r) RMSD N

PhenoCam—MODIS 0.83 ** 0.13 25
PhenoCam—Sentinel-2 0.79 ** 0.22 23

PhenoCam—SRS 0.63 ** 0.44 70
PhenoCam—UAV 0.85 * 0.58 8

MODIS—Sentinel-2 0.92 ** 0.14 41
MODIS—SRS 0.64 ** 0.35 37
MODIS—UAV 0.89 * 0.42 8

Sentinel-2—SRS 0.58 * 0.46 84
Sentinel-2—UAV 0.71 * 0.38 8

SRS—UAV 0.91 * 0.14 8
** p < 0.001; * p < 0.05.

5.5. Evaluating Phenophase Transition Dates from All Platforms

Phenological transition dates derived from visual inspection were compared with
those from spline fitted time VIs from the different platforms to detect the different phases
of the growing season in the studied spruce forest. The bias (in number of days) between the
reference start and end of season (based on visual inspection) compared to the phenophase
transition dates calculated from VIs, for all the platforms except the SRS, are shown in
Table 7 and Figure 9. SRS-based phenophase dates are not mentioned in the table and are
not considered in the comparison with phenophase from other platforms. Irregular patterns
of SRS-based VIs did not allow us to extract meaningful phenophase dates from the spline
fitted curves, due to the flat nature of the SRS-VI profiles and the method employed for
phenophase extraction (change in curvature).

Table 7. Estimates of Start of Spring (SOS), Middle of Spring (MOS), and End of Spring (EOS), in day of year, computed
using spline fitted time series of GCC, VIgreen, NDVI from all the platforms studied, and bias in number of days, with
respect to visual inspection. Note ‘*’ represents no UAV flight data, thereby no bias.

Seasonality Parameters (DOY) Visual Inspection
(DOY) Bias (days)

Vegetation Indices Sensor SOS MOS EOS SOS EOS ∆SOS ∆EOS

GCC
PhenoCam 93 132 147

90 150

3 −3

MODIS 96 123 153 6 3

Sentinel-2 93 129 153 3 3

VIgreen

PhenoCam 99 132 147 9 −3

MODIS 96 123 147 6 −3

Sentinel-2 96 123 147 6 −3

UAV * 130 154 * 4

NDVI
MODIS 98 129 158 8 8

Sentinel-2 80 129 150 −10 0

UAV * 124 154 * 4

According to the visual inspection of PhenoCam images, the Start of the Spring (SOS)
happened in DOY: 90 (31 March) and ended in DOY: 150 (30 May). Seasonality parameters,
mainly the SOS, MOS, and EOS extracted from all the platforms using the spline fitted
time series of GCC, VIgreen and NDVI were observed to be consistently similar, except
for the VIgreen from Sentinel-2, which showed very early SOS when compared to visual
inspection data. Visually assessed dates (SOS and EOS) compared against dates estimated
from other sensors showed a bias ranging from 3–10 days. The negative bias refers to
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earlier SOS and EOS. The maximum bias in SOS and EOS was observed in seasonality
extracted from MODIS and Sentinel derived NDVI values, which accounted for 8 days in
case of MODIS and 10 days in case of Sentinel-2. The minimum bias across all sensor types
were the ones extracted from GCC with bias ranging between 3 and 6 days, while in case
of VIgreen, the biases in SOS and EOS ranged between 3 and 9 days. No UAV flights were
conducted as early as the SOS; hence, it was not possible to compute the bias.

6. Discussion

Using remote sensors to study vegetation phenology at different scales opens up the
opportunity to gather information on different aspects of the life cycle of plants to better
understand the interaction between climate change and the biosphere. While different near-
surface and satellite sensors are available for vegetation phenology monitoring, few studies
provide sensor overview and inter-comparisons [1,4,24,25]. In this research, an effort has
been made to compare the performance of different remote sensors to characterize the
phenology of a forest. Using combined methods of UAV photogrammetry, phenocamera
data analysis, and multispectral sensor data analysis (SRS and satellite), we explored the
difference between phenological time series obtained from these platforms, by means of
spectral vegetation indices such as NDVI, VIgreen and GCC.

