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Abstract: Various drought indices have been used for agricultural drought monitoring, such as
Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI),
Palmer Drought Severity Index (PDSI), Soil Water Deficit Index (SWDI), Normalized Difference
Vegetation Index (NDVI), Vegetation Health Index (VHI), Vegetation Drought Response Index
(VegDRI), and Scaled Drought Condition Index (SDCI). They incorporate such factors as rainfall,
land surface temperature (LST), potential evapotranspiration (PET), soil moisture content (SM),
and vegetation index to express the meteorological and agricultural aspects of drought. However,
these five factors should be combined more comprehensively and reasonably to explain better the
dryness/wetness of land surface and the association with crop yield. This study aims to develop
the Integrated Crop Drought Index (ICDI) by combining the weather factors (rainfall and LST),
hydrological factors (PET and SM), and a vegetation factor (enhanced vegetation index (EVI)) to
better express the wet/dry state of land surface and healthy/unhealthy state of vegetation together.
The study area was the State of Illinois, a key region of the U.S. Corn Belt, and the quantification and
analysis of the droughts were conducted on a county scale for 2004–2019. The performance of the
ICDI was evaluated through the comparisons with SDCI and VegDRI, which are the representative
drought index in terms of the composite of the dryness and vegetation elements. The ICDI properly
expressed both the dry and wet trend of the land surface and described the state of the agricultural
drought accompanied by yield damage. The ICDI had higher positive correlations with the corn
yields than SDCI and VegDRI during the crucial growth period from June to August for 2004–2019,
which means that the ICDI could reflect the agricultural drought well in terms of the dryness/wetness
of land surface and the association with crop yield. Future work should examine the other factors for
ICDI, such as locality, crop type, and the anthropogenic impacts, on drought. It is expected that the
ICDI can be a viable option for agricultural drought monitoring and yield management.

Keywords: agro–meteorology; agricultural drought; drought index; crop yield

1. Introduction

In recent years, the frequency and severity of drought have been increasing due to
climate change, accompanied by the threat to ecosystems and human societies [1–4]. In
particular, Amazonia, the southern part of South America, the Mediterranean region, most
of Africa, and the northeastern part of China were the hotspots of drought for the last
decades [5]. Drought is difficult to categorize in a formulaic manner because its beginning
and end are difficult to determine accurately; it occurs broadly over a long period [6,7].
However, it is generally classified into meteorological, agricultural, hydrological, and
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socioeconomic drought [8,9]. Meteorological drought is a phenomenon in which the water
on the land surface becomes scarce as the precipitation below the average or normal level
continues for a long time [4,10,11]. If the high-temperature dry condition persists over a
long period, the evaporation from soil and the transpiration from vegetation (that is, evap-
otranspiration) can increase, causing a shortage of water on the land surface [8,9,12–14].
When a meteorological drought intensifies, the soil moisture (SM) decreases, and the wa-
ter stress increases. If such a condition results in damage to the vegetation growth, it is
regarded as agricultural drought [8,9,15]. In addition, if the water scarcity becomes more
severe—lowering the water level of dam and groundwater, it is categorized as hydrological
drought [8,9]. If the drought becomes even more severe—whereby the water supply can
no longer meet the demand of the society, it is regarded as socioeconomic drought [16,17].

In particular, agricultural drought is of great importance in terms of food security and
climate change [18]. Agricultural drought causes damage to the biomass and crop yield.
For example, a 2012 drought in the United States caused billions of dollars in economic
loss due to the reduced production of the crops, such as corn and soybeans [19]. In Califor-
nia, low precipitation and dry condition persisted from 2012 to 2015, which accelerated
the evapotranspiration and decreased the SM, worsening the vegetation health [20]. Be-
cause agricultural drought has a direct impact on crops and forest ecosystems, various
drought indices have been used for agricultural drought monitoring, such as Standardized
Precipitation Index (SPI) [21–23], Standardized Precipitation Evapotranspiration Index
(SPEI) [21–24], Palmer Drought Severity Index (PDSI) [21,25], Soil Water Deficit Index
(SWDI) [26,27], Normalized Difference Vegetation Index (NDVI) [28,29], Vegetation Health
Index (VHI) [30,31], Vegetation Drought Response Index (VegDRI) [32,33], and Scaled
Drought Condition Index (SDCI) [34].

