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Abstract: Deep learning models have strong abilities in learning features and they have been suc-
cessfully applied in hyperspectral images (HSIs). However, the training of most deep learning
models requires labeled samples and the collection of labeled samples are labor-consuming in HSI. In
addition, single-level features from a single layer are usually considered, which may result in the loss
of some important information. Using multiple networks to obtain multi-level features is a solution,
but at the cost of longer training time and computational complexity. To solve these problems, a
novel unsupervised multi-level feature extraction framework that is based on a three dimensional
convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE is stacked by
fully 3D convolutional layers and 3D deconvolutional layers, which allows for the spectral-spatial
information of targets to be mined simultaneously. Besides, the 3D-CAE can be trained in an un-
supervised way without involving labeled samples. Moreover, the multi-level features are directly
obtained from the encoded layers with different scales and resolutions, which is more efficient than
using multiple networks to get them. The effectiveness of the proposed multi-level features is verified
on two hyperspectral data sets. The results demonstrate that the proposed method has great promise
in unsupervised feature learning and can help us to further improve the hyperspectral classification
when compared with single-level features.

Keywords: feature extraction; hyperspectral image (HSI); convolutional autoencoder (CAE); unsu-
pervised learning; classification

1. Introduction

Hyperspectral images (HSIs) are collected by hyperspectral imaging sensors from the
visible to the near-infrared wavelength ranges, which contains hundreds of spectral bands.
HSIs are three-dimensional (3D) data providing not only spatial information, but also
spectral information. Benefiting from these characteristics, HSIs have been applied in many
fields and the ability to differentiate the interesting targets is improved when compared
with two-dimensional (2D) images [1–3]. Feature extraction is a significant step in realizing
these applications. Traditional manual feature extraction methods are time-consuming
and susceptible to external influences. In recent years, deep learning models have shown
great potential in mining data information automatically and flexibly, which has been
successfully applied in image processing [4–7], natural language processing [8–11], and
other fields [12–15]. Among the deep learning models, convolutional neural networks
(CNNs) have attracted widespread attention due to their unique network structure and
superior performance. Multi-dimensional data can be directly used as the input of CNN.
Some models based on three-dimensional convolutional neural network (3D-CNN) have
been designed to fully exploit the spectral-spatial features of HSIs and obtain good perfor-
mance [16–18]. However, the training procedure of CNN is supervised and the network is
optimized by minimizing the output and label error, which means that a large number of
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labeled samples are required to guarantee the network performance. Worse, the labeled
samples are limited in HSIs and the collection is costly [19,20].

Fortunately, there are still some models that do not require labels for training. Gen-
erative adversarial networks (GANs) are trained in an adversarial way [21,22]. GAN
mainly consist of two parts: a discriminator and generator. Generator captures the proba-
bility distributions of real data by mapping noise to synthetic data. Discriminator decides
whether the input data are real or synthetic. The generator tries to generate images to
fool the discriminator and the discriminator strives to distinguish the generated images.
Through this adversarial training, the network is continuously optimized without labeled
samples. Some of the unsupervised feature learning methods based on GAN have been
developed in [23–25]. In addition, the autoencoder (AE) learns a representation for input
data through an encoder and then decodes the representation to reconstruct data [26,27].
The AE can be optimized by minimizing the error between the reconstructed data and the
input data, and no labels are involved, which is a typical unsupervised model. Because of
these characteristics of AE, some unsupervised feature extraction methods that are based
on AE have been introduced in HSIs and achieved some results [28–31].

However, when models are developed for unsupervised feature extraction, features
from the single layer are usually considered, which will lose some useful information [32].
The image pyramid framework, which uses different-scale images to independently train
multiple networks to obtain multi-level features is one of the solution [33], but training
multiple networks increases the time and computational cost, which is unsatisfactory.
The encoder of a AE and the discriminator of a GAN are hierarchical structures from
bottom to top, and they are like feature pyramids. The bottom layer mainly corresponds to
information, such as edges, texture, and contours, and the top layer mainly corresponds to
semantic information. When considering the construction and training of AE is easier than
GAN, an unsupervised multi-level feature extraction method based on a three dimensional
convolutional autoencoder (3D-CAE) is proposed in this paper. The designed 3D-CAE
is composed of 3D convolutional layers and 3D deconvoluional layers, combining the
advantages of CNN and AE. The 3D-CAE can not only fully mine the spectral-spatial
information with 3D data as input, but it also does not require the participation of labeled
samples in the training process. In addition, multi-level features are directly obtained from
different encoded layers of the optimized encoder, which is more efficient when compared
to training multiple networks. The full use of the detail information at the bottom layer
and semantic information at the top layer can achieve complementary advantages and
improve the classification results.