In this study, we observed the complementarity of the data from the studied re-
mote sensors for characterizing vegetation phenology in an evergreen coniferous forest.
PhenoCams and SRS offer the flexibility of defining regions of interest within very fine
spatio-temporal resolution images (hourly, tree level), and thus allows researchers to model
the phenology dynamics of the observed ecosystem, for either individual or a group of
species within the landscape. On the other hand, satellite observations cover large regions
for global observations [5], at coarser spatial (decametres to kilometres) and temporal
resolutions (days to months). UAVs have the benefit of a fine pixel size (nominally, a few
centimetres) and can be operated frequently and avoid atmospheric effects [4].

Our results show that there are similarities between VIs of the different studied sensors
in terms of shape of the phenology curves as indicated by Pearson’ correlation and RMSD
showing good agreement between the VIs across the studied sensors. However, there are
significant differences in slopes and offsets when comparing the time series of different
sensors, for a given VI. As expected, the time series of satellite data (i.e., MODIS and
Sentinel-2) are closely correlated and follow a similar time series shape. On the other hand,
depending on the VI (NDVI, VIgreen or GCC), we observed different behaviours among
sensors. For instance, we noted that UAVNDVI data show a similar pattern to MODISNDVI
and Sentinel-2NDVI during the summertime (April to August). Additionally, there is a good
agreement between PhenoCamGCC and satelliteGCC for the green-up season (April to May).
Regarding VIgreen, there is a relatively good match in determining the peak of the growing
season (DOY ~150) between PhenoCamVIgreen, MODISVIgreen and Sentinel-2VIgreen, while
the green-up slope of UAVVIgreen and satelliteVIgreen also follow similar patterns. However,
these are the only agreements between sensors; apart from these, all sensors differ in slopes
on the green-up and senescence, the maximum VI value at the peak of the season, and
the phenology transition dates (i.e., beginning, end and length of the growing season).
A remarkable difference was observed in the behaviour of SRS sensors; SRSNDVI and
SRSVIgreen show significantly higher values than any other sensors, and the length of the
growing season is notably longer than for the rest of sensors. Additionally, RMSD related
to SRS versus other sensors were generally large.

There are many reasons for the differences between the phenology time series, as
described by the different VIs and sensor types. Primarily, it must be noted that the visual
seasonal cycle is considerably weaker in evergreen forests than in deciduous forests, and
the low annual production of green buds in boreal coniferous forests, in combination with
the influence of snow, presents considerable difficulties for detecting the green-up and
senescence phases using remote sensing [60]. Further reasons for the different performances
of the sensors are the different spatial resolutions, different spectral band configurations,
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sensor calibrations, different viewing angles, or differences in data processing [14,24,25,32].
In addition, the spectral sensors have different spectral response functions, which could
cause systematic deviations in the time series of spectral VIs derived from them [24,61].
One important factor that might cause differences in the VIs is the viewing angle. In
particular, the PhenoCam points towards the horizon and views the canopies of the studied
trees (i.e., profile view), while the other studied sensors view from the zenith, viewing
the canopy of the trees vertically, including the understory vegetation, soil and snow,
through the forest clearings. The varying viewing angles of the studied sensors influence
the bidirectional reflectance distribution function (BRDF) [16]. This affects the spectral
and VI values captured by each sensor type [4]. Moreover, the sun-sensor target viewing
geometry is different between the near-ground sensors and the satellites. If we consider the
geometry of a typical spruce forest as a collection of conical trees, the shadows projected
by the trees influence the reflectance of the forest very differently [62,63], depending on
the position of the observer (the sensor). If the sensor and the sun are aligned, the sunlight
side of the forests is in the view field, whereas, if the observed target is between the sensor
and the sun, the shaded side of the forest is in the view field [62].