The meteorological drought indices, such as SPI, SPEI, and PDSI, which use precipita-
tion as a key variable, have been employed in the analyses of drought transition, in which
a meteorological drought extends to an agricultural drought [21–24]. SPI can be applied
on various time scales (such as 3, 6, 12, and 24 months). For example, SPI3 and SPI6 are
obtained by an empirical cumulative distribution function (ECDF) of 3-month or 6-month
cumulative precipitation, and the standardized form of the ECDF is a z-value [10,35]. A
positive SPI indicates a wet state, and a negative SPI indicates a dry state. In general,
the SPI below -1 indicates a drought, and the greater the absolute value is, the worse the
drought [35]. SPI has the advantage that it can be calculated simply using precipitation
only [36]. However, because it is an index that considers only the aspect of water supply,
there is a disadvantage that the aspect of water consumption from the land surface caused
by the temperature rise and the dry air is not considered. On the other hand, SPEI is a
drought index that has improved the SPI by using the difference between the precipitation
and the potential evapotranspiration (PET) [37]. PET is the maximum amount of evapo-
transpiration that can occur under a given weather condition for the reference crop [38,39].
Because both precipitation and PET affect the water balance on the land surface [40–43],
the SPEI, which considers both the supply and consumption of water, may be regarded as
a more reasonable drought index than SPI [44–46]. PDSI is a drought index using the dif-
ference between the actual precipitation and the precipitation needed to maintain a normal
soil moisture level [47,48]. However, the necessary elements for PDSI, such as evapotran-
spiration and recharge rate, are difficult to calibrate, so that they are usually approximated
by using available variables, such as precipitation and air temperature [47–50].

For the drought indices with more emphasis on the agricultural aspect, SM and the
vegetation index are used in addition to the weather variables, such as precipitation, air
temperature, and PET. SM affects vegetation growth and yield, and the vegetation index
is a direct indicator of vegetation vitality. SWDI is calculated as a ratio that divides the
difference between SM and field capacity (FC) by the available water content (AWC) [26,27].
The original SWDI was designed to use in-situ observation data, but satellite-based SWDI
can also be applied for spatially continuous information of drought. However, SWDI has a
drawback in that it requires local-level ancillary data, such as FC and AWC, which are diffi-
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cult to obtain [27]. On the other hand, NDVI, VHI, SDCI, and VegDRI, in which vegetation
index plays a crucial role, can provide the information for both the cause of drought (lack of
precipitation) and the result of drought (vegetation damage) [32,51–53]. NDVI is a vegeta-
tion index that uses a characteristic of high values of near-infrared reflectance in healthy
vegetation [32,52,54]. The NDVI anomaly has been used in drought monitoring [32,55],
but there is a limitation in identifying the complex condition of drought only using one
variable, NDVI anomaly. To improve this, VHI represents a drought by combining the
Temperature Condition Index (TCI) and the Vegetation Condition Index (VCI): the former
shows the relative state of temperature compared to historical data, and the latter shows the
relative state of NDVI compared to historical data for each location [30,31]. However, VHI
does not include the precipitation information, and to supplement this, SDCI quantified
the drought through the weighted sum of VCI, TCI, and Precipitation Condition Index
(PCI) [34,56]. VegDRI is a drought index that combines SPI, PDSI, NDVI, and biophysical
data by reflecting both meteorological and vegetation factors [32,33].

Table 1 summarizes the components of major drought indices, such as SPI, SPEI, PDSI,
SWDI, NDVI, VHI, SDCI, and VegDRI. Meteorological drought can lead to agricultural
drought through processes such as a lack of precipitation, rise in temperature, increase
in evapotranspiration, decrease in SM, and deterioration of vegetation. Most drought
indices express the drought through a combination of meteorological and land surface
variables. Thus, in a comprehensive sense, they can be called agro–meteorological drought
indices. The crucial factors for drought monitoring, such as rainfall, temperature, PET, SM,
and vegetation, should be combined more comprehensively and reasonably to explain
the meteorological aspect (dryness/wetness of land surface) and the agricultural aspect
(association with crop yield) as well.