The remainder of this paper is organized, as follows. Section 2 provides some basic
knowledge of convolution and deconvolution operations. Section 3 describes the details
of proposed multi-level features based on 3D-CAE. Section 4 provides an analysis and
comparison of experimental results. Section 5 concludes this paper.

2. Preliminaries
2.1. Convolution Operation

Convolution operations have been widely used in signal processing and image pro-
cessing. They apply convolution kernels to an input image to produce feature maps, which
shows great potential in feature extraction. There are three main ways of convolution
operation [34]: 2D convolution for a single-channel, 2D convolution for multi-channel, and
3D convolution, as shown in Figure 1.
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Figure 1. Convolution operation: (a) 2D convolution for a single-channel, (b) 2D convolution for
multi-channel, (c) 3D convolution.

directions (width, height, and depth of data) and each movement of the filter can obtain a
value by element-wise multiplication and addition. The output of 3D convolution is a 3D
data.

Taking 3D convolution as an example, when the input is I ∈ RI1×I2×I3 , the convolution
kernel is W ∈ RW1×W2×W3 , and the stride is 1× 1× 1, its output is defined as:

Ox,y,z =
W1−1

∑
p=0

W2−1

∑
q=0

W3−1

∑
r=0

Wp,q,r Ix+p,y+q,z+r + b (1)

where Ox,y,z means the output at position (x, y, z), Wp,q,r denotes the kernel value of
position (p, q, r) and b is the bias.

Each convolution kernel corresponds to an output (feature map), and different convo-
lution kernels can extract different features.

2.2. Deconvolution Operation

Transposed convolution, which is also called deconvolution, is like the reverse process
of convolution. Figure 2 shows an example of 2D convolution for a single-channel and its
corresponding 2D deconvolution.

Figure 2. 2D convolution and 2D deconvolution.

It can be observed, from Figure 2, that, during the convolution process without
padding, the output size is unusually less than the input size, while, in the deconvolution
process, the output size is often larger. Because of this property of deconvolution, it is

Figure 1. Convolution operation: (a) 2D convolution for a single-channel, (b) 2D convolution for
multi-channel, (c) 3D convolution.

It can be seen from Figure 1a that 2D convolution for a single-channel is performed on
2D input data, and a 2D output is obtained by sliding, which has great potential to retain
the spatial information of the data. We can find, from Figure 1b,c, that both 2D convolution
for multi-channel and 3D convolution can be performed on 3D data. However, since the
depth of the convolution filter in 2D convolution for multi-channel is the same as the depth
of the data, it can only move in two directions (width and height of the data) and obtain a
2D output. The 3D filter in 3D convolution can move in three directions (width, height,
and depth of data) and each movement of the filter can obtain a value by element-wise
multiplication and addition. The output of 3D convolution is a 3D data.

Taking 3D convolution as an example, when the input is I ∈ RI1×I2×I3 , the convolution
kernel is W ∈ RW1×W2×W3 , and the stride is 1× 1× 1, its output is defined as:

Ox,y,z =
W1−1

∑
p=0

W2−1

∑
q=0

W3−1

∑
r=0

Wp,q,r Ix+p,y+q,z+r + b (1)

where Ox,y,z means the output at position (x, y, z), Wp,q,r denotes the kernel value of
position (p, q, r) and b is the bias.

Each convolution kernel corresponds to an output (feature map), and different convo-
lution kernels can extract different features.

2.2. Deconvolution Operation

Transposed convolution, which is also called deconvolution, is like the reverse process
of convolution. Figure 2 shows an example of 2D convolution for a single-channel and its
corresponding 2D deconvolution.
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Figure 2. 2D convolution and 2D deconvolution.