Another potential reason for the offset in VIs is the difference in the spectral range
and bandwidth of each sensor. The highest difference in bandwidth range is observed
in NIR and R (Sequoia: 40 nm; MODIS: 35 nm; Sentinel-2: 106 nm; SRS: 10 nm, for R
and NIR). Additionally, the central wavelengths of the NIR bands are different (Table 2).
Even though the central wavelengths of G and R bands were close in all sensors, there
are significant differences in bandwidth (Sequoia: 40/40 nm, MODIS: 20/50 nm, Sentinel-
2: 36/31 nm, and SRS: 10/10 nm for G and R, respectively). These differences affect
the spectral VI values (NDVI, GCC and VIgreen) among sensors. Another reason for
deviations in values of the VI time series could be the mixed reflectance characteristics
caused by the different spatial resolution of the observed sensors. In addition, the specific
days used for image compositing, observation time, and solar elevation angle might add
differences in the measured spectral values [64]. In this study, there was a huge difference
in spatial resolution of the sensors (MODIS: 250 m and 500 m, Sentinel-2: 10 m, UAV:
~8 cm, PhenoCam: ~17 m and SRS: ~8 m). With the increase or decrease of remote sensing
image scale, the observed targets within a pixel at the ground surface, as seen by each of
these sensors, are quite different. This will result in generation of mixed pixels [16] causing
different signal intensities of mixed objects, when compared with the signal intensity of
large-scale images. Despite the relative homogeneity of the analysed spruce forest, it is
likely that data from the satellite sensors are affected by mixed targets, e.g., understory
vegetation and soil. In addition, even though we selected the same observation time for
UAV, SRS and PhenoCam for inter-comparison, there was a different acquisition time for
the satellite sensors.

Despite the different performance of the selected VIs and studied platforms, we can
conclude that different sensors address different aspects of the vegetation. These platforms
are complementary when characterising phenology and they should be used for different
purposes. As observed in our study, we found strong correlation and similar curve fitting
between UAVNDVI and satelliteNDVI. Therefore, UAV can be a solid tool for upscaling from
near-ground observations to satellite data. Despite the differences in pixel size, Parrot
Sequoia has a similar band configuration as MODIS and Sentinel-2 [41]. That is not the
case for UAVVIgreen versus MODISVIgreen and Sentinel-2VIgreen, where the time series offset
and slopes are very different. Our results coincide with the findings of [59], where VIgreen
index from multiple cameras had the lowest correlation to MODIS in comparison to the
GCC. Despite VIgreen being a normalized index like NDVI, the NIR band seem to play an
important role in differentiating vegetation productivity [65,66]. We also observed a good
agreement between PhenoCamGCC and the satellitesGCC, especially in the green-up phase,
as was also observed by [57,67], despite GCC not using the NIR band, and both sensor
types having different viewing angles and pixel sizes [14]. This finding validates MODIS
and Sentinel-2 as useful sensors for characterizing vegetation phenology at the landscape
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scale. In summary, the results suggest that VIgreen is not a good proxy for phenology,
while NDVI and GCC are, as was previously observed by [2,4,13].

We observed strongly significant different time series pattern between NDVI and
GCC (Figure 9). NDVI saturates at a high value throughout the growing season, with a
short green-up and senescence phases. Additionally, for SRSNDVI there is not a significant
increase in NDVI between the green and the non-green seasons. On the contrary, GCC
presents a sharper peak in the middle of the growing season, with steep slopes for the
senescence phase, and especially for the green-up phase. Therefore, we hypothesize that
NDVI, through its sensitivity to red light absorption, is more sensitive to the overall albedo
change going from a snowy landscape to the fully developed green canopy. The sensitivity
of NDVI is well documented [60,68,69]. On the other hand, the GCC normalizes for albedo
and thereby amplifies the green signal of the canopy that relates more directly to the
phenology phases. These VIs relate to different aspects of the changing landscape during
spring. To note is that both VIs work well at both near-surface and landscape scales,
as shown by the agreement between UAVNDVI vs. satelliteNDVI and PhenoCamGCC vs.
satelliteGCC. Therefore, PhenoCams and UAVs have important and complementary roles
for satellite data validation and upscaling [26,30,57,59,70].