This study aims to develop a new agro–meteorological drought index by combining
rainfall, land surface temperature (LST), PET, SM, and vegetation index, which are essential
variables for representing meteorological and agricultural drought. Our drought index
is named the Integrated Crop Drought Index (ICDI) to show the impact of drought on
crop yield as well as the dryness/wetness of land surface. It can provide a comprehensive
representation of drought by combining the relative degrees of rainfall, LST, PET, SM, and
vegetation index by comparison with the minimum and maximum of those over the normal
crop yield period. The case study was based on the State of Illinois, a key region of the
U.S. Corn Belt, and the quantification and analysis of drought were conducted on a county
scale for 2004–2019. Tropical Rainfall Measuring Mission (TRMM) data were used for the
rainfall; Moderate Resolution Imaging Spectroradiometer (MODIS) data for the LST, PET,
and vegetation index; and Global Land Data Assimilation System (GLDAS) data for the SM.
The performance of the ICDI developed in this study was evaluated through comparative
analysis with SDCI and VegDRI, which have similar characteristics as the ICDI.

Table 1. Major meteorological and agricultural factors that make up the drought index.

Drought Index Rainfall Temperature Evapotranspiration Soil Moisture Vegetation

SPI 1 O

SPEI 2 O O

PDSI 3 O O O O

SWDI 4 O

NDVI 5 O

VHI 6 O O

SDCI 7 O O O

VegDRI 8 O O O O
1 Standardized Precipitation Index; 2 Standardized Precipitation Evapotranspiration Index; 3 Palmer Drought Severity Index; 4 Soil Water
Deficit Index; 5 Normalized Difference Vegetation Index; 6 Vegetation Health Index; 7 Scaled Drought Condition Index; 8 Vegetation
Drought Response Index.
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2. Materials

The state of Illinois is in the Midwest of the United States. It is a representative
corn production region together with Iowa, and its recent average yield (2017–2019) was
approximately 200 bushels per acre [57]. The northern regions have a climate of Dfa (humid
continental climate) in terms of the Köppen–Geiger classification, and the southern regions
have a climate of Cfa (humid subtropical climate) (Figure 1) [58]. The average annual
temperature is 10.9 ◦C, and the annual average precipitation is 915.7 mm [59]. During
2004–2019, the period in the case study, considerable droughts occurred in 2005, 2006, 2007,
and 2012. In particular, the crops suffered severe damage due to the drought in 2012 [59,60].
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Rainfall, LST, PET, SM, and enhanced vegetation index (EVI) were used to calculate
the ICDI. We summarized the information, such as resolution and source of these data, in
Table 2. TRMM 3B42 V7 for rainfall is provided in 0.25◦ grid by the daily accumulation of
the original 3-hourly data. The products of Terra/Aqua MODIS were used for the LST (C6
MOD11A2), PET (MOD16A2GF), and EVI (MOD13C2 and MYD13C2). MOD16A2GF is a
product that has improved the existing PET product through a gap-filling process. We used
the EVI product because the EVI represents the vegetation vitality better than NDVI in the
croplands of dense vegetation [62,63]. GLDAS daily data (GLDAS_CLSM025_DA1_D_2.2),
which were created by an improved model simulation through the data assimilation process
using the satellite and in-situ observation [64,65], were used for the soil moisture. TRMM
3B42 V7 generally shows a high positive correlation with the rain gauge in the Continental
United States (CONUS) [66]. The MODIS C6 MOD11 and MOD16 products in cropland
are in good agreement with in-situ LST and PET measurements in the United States [67,68].
The accuracy of the soil moisture from GLDAS product is not provided officially, but
National Aeronautics and Space Administration (NASA) mentions that it is more accurate
over the US and Europe because of the dense network of observation [69]. The MODIS
land cover type product (MCD12Q1) at 500 m resolution was used to extract the parts
corresponding to the croplands from this grid data. The data of corn yield by county, which
were ancillary data, were acquired from the United States Department of Agriculture’s
(USDA) National Agricultural Statistics Service (NASS) [70].