It can be observed, from Figure 2, that, during the convolution process without
padding, the output size is unusually less than the input size, while, in the deconvolution
process, the output size is often larger. Because of this property of deconvolution, it is
often used when generating or reconstructing images. Similar to the convolution mode,
deconvolution operation also has three corresponding modes.

According to the characteristics of the target data, we can flexibly choose the con-
volution operation mode. For ordinary 2D data, 2D convolution for a single-channel is
good for learning features and the computational complexity is relatively low. For multi-
dimensional or high-dimensional data, the 3D convolution may have more potential in
mining features.

3. Proposed Framework for Multi-Level Feature Extraction

A traditional AE is usually composed of fully connected layers and it takes a one-
dimensional (1D) vector as input, which destroys the original spatial structure of the
data. This is because convolution-based operation has high flexibility in processing multi-
dimensional data and has a strong ability in feature extraction. A 3D-CAE with convolu-
tional layers instead of fully connected layers is designed in this paper, which makes the
input form of the network more variable. HSIs are 3D tensor data containing hundreds
of spectral bands, which can provide abundant spectral and spatial information. In order
to better preserve the spatial and spectral characteristics of data, the designed 3D-CAE is
established by fully 3D convolutional layers and 3D deconvolutional layers (see Figure 3),
where Conv-n and Deconv-n mean the nth convolutional layer and the nth deconvolutional
layer, respectively. For each pixel in HSIs, a 3D block centred on the current observed pixel
is used as the input of 3D-CAE to learn its invariant characteristics.

Figure 3. The proposed framework for multi-level feature extraction.

The proposed framework for multi-level feature learning is mainly divided into
three steps:
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Firstly, a 3D-CAE is constructed. The 3D-CAE is designed as a symmetrical structure
composed of 3D convolutional layers and deconvolutional layers, as shown in Figure 3.
The size of feature map is gradually reduced, and the number of convolution kernels is
gradually increased. The size of output is the same as the size of input.

Secondly, train and optimize the 3D-CAE network. The data are input into the 3D-CAE
and encoded as a low-dimensional representation through the encoder. The decoder is
responsible for recovering the original input data from the representation. The 3D-CAE is
constantly adjusted by minimizing the error between the output (Ox,y,z) and input (Ix,y,z),
as described in Equation (2). When the network can reconstruct the input data well, we
believe that the network has a strong ability to mine the useful information in the data.

Error =
1

I1 × I2 × I3

I1−1

∑
x=0

I2−1

∑
y=0

I3−1

∑
z=0

(Ix,y,z −Ox,y,z)2 (2)

Thirdly, obtain multi-level features from the optimized encoder. The hierarchical
structure of the encoder from the bottom to top provides us with features of different
levels and different scales. Max-pooling is introduced to reduce the feature dimension and
increase feature invariance [35]. The filter size of max-pooling is set to equal to the size of
the corresponding feature map. Through pooling operations, each layer can get a feature
vector containing different information. The final features are concatenated by these feature
vectors from multiple layers of encoder to make them contain more information and have
high scale robustness. It is worth noting that the proposed multi-level features from a
single network. When compared with training multiple networks to obtain multi-level
features, the proposed method is more effective and saves training time. Our expectation
is to make full use of the well-trained network to obtain as much information as possible,
and then help to improve the subsequent classification accuracy.

4. Experiments
4.1. Data Set Description

In order to compare and study the performance of the proposed feature extrac-
tion method, experiments are performed on two real-world data sets: Pavia University
(Figure 4a) and Indian Pines (Figure 4c). Pavia University data set is acquired by ROSIS
sensor, which contains 103 spectral bands. There are 610 × 340 pixels covering nine cate-
gories. The Indian Pines data set collected by AVIRIS sensor consists of 145 × 145 pixels
and 220 spectral bands after removing low-signal bands. This scene mainly contains agri-
culture and vegetation, and it is designated into sixteen classes. Figure 4b,d are the ground
truth of the two data sets, respectively, and each color corresponds to a land-cover class of
the current scene, where black represents the unlabeled area.