An important observation of this study is the differences in offset between platforms.
As mentioned, the shapes of the time series and correlations among VIs across sensors was
strong, especially in summer time. However, we found significant differences in the slopes
of the green-up and senescence phases, as well as significant offset in VI values, across
sensor types. This suggests that these remote sensors can be interchangeable for qualitative
characterization of vegetation phenology, especially of the growing season, but cannot
be used indistinctively for quantitative studies or accurate determination of phenology
phases [4,59,70]. Another result that supports this is that the statistical calculation of the
phenology transition dates (SOS, MOS and EOS) using fitted time series curves from VIs
shows certain biases with the real dates, captured in the PhenoCam images by visual
inspection. The bias in estimating SOS and EOS was around three days for GCC, while it
was up to 8–10 days for NDVI. For VIgreen, the bias ranged between 3 and 8 days. This
supports the conclusion that NDVI and VIgreen may be less appropriate estimators of
phenology phases than GCC [4,14,59].

A second conclusion of our study is that there is a large uncertainty and differences in
VI performance among sensors during the winter season, when there is snow on the ground
and trees. The presence of snow beneath the forest canopy is assumed to remain longer
compared to the canopy mostly during the spring and can be detected differently across
near-surface and satellite sensors [71]. This eventually affects SOS events derived from
time series obtained from different platforms [72]. While the VI time series are somehow
comparable when there is only vegetation present, the behaviour of the VIs is quite random
from sensor to sensor in the presence of snow. Complex light scattering and viewing
geometry, as well as the likelihood of snow on up-looking sensors, affect the different VI
signals observed for snow [16,73,74].

7. Conclusions

In the present paper, near-surface and satellite remote sensors at different scales were
inter-compared for the purpose of vegetation phenology characterization. We defined
phenology time series from multispectral ground sensors (SRS), PhenoCam, UAV, Sentinel-
2 and MODIS data, depicted by three different spectral vegetation indices (VIs), i.e., NDVI,
GCC and VIgreen. These platforms differ significantly in spatial and temporal resolutions,
viewing angles and observation scales. The aim of this study was therefore to explore
differences in the time series phenology curves from sensor to sensor and for different Vis,
and their performances in determining the transition dates in phenology along the year.

Based on the results, we conclude that the studied remote sensing platforms (SRS, UAV,
PhenoCam, MODIS and Sentinel-2) and VIs (NDVI, GCC and VIgreen) all produce useful
data for phenology research, although the platforms and indices serve different purposes.
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GCC is the recommended VI for characterizing phenology phases and transition dates,
whereas NDVI is suitable for detecting when the landscape changes from winter to summer
following snow-melt and canopy green-up. The tested satellite data were validated by the
near-surface remote sensors as useful tools for phenology and productivity studies, since
PhenoCamGCC and satelliteGCC correlate well, similarly to UAVNDVI and satelliteNDVI,
which show good agreement. This proves the potential for upscaling vegetation phenology
from near-surface to landscape level by using a combination of sensor systems.
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Appendix A

Table A1. Information on the UAV flights conducted during 2018 and their corresponding PIDs.

Flight No. Flight Date PID

1 2018-04-16 https://hdl.handle.net/11676.1/
vHDHIkMP83frEVsavd7QqNQ3

2 2018-04-25 https://hdl.handle.net/11676.1/xYcZA4p4
XGUxhE-EMd8uhivE

3 2018-05-04 https://hdl.handle.net/11676.1/mVvMKy2
o4mTDYanOrJXCQVEV

4 2018-05-15 https://hdl.handle.net/11676.1/aFii6
-AylmioVCsMTXvkRmrS

5 2018-06-12 https://hdl.handle.net/11676.1/QebfknH2
6SNDkLfbC-WKNT5p

6 2018-07-09 https://hdl.handle.net/11676.1/bV7xSxAy8
IiGGuDSK0Rr8qkD

7 2018-07-26 https://hdl.handle.net/11676.1/-lqVEgYcw0
adXDP_1eMAFi0a

8 2018-08-28 https://hdl.handle.net/11676.1/
ktAPxBBeTsXX0PJyE1tXi3MC
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