We extracted the pixels having a value of 12 (croplands) continuously for the 16 years
(2004–2019) from the MODIS land cover type data and created a cropland mask at a 500 m
resolution. The rainfall, LST, PET, SM, and EVI used in the calculation of ICDI were
resampled at a 500 m resolution with the coordinate reference system of the WGS84 (World
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Geodetic System 1984). These five variables had different temporal resolutions, and they
were processed into an 8-day composite to facilitate the analyses of drought. Because the
16-day vegetation products had many missing pixels due to the clouds in summer [71–73],
we used monthly EVI products provided through a gap-filling process. Since the vegetation
vitality changed gradually over time like a cosine curve, the monthly EVI was interpolated
at an 8-day interval by applying a cubic spline method [71].

Table 2. Data used to develop the integrated crop drought index (ICDI).

Data 1 Temporal Resolution Spatial Resolution Source

Rainfall Daily 0.25◦ TRMM

Land surface temperature (LST) 8 days 1 km Terra MODIS

Potential evapotranspiration (PET) 8 days 500 m Terra MODIS

Soil moisture (SM) Daily 0.25◦ GLDAS

Enhanced vegetation index (EVI) Monthly 0.05◦ Terra/Aqua MODIS

Land cover type Yearly 500 m Terra/Aqua MODIS

Corn yield Yearly By county USDA
1 Data period: 2004–2019.

3. Methods
3.1. Integrated Crop Drought Index (ICDI)

We aimed to develop the ICDI as a drought index that reflects the dryness/wetness
and the damage to crop yield by integrating the rainfall, LST, PET, SM, and EVI. First, we
defined the years of normal crop yield as the years with over 95% of the average yield for
each county during the 16 years (2004–2019). The five variables were converted into the
ECDF, and the ECDF values were normalized using the min and max. Then the severity
index (SI) of each variable was derived, as shown in Table 3. Here, the min and max of each
variable were defined as the minimum and maximum ECDF values during the normal years
to show how exceptional the weather and land surface conditions were compared to those of
the normal years. In the five variables, a high value indicates a wet (or healthy) state, and a
low value indicates a dry (or unhealthy) state. For this, the numerator was set by subtracting
the minimum from the ECDF value in the cases of rainfall, SM, and EVI, and by subtracting
the ECDF value from the maximum in the cases of LST and PET. Indeed, heatwaves and
excessive evapotranspiration can increase the water consumption of the land surface. Since
the ECDF value of each variable may exceed the max from the normal years or may be
smaller than the min from the normal years, SI has a range of −∞ to ∞. During the normal
years, 0 ≤ SI ≤ 1. The ICDI proposed in this study represents both dryness/wetness and
healthy/unhealthy states of cropland by combining SIRain, SILST , SIPET , SISM, and SIEVI .
As shown in Equation (1). Furthermore, a 3-month moving average was obtained (ICDI3) to
reflect the temporally accumulated characteristics of drought. The optimal size of the moving
window was determined by the comparison of 1, 2, 3, and 6-month moving averages. The
comparison result according to the size of moving window was presented in the Appendix A.

ICDI = (SIRain + SILST + SIPET + SISM + SIEVI)/5 (1)

Table 3. Formulas of the severity index (SI).

Variable Formula

SIRain (eRain − eRainmin)/(eRainmax − eRainmin)
SILST (eLSTmax − eLST)/(eLSTmax − eLSTmin)
SIPET (ePETmax − ePET)/(ePETmax − ePETmin)
SISM (eSM − eSMmin)/(eSMmax − eSMmin)
SIEVI (eEVI − eEVImin)/(eEVImax − eEVImin)

Min = minimum value during the normal years; Max = maximum value during the normal years.
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3.2. Performance Evaluation

SDCI and VegDRI are typical drought indices with combined weather and land surface
factors, similar to the ICDI developed in this study. For a comparative evaluation of these
three indices (ICDI, SDCI, and VegDRI), the VegDRI product was obtained from the United
States Geological Survey (USGS) [74], and the SDCI was calculated using Equation (2). The
PCI required for this was calculated using the TRMM data (Equation (3)). TCI and VCI were
obtained from the NOAA National Environmental Satellite, Data, and Information Service
(NESDIS) [75].