Figure 4. Data sets: (a) Composite image of Pavia University, (b) Ground truth of Pavia University,
(c) Composite image of Indian Pines, and (d) Ground truth of Indian Pines.
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4.2. Network Construction

The bands of the two data sets are reduced to 10 by principal component analysis
(PCA) in order to reduce the amount of calculation and improve the efficiency of network
training [36,37]. For each pixel in HSIs, a 3D block with a size of W×W× L centered on the
observed pixel is selected as the input to construct the network, where W ×W represents
the spatial neighborhood window around the observed pixel and L means the retained
principal components. The network structure is given in Table 1 while taking 13× 13× 10
as an example. When considering that the established 3D-CAE is symmetrical, only the
parameter settings of the encoder are listed.

Table 1. Network structures of encoder in proposed three dimensional convolutional autoencoder
(3D-CAE).

Layer Input Size Kernel Output

Conv-1 13× 13× 10× 1 5× 5× 4× 16 9× 9× 7× 16
Conv-2 9× 9× 7× 16 5× 5× 3× 32 5× 5× 5× 32
Conv-3 5× 5× 5× 32 3× 3× 3× 64 3× 3× 3× 64
Conv-4 3× 3× 3× 64 3× 3× 3× 128 1× 1× 1× 128

In Table 1, Conv-n represents the nth convolutional layer and kernel of k1× k2× k3× k4
means that there are k4 convolution kernels with kernel size being k1× k2× k3 in the current
layer. Besides, the stride is set to 1× 1× 1× 1 during the convolution operation. Rectified
linear unit (ReLU) is mainly used as an activation function to introduce nonlinear mapping
into the network, except for the last deconvolution layer with sigmoid. Adam is selected as
the optimizer to update the weights [38].

4.3. Comparison and Analysis of Experimental Results

Classification results based on different features (single-level features and multi-level
features) are considered for comparison to better evaluate the effectiveness of the multi-
level features. The better the classification result, the better the corresponding features. In
the experiment, support vector machine (SVM) is selected as the classifier. Overall accuracy
(OA), average accuracy (AA), and kappa coefficient (κ) are introduced to evaluate the
classification results. If there are N classes in a data set and the number of samples in the
n-th class is λn. Thus, the total number of samples is λ (λ = ∑N

n=1 λn). Cnn denotes the
number of test samples that actually belong to the n-th class, and are also classified into
n-th class. The OA, AA, and κ values can be defined as:

OA =
∑N

n=1 Cnn

λ
× 100% (3)

AA =
1
N

N

∑
n=1

Cnn

λn
× 100% (4)

κ =

∑N
n=1 Cnn

λ − ∑N
n=1 λnCnn

λ2

1− ∑N
n=1 λnCnn

λ2

× 100% (5)

For each class in data sets, approximately 10% is used to train the classifier and the
rest is used for testing. The details of the land-cover classes and the number of samples
in Pavia University and Indian Pines are listed in Tables 2 and 3, respectively, where each
color corresponds to a land-cover class.
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Table 2. Land-cover classes and color coding in Pavia University.

Class No. Class Total Training Testing
1 Asphalt 6631 663 5968
2 Meadows 18,649 1865 16,784
3 Gravel 2099 210 1889
4 Trees 3064 306 2758
5 Metal sheets 1345 135 1210
6 Bare soil 5029 503 4526
7 Bitumen 1330 133 1179
8 Bricks 3682 368 3314
9 Shadows 947 95 852

Table 3. Land-cover classes and color coding in Indian Pines.

Class No. Class Total Training Testing
1 Alfalfa 46 5 41
2 Corn-notil 1428 143 1285
3 Corn-min 830 83 747
4 Corn 237 24 213
5 Grass-pasture 483 48 435
6 Grass-trees 730 73 657
7 Grass-pasture-mowed 28 3 25
8 Hay-windrowed 478 48 430
9 Oats 20 2 18

10 Soybean-notill 972 97 875
11 Soybean-mintill 2455 25 2430
12 Soybean-clean 593 59 534
13 Wheat 205 21 184
14 Woods 1265 127 1138
15 Buildings-grass-trees 386 39 347
16 Stone-stel-towers 93 9 84