SDCI = 0.5 × PCI + 0.25 × TCI + 0.25 × VCI (2)

PCI =
Rain f all − Rain f allmin

Rain f allmax − Rain f allmin
(3)

To evaluate the suitability of ICDI as a drought index and compare its capability
for drought representation to that of SDCI and VegDRI, we conducted a case study by
selecting four counties that had significant yield damages and two counties that did
not. In general, crop productivity can vary depending on the physical, chemical, and
biological characteristics of the soil [76]. Optimal Productivity Index (OPI) shows the crop
productivity by reflecting the soil characteristics under the assumption that the soil is
managed optimally. The OPI of Illinois is the highest in the central region and relatively
high in the northern region but shows a decreasing pattern toward the south (Figure 2a).
Furthermore, the distribution of the corn yield in 2004–2019 was similar to that of OPI
(Figure 3). In Figure 4, the corn yield anomaly of each county was obtained, and the total
was calculated based on the percentage class. The cases in which the corn yield of each
county decreased by more than 10% compared to its 16-year average were set as the years
damaged. The totals were calculated for the number of the years damaged and the average
corn yield anomaly during the years damaged (Table 4). Based on these criteria, Franklin,
Effingham, Marion, and Adams were selected as severely damaged counties, and Carroll
and Lee as moderately damaged counties (Figures 2b and 5). The number of the years
damaged in Adams and Franklin, among the severely damaged group, was 5–6 during
the 16 years. Effingham and Marion suffered the crop yield damage three times, but
the average corn yield anomaly during the years reached almost −40%. The moderately
damaged group suffered two times of the crop yield damages over the 16 years (Table 4).
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Table 4. Severely and moderately damaged counties selected from Illinois, USA.

Group County OPI Number of the
Years Damaged

Average Corn Yield Anomaly
during the Years Damaged (%)

Severely
damaged

Franklin Low 6 −25.510
Effingham Low 3 −37.066

Marion Low 3 −39.786
Adams High 5 −27.281

Moderately
damaged

Lee High 2 −21.069
Carroll High 2 −17.600
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3.3. ICDI Classification

The drought intensity of the ICDI was classified into four categories by compre-
hensively considering the characteristics of the ICDI and its components and the yield
anomalies during 2004–2019 (Table 5). The ICDI has a value in the range of −∞ to ∞, and
we assume that it indicates a drought state when it falls below 0.5. As the value of ICDI
decreases, the drought intensity increases, and it is classified into light, moderate, severe,
and extreme drought. The light drought (ICDI < 0.5) indicates an endurable drought
state for the crops whereby the air and the land surface are slightly dry. The moderate
drought (ICDI < 0.25) indicates a drought state, in which the air and the land surface are
relatively dry with a possibility of certain damage to the crop yield. The severe drought
(ICDI < 0) indicates a drought state, in which the air and the land surface are very dry,
with a possibility of severe damage to the crop yield. The extreme drought (ICDI < −0.5)
indicates a drought state, in which the air and the land surface are extremely dry, with
a possibility of very severe damage to the crop yield. We divided the threshold values
(0.5, 0.25, 0, and −0.5) by taking account of the overall characteristics of ICDI and the
convenience of perception. However, the threshold values should be more examined to
consider the sensitivity to drought according to regional differences and crop type, which
will require many case studies.

Table 5. Classification of Integrated Crop Drought Index (ICDI).

ICDI Drought Intensity Description

Over 0.5 No drought A state which is not a drought.

0.25 to 0.5 Light drought A drought, which is endurable for the crops.
The air and land surface are slightly dry.

0.0 to 0.25 Moderate drought The air and land surface are fairly dry, and there
is a possibility of certain damage to the crops.

−0.5 to 0.0 Severe drought The air and land surface are very dry, and there
is a possibility of severe damage to the crops.