At first, single-level features and multi-level features from three encoded layers are
compared under the condition of input size being 13× 13× 10. When considering that the
number of encoded layers used to form multi-level features may also affect the classification
results, we will study the influence of this parameter on the results later. As shown in
Figure 5, the feature map size in top three layers (third, fourth, and fifth) of encoder is
5× 5× 5, 3× 3× 3, and 1× 1× 1, respectively. Therefore, the filter size of max-pooling in
the third and fourth layers is correspondingly set as 5× 5× 5 and 3× 3× 3. The feature
map size of the fifth layer is already 1× 1× 1, so we directly flatten the feature maps into
a 1D vector. After max-pooling operation, three feature vectors are obtained with sizes
of 1× 32, 1× 64, and 1× 128. The three feature vectors are concatenated to obtain a final
feature vector with the size being 1× 224. These features are fed into the classifier, and the
prediction results can be obtained, where Prediction I represents the predicted classification
results based on the final multi-level features with a size of 1× 224, Prediction II represents
the results of single-level features 1× 128 from the fifth layer, Prediction III corresponds
to the single-level features with a size of 1× 64, and Prediction IV corresponds to the
single-level features with a size of 1× 32.
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Figure 5. Different features from the encoder of 3D-CAE for classification.

Tables 4 and 5 list the classification results that are based on different features of Pavia
University and Indian Pines.

Table 4. The classification accuracy of Pavia University based on different features.

Class No.
Single-Level Multi-Level

Prediction IV Prediction III Prediction II Prediction I

1 95.17 96.47 97.68 98.28
2 78.94 89.47 93.14 94.14
3 97.45 98.69 98.47 99.46
4 95.98 96.96 97.98 97.75
5 99.86 99.98 100.00 100.00
6 78.43 84.81 88.67 96.60
7 77.44 79.70 79.92 91.43
8 90.71 93.45 96.06 96.79
9 98.83 99.36 99.78 99.79

OA (%) 92.76 95.11 96.19 98.10
AA (%) 90.33 93.20 94.65 97.14

κ (%) 90.33 93.49 94.93 97.48

For the Pavia University data set, it can be observed from Table 4 that Prediction II
based on features from top layer of encoder are better when compared with Prediction
III and Prediction IV when only single-level features are considered. The classification
accuracy of Class 2 (Meadows), Class 6 (Bare soil) and Class 7 (Bitumen) is less than 90% in
Prediction III and Prediction IV, which is not satisfactory. Although the relevant results
in Prediction II are improved, the classification accuracy of Class 6 (Bare soil) and Class
7 (Bitumen) is still not good. When multi-level features are used for classification, the
classification accuracy of each category exceeds 90%. Moreover, the results of Prediction I
are approximately 2% higher than Prediction II in OA, AA, and κ.
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Table 5. Classification accuracy of Indian Pines based on different features.

Class No.
Single-Level Multi-Level

Predict IV Predict III Predict II Predict I

1 80.43 82.61 84.78 89.13
2 56.63 70.36 92.05 96.14
3 58.89 74.58 82.28 87.04
4 53.16 72.99 80.17 87.34
5 84.06 95.24 97.31 98.75
6 93.84 96.85 97.81 98.90
7 82.14 75.00 53.57 67.85
8 97.28 98.54 100.00 100.00
9 95.00 90.00 75.00 100.00

10 54.22 75.21 86.93 91.04
11 76.86 75.89 83.29 88.39
12 85.36 94.63 97.07 97.56
13 54.97 66.61 76.73 83.31
14 94.23 98.10 97.94 99.53
15 76.69 83.68 78.76 86.27
16 92.47 95.70 96.77 97.85

OA (%) 73.77 81.70 88.17 92.08
AA (%) 77.27 84.12 86.28 91.83

κ (%) 69.95 79.16 86.54 90.98

For Indian Pines data set, when single-level features are used for classification, it can
be found from Table 5 that the performance of the single-level features (Prediction IV and
Prediction III) from the third and fourth layers of encoder are not as good as that from top
layer (the fifth layer) of encoder. Prediction II is the best among classification results based
on single-level features, but the classification accuracy of Class 7 (Grass-pasture-mowed),
Class 9 (Oats), Class 13 (Wheat) and Class 15 (Buildings-grass-trees) is less than 80%. When
multi-level features are used for classification, the classification accuracy of these four
targets are increased by 14%, 25%, 7%, and 7%, respectively. In addition, the highest OA,
AA, and κ values are achieved when multi-level features are used. Prediction I outperforms
any result based on single-level features, which proves that multi-level features allow us to
obtain more useful information.

In general, it can be seen, from Tables 4 and 5, that the proposed multi-level features
obtain the highest OA, AA, and κ values for the two data sets and the classification accuracy
of most land-cover classes is improved when compared to the results that were obtained by
other features. However, the classification accuracy of some classes is always lower than
other classes under different features, such as Class 7 (Bitumen) in Pavia University and
Class 7 (Grass-pasture-mowed) and Class 13 (Wheat) in Indian Pines. From Tables 2 and 3,
we can see that the number of samples in these classes is relatively small. Besides, the
within-class variation and inter-class similarity also reduce the classification accuracy.
Because of the similarity of Class 1 (Asphalt) and Class 7 (Bitumen) in Pavia University,
some pixels that belong to Class 7 are misclassified as Class 1 with more samples. Similarly,
some pixels that belong to Class 13 (Wheat) are misclassified as Class 6 (Grass-trees) in
Indian Pines. Therefore, the classification accuracy may be lower if the number of samples
is small or there are similar classes in the current scene.

Both of the results shown in Tables 4 and 5 are obtained under the condition that the
input size is 13× 13× 10. When the input size changes from 13× 13× 10 to 19× 19× 10,
the classification accuracy based on single-level features from top encoded layer (Prediction
II) and multi-level features (Prediction I) are compared. The comparison results of Pavia
University and Indain Pines are depicted in Figures 6 and 7, respectively.
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Figure 6. Classification accuracy of Pavia University under different input sizes.

For the Pavia University data set, we can find, from Figure 6, that when the input size
increases from 13× 13× 10 to 19× 19× 10, whether single-level features or multi-level
features are used for classification, the OA, AA, and κ values gradually increase. But as
the size increases, the amount of calculation and network training time will also increase.
Moreover, the performance of multi-level features always outperforms single-level features.
The OA, AA, and κ values increased by about 2% to 3% on average as compared with the
results of single features.
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Figure 7. The classification accuracy of Indian Pines under different input sizes.

For Indian Pines data set (Figure 7), when single-level features are used for classifica-
tion, we find that the input size greatly affects the classification accuracy. The classification
accuracy initially increases as the input size and it reaches a peak at 17× 17× 10, and then
begins to decline. When multi-level features are used for classification, the classification
accuracy is relatively stable except when the input size is 13× 13× 10. When the input size
is fixed, the performance of multi-level features is much better than single-level features.
When compared with the results of single-level features, the classification values improve
about 2% to 5%. Even the peak value of a single-level features is about 2% lower than that
of multi-level features.
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In general, the results that are based on multi-level features are better than those of
single-level features for both data sets, which proves that the multi-level features have
more potential in hyperspectral classification.

In the previous experiment, the multi-level features are obtained by concatenating
the information of three encoded layers. In order to observe the impact of the number
of encoded layers on the classification results, the multi-level features obtained from
two, three, and four encoded layers are compared with input size being 17 × 17 × 10.
The comparison results of Pavia University and Indian Pines data sets are shown in
Figures 8 and 9, respectively.
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Figure 8. Classification accuracy of Pavia University based on multi-level features with different
numbers of encoded layers.

It can be observed from Figure 8 that the performance of multi-level features obtained
by using three and four encoded layers are better than that of two encoded layers. When
considering that the results of three and four encoded layers are similar and the feature
dimension obtained by three encoded layers is lower, three encoded layers used to concate-
nate features are more appropriate for Pavia University. Therefore, three is selected as the
number of encoded layers for multi-level features in the subsequent experiments.
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Figure 9. Classification accuracy of Indian Pines based on multi-level features with different numbers
of encoded layers.
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For the Indian Pines data set (Figure 9), the OA and κ values are slightly affected by
the number of encoded layers. But the AA values based on two encoded layers and four
encoded layer are relatively low. Therefore, three encoded layers are more suitable for
obtaining multi-level features for Indian Pines.