Under −0.5 Extreme Drought
The air and land surface are extremely dry, and

there is a possibility of very severe damage
to the crops.

4. Results and Discussion
4.1. Characteristics of Drought by Period and County

The overall drought trend of Illinois can be seen through the United States Drought
Monitor (USDM) index. Figure 6 shows the monthly drought status in 2005 and 2012,
with the percentage of the area size corresponding to D0 (abnormally dry), D1 (moder-
ate drought), D2 (severe drought), D3 (extreme drought), and D4 (exceptional drought),
respectively. Concerning the significant growth period (June to August) of corn [78], the
drought was extremely severe, particularly in 2005 and 2012 [59,79,80].
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We examined the characteristics of drought by period and county in more detail
using ICDI3, the 3-month moving average of ICDI, considering the cumulative effects
of meteorological and agricultural phenomena between cause and effect over time [81].
According to the comparison of the moving window size (Figure A1), ICDI1 and ICDI2
showed a short-term fluctuation, and ICDI6 produced a somewhat delayed response to
drought. However, ICDI3 looks appropriate in terms of the temporal trend and timely
response to drought. Adams and Franklin were the counties where the yield frequently
declined in Illinois, and in the drought years (2005, 2006, 2007, and 2012) when the condition
of ICDI3 < 0.25 persisted for a long time, the summer LST and PET were high, and the
rainfall and SM were generally low (Figure 7). The evapotranspiration increased, and the
SM decreased due to the lack of rainfall and the hot and dry air. The EVI increase slowed in
July, the intensive growth season due to the effect of the drought, and particularly, this trend
was observed more distinctively in 2012 when an extreme drought occurred (Figure 8a,d).
In the six counties for our case study, the ICDI3 of May–September 2005 was between −0.5
and 0 (severe drought), and the corn yield decreased by 12.07% to 26.79% compared to the
average. In 2006, Adams, Effingham, and Marion were in a moderate drought state with the
ICDI3 of −0.04 to 0.2. The yield decreased from 10% to 20% compared to the average due
to the drought lasting more than four months. In 2007, the ICDI3 of Franklin, Effingham,
and Marion deteriorated severely, reaching almost −0.5 in June before recovering after July.
Still, the corn yield decreased by a certain level due to the effect of the summer drought. In
2012, the ICDI3 fell significantly below −0.5, which continued through September (extreme
drought), and in the moderately damaged counties, the yield had decreased by 18.91% to
20.99% compared to the average. In the severely damaged counties, the yield had decreased
by 53.3% to 77.7% compared to the average.

Even without a drought, yield damage may occur if wet spring and dry summer are
combined. For example, in the case of Franklin and Adams in 2011, there was a lot of
rainfall in May and June, and because of the humid weather, the PET was low, and the SM
was high (Figure 7). Furthermore, from July to September, the dry condition continued due
to high LST and low rainfall, resulting in a moderate increase in the EVI. The ICDI3 was
between 0.5 and 0.8 in May and June, showing a humid trend, which started to decrease in
July due to hot and dry air, approaching 0 in September. As a result, the yield anomaly
reached −13.86% and −16.55% in Franklin and Adams, respectively (Figure 8a,d). On the
other hand, yield damage sometimes occurs due to too much rainfall [82,83]. In 2010, for
example, Adams showed a 25.09% decrease in the yield compared to the average, and
the cumulative precipitation between May and September was 868 mm, approximately
1.5 times higher than the average (558 mm), and rain fell almost every day throughout the
two months of June and July. In Franklin in 2016, the cumulative precipitation from July to
September was 450 mm, reaching almost 1.5 times the average (284 mm). The excessively
wet soil condition in July–September led to a yield reduction of 14.37% compared to the
average. Too much rainfall may affect crop productivity in various ways, such as soil
erosion, direct physical damage, harvest delays, and increased diseases [84,85]. The ICDI
slightly over 0.5 corresponds to no drought or humid state, and the ICDI much larger
than 0.5 can denote a rainy season. The ICDI3 of Adams in 2010, which showed excessive
summer wetness, was high at 0.5–0.75, and the ICDI3 of Franklin in 2016 reached 0.92 at
the end of September, eventually leading to a decrease in the yield.
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Figure 8. Time series of (a) ICDI3, (b) SDCI (Scaled Drought Condition Index), (c) VegDRI (Vegetation Drought Response Index), and (d) corn yield anomaly (%) in severely and moderately
damaged counties during 2004–2019. The VegDRI data from USGS (United States Geological Survey) was provided from 2009 onward.
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4.2. Comparison with Other Drought Indices

In 2005, the corn yield anomaly reached −26.79% in the severely damaged counties
(Franklin, Effingham, Marion, and Adams), and in 2012 when the damage was at its worst, it
reached −87.05% at its lowest (Tables 6 and 7). The ICDI3 and the SDCI for the six counties
(two moderately damaged and four severely damaged counties) indicated a moderate or
severe drought state throughout the summer in 2005 and a severe or extreme drought state
throughout the summer in 2012. On the other hand, VegDRI showed a declining pattern
from June to August 2012 (Figure 8c) but indicated a near-normal or pre-drought state
for most of the areas in June and July. All areas were classified as moderate drought in
August (Table 7). In 2006, some counties suffered significant yield damages due to a drought.
The corn yield anomaly was approximately −10% in Effingham and −20% in Adams and
Marion (Figure 8d). A value of approximately 0 was maintained for the ICDI3 in these three
counties, indicating a moderate or severe drought (Figure 8a). In the case of SDCI, Adams
showed a moderate or severe drought, but no drought was indicated for Effingham and
Marion (Figure 8b). In fact, in 2006, the severity index of PET and SM in the Effingham
and Marion counties was below 0, indicating a very dry state compared to the normal
years. Accordingly, the EVI worsened (Figure 9). However, it was assumed that the SDCI
did not represent the water balance of the land surface properly because it did not use the
PET and the SM. Furthermore, not all ICDI3 values coincided with the yield anomaly: for
example, Adams in 2005. Although the degree of drought was not worse in Adams than in
Marion or Carrol, the yield anomaly of Adams was worse than that of Marion or Carrol. A
potential cause is due to the yield variability being different according to region. As shown
in Figure 10, Adams had more variable yields than Marion and Carrol during 2004–2019,
which resulted in some inconsistency between the drought index and the yield anomaly.
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Table 6. Drought indices in summer and the corn yield anomalies in 2005.

County Drought Index June July August Yield Anomaly (%)

Franklin
ICDI3 Severe Moderate Moderate −13.34SDCI Severe Moderate Abnormally

Effingham ICDI3 Severe Severe Severe −26.79SDCI Severe Extreme Severe

Marion
ICDI3 Severe Severe Severe −12.07SDCI Severe Severe Moderate

Adams
ICDI3 Moderate Moderate Severe −20.73SDCI Severe Severe Severe

Carroll
ICDI3 Severe Severe Severe −16.29SDCI Severe Extreme Extreme

Lee
ICDI3 Severe Severe Severe −21.15SDCI Severe Extreme Extreme

Table 7. Drought indices in summer and the corn yield anomalies in 2012.

County Drought Index June July August Yield Anomaly (%)

Franklin
ICDI3 Extreme Severe Severe

−77.7SDCI Extreme Exceptional Extreme
VegDRI Near Normal Pre-drought Moderate

Effingham
ICDI3 Severe Extreme Extreme

−73.61SDCI Severe Extreme Extreme
VegDRI Near Normal Pre-drought Moderate

Marion
ICDI3 Severe Extreme Extreme

−87.05SDCI Severe Exceptional Exceptional
VegDRI Near Normal Pre-drought Moderate

Adams
ICDI3 Severe Moderate Severe

−53.30SDCI Severe Extreme Exceptional
VegDRI Pre-drought Moderate Moderate

Carroll
ICDI3 Severe Severe Extreme

−18.91SDCI Severe Extreme Extreme
VegDRI Near Normal Pre-drought Moderate

Lee
ICDI3 Severe Severe Severe

−20.99SDCI Severe Extreme Extreme
VegDRI Pre-drought Moderate Moderate
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4.3. Relationship between Drought Index and Crop Yield