Next, supervised feature extraction methods based on deep belief network (DBN),
two dimensional convolutional neural network (2D-CNN), and unsupervised feature
extraction method based on factor analysis (FA), stacked autoencoder (SAE) are considered
for comparison to better evaluate the performance of the proposed method with the input
size being 17× 17× 10 and the number of encoded layers for multi-level features being
three. DBN is composed of multiple layers of latent variables and it usually takes a 1D
vector as input, which learns deep features via pretraining in a hierarchal manner [39–41].
2D-CNN directly takes 2D data as input, which can better preserve the spatial structure of
the target. FA is a linear statistical method that uses fewer numbers of factors to replace
original data [42]. SAE is stacked by multiple AEs that can be used to learn a higher-level
representation of input data [43,44]. The relevant results of Pavia University and Indian
Pines under different methods are given in Tables 6 and 7, where FE represents feature
extraction.

Table 6. Classification accuracy of Pavia University based on different feature extraction methods.

Class No.
Supervised FE Unsupervised FE

DBN 2D-CNN FA SAE 3D-CAE
Single-Level

3D-CAE
Multi-Level

1 95.85 94.78 95.88 96.26 97.48 98.58
2 75.51 80.18 79.56 73.70 93.14 94.76
3 97.88 99.12 86.47 97.55 98.76 99.68
4 96.87 88.97 95.14 95.07 98.07 97.78
5 99.78 98.14 99.03 100.00 100.00 100.00
6 76.60 92.38 94.55 66.91 92.32 97.71
7 72.93 74.96 81.65 82.78 86.99 95.49
8 95.11 95.36 69.61 90.82 96.77 98.07
9 99.79 90.39 95.88 97.88 100.00 100.00

OA (%) 92.97 94.70 88.16 91.45 97.01 98.65
AA (%) 90.03 90.48 88.64 89.00 95.94 98.01

κ (%) 90.60 92.96 84.62 88.50 96.03 98.21

For the Pavia University data set, we can see from Table 6 that the OA, AA, and κ
values of FA are the lowest, which reflects that deep learning models have more strong
ability in feature extraction. When DBN and SAE are used for extracting features, the
classification accuracy of Class 1 (Asphalt), 3 (Gravel) to 5 (Metal sheets) and 9 (Shadows) is
relatively high. When 2D-CNN is introduced to obtain features, although the classification
accuracy of Class 1 (Asphalt), 4 (Trees), and 9 (Shadows) is not as good as that of DBN
and SAE, the accuracy of most other classes is improved, especially the OA value. This
is because the inputs of DBN and SAE are one-dimensional (1D) vectors, while 2D-CNN
can take 2D matrices as input, which can better retain the spatial information of the
target. Among all of the deep models considered, the results based on 3D-CAE are more
satisfactory. When compared with single-level features, multi-level features can help us to
further improve the classification accuracy. Especially for Class 7 (Bitumen), the accuracy
obtained by other feature extraction methods is less than 90%, but the introduction of
multi-level features reaches 95%. Overall, the highest OA, AA, and κ values are obtained
by the proposed multi-level features.
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Table 7. Classification accuracy of Indian Pines based on different feature extraction methods.

Class No.
Supervised FE Unsupervised FE

DBN 2D-CNN FA SAE 3D-CAE
Single-Level

3D-CAE
Multi-Level

1 89.13 60.87 89.13 65.22 84.78 91.30
2 92.77 95.54 61.81 86.14 93.49 94.61
3 92.36 80.74 61.90 84.59 91.25 96.98
4 87.76 94.94 43.88 83.12 91.14 94.93
5 75.77 86.96 87.78 83.85 97.10 97.51
6 92.33 98.36 81.51 95.21 99.17 99.45
7 92.86 89.29 89.29 50.00 75.00 85.71
8 98.12 99.58 93.10 94.35 99.58 100.00
9 90.00 80.00 65.00 65.00 95.00 100.00

10 77.77 80.97 53.60 88.37 88.78 94.15
11 81.02 99.35 88.96 93.60 92.67 95.47
12 98.54 99.02 99.99 88.29 94.63 91.39
13 85.67 75.71 34.23 71.50 90.05 90.73
14 98.74 99.21 95.65 92.89 98.33 99.92
15 95.34 97.15 70.47 74.35 92.75 96.89
16 46.23 76.34 68.82 55.91 99.97 95.69