The crucial growth period for corn is June–August, and the drought state of this
period can have a significant impact on the crop yield [86]. Therefore, we analyzed the
correlation between the average drought indices in June–August and the crop yield in that
year. The ICDI combines the weather factors (rainfall and LST), hydrological factors (PET
and SM), and a vegetation factor (EVI) to show the wet/dry state of land surface and the
healthy/unhealthy state of vegetation together. The correlation between the ICDI and the
corn yield was higher overall than similar drought indices (SDCI and VegDRI). In particular,
the correlation was much higher in July and August than in June (Figure 11). Because
corn kernels, which are closely related to the yield, develop in July and August, which
correspond to the reproductive growth stage [87,88], crop yield may reflect the drought state
sensitively [89,90]. Therefore, the high correlation between the ICDI of July and August and
the crop yield of that year shows that the ICDI is very suitable as a drought index.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 11. Distribution of the correlation between annual corn yields and the monthly average of (a) ICDI, (b) SDCI, and 
(c) VegDRI. 
Figure 11. Distribution of the correlation between annual corn yields and the monthly average of (a)
ICDI, (b) SDCI, and (c) VegDRI.



Remote Sens. 2021, 13, 1778 16 of 22

In Figure 12, the average ICDI in summer (JJA) showed a considerable positive
relationship with the corn yield anomaly during 2004–2019 (Corr. = 0.745). The slope of the
regression line was steeper in the counties with low OPI, which means that the low-OPI
counties were more sensitive to drought, and the yield damages were more serious. Such
characteristics were also shown in the drought years (Figure 13). In 2005, however, the
high-OPI counties suffered more serious yield damages, which was because of the degree
of drought. Their ICDI values were overall lower than those of the low-OPI counties, so
their yield anomaly was −5% to −40% for moderate drought state and −20% to −40% for
severe drought state. In general, the regions with low-quality soil are more vulnerable to
drought, although the response may be different according to region.
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5. Conclusions

In this study, we proposed the ICDI, which can appropriately represent agricultural
drought by combining the weather factors (rainfall and LST), hydrological factors (PET
and SM), and a vegetation factor (EVI) to show the wet/dry state of land surface and
healthy/unhealthy state of vegetation together. The time-series changes of ICDI, ICDI’s
components, and yield anomalies were analyzed for Illinois from 2004 to 2019, and the rela-
tionships with corn yields were investigated. The performance of the ICDI was evaluated
through the comparisons with SDCI and VegDRI, which are the representative drought
index in terms of the combination of the dryness and vegetation elements. The ICDI
showed higher positive correlations with the corn yields than SDCI and VegDRI during
the crucial growth period from June to August between 2004 and 2019, which means that
the ICDI could reflect the drought conditions well in terms of the land surface dryness and
vegetation health. SDCI did not detect the drought in some counties in 2006 because it
did not use the PET and SM that are closely related to the water balance of land surface.
VegDRI indicated a near-normal or pre-drought state for most of the damaged counties in
June and July and a moderate drought in August in 2012, although it was the most extreme
drought year all over the state.

The ICDI can be evaluated as appropriate to express the state of agricultural drought
in terms of the water balance of land surface and the association with yield damage.
However, because the performance of ICDI may be variable according to regions, crop
types, irrigation efforts, and anthropogenic impacts on drought, more case studies will be
necessary for a more suitable setting of the threshold values. In addition, the five factors of
ICDI could be combined in a different way. For example, principal component analysis
(PCA) can be an alternative to the combination of the factors, which can be one of the future
directions for ICDI.
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AWC Available water content
Corr. Correlation coefficient
ECDF Empirical cumulative distribution function
eEVI EVI in ECDF percentile unit
eLST LST in ECDF percentile unit
ePET PET in ECDF percentile unit
eRain Rain in ECDF percentile unit
eSM SM in ECDF percentile unit
EVI Enhanced Vegetation Index
FC Field capacity
GLDAS Global Land Data Assimilation System
ICDI Integrated Crop Drought Index
LST Land surface temperature
MODIS