OA (%) 87.87 92.04 75.16 87.85 93.71 96.17
AA (%) 87.15 88.38 74.07 79.53 92.73 95.29

κ (%) 86.24 90.85 71.16 86.12 92.83 95.63

For Indian Pines data set, the classification results of FA are not good, and the clas-
sification accuracy of most classes is less than 90%. DBN and SAE help us to improve
the classification accuracy to a certain extent, but it is still not satisfactory. The OA and
κ values based on 2D-CNN and CAE-based model exceed 90%, which demonstrate that
convolution-based operations are more flexible and have strong feature extraction capabili-
ties. Besides, the OA, AA, and κ values that are based on multi-level features improved by
about 3%, 1%, and 3% when compared with single-level features. Therefore, the proposed
multi-level features can help us to further improve the classification.

For better visual comparison, classification maps of Pavia University and Indian Pines
obtained by different methods are depicted in Figures 10 and 11, respectively.

For the Pavia University data set, it can be seen that there are many pixels in the green
area that are incorrectly classified into the yellow. Some pixels in the sienna region are
misclassified into the red in Figure 10c–e. Besides, the misclassified pixels in the green
and sienna region are greatly reduced in Figure 10f,g, but some pixels in the purple region
are still not correctly classified, especially in Figure 10e. Overall, the classification map in
Figure 10h is the clearest.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Pavia University: (a) Composite image, (b) Ground truth, (c) FA, (d) DBN, (e) 2D-CNN,
(f) SAE, (g) 3D-CAE (single-level features), and (h) 3D-CAE (multi-level features).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Indian Pines: (a) Composite image, (b) Ground truth, (c) FA, (d) DBN, (e) 2D-CNN,
(f) SAE, (g) 3D-CAE (single-level features), and (h) 3D-CAE (multi-level features).

For the Indian Pines data set, there are many misclassified pixels in Figure 11c,d,f,g,
especially the upper left corner area. The classification maps in Figure 11e,f are better.
Among all of the clasification maps, Figure 11f is the most satisfactory and it has the least
number of misclassified pixels, which demonstrates the effectiveness of the proposed
method.

5. Conclusions

In this paper, a 3D-CAE is designed to get rid of limitations of labeled samples. To
fully exploit the spectral-spatial features of hyperspectral data, the 3D-CAE is stacked
by 3D convolutional layers and 3D deconvolutional layers, so that 3D data blocks can
be directly used as network input. Besides, multi-level features obtained from multiple
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encoded layers are developed to further improve classification accuracy in order to make
full use of the well-trained network and retain as much feature information as possible.

Two commonly used hyperspectral data sets, Pavia University and Indian Pines, are
used to verify the performance of the proposed method. Our experimental results show
that single-level features from the top encoded layer perform better when compared to
single-level features from other encoded layers. The performance of the proposed multi-
level features exceeds any single-level features under different input sizes. The OA, AA,
and κ values based on proposed multi-level features increased by about 2% to 3% for Pavia
University and 2% to 5% for Indian Pines, as compared with single-level features from top
encoded layer. Besides, we find that the number of layers used to form multi-level features
also affects the feature performance. The more encoded layers are selected, the larger
the dimension of the multi-level features. Our goal is to use low-dimensional features to
obtain high accuracy. Based on our results, we choose three encoded layers for multi-layer
features when the 3D-CAE has nine layers. Moreover, the proposed multi-level features
are compared with the features obtained by supervised DBN and 2D-CNN, as well as
unsupervised FA and SAE. The experimental results show that the proposed method
outperforms the considered methods. The proposed multi-level features help us to obtain
the highest classification accuracy, which demonstrates that they have huge potential in
hyperspectral classification.

In summary, to solve the problem of limited labeled samples in HSIs, we design an
unsupervised feature extraction network that is based on 3D-CAE. To make full use of the
well-trained network and further improve feature quality, multi-level features are proposed
to contain detail information and semantic information at the same time. The proposed
multi-level features are directly obtained from different encoded layers of the optimized
encoder, which is more efficient as compared to training multiple networks. It can also
provide ideas for the full use of other deep learning models.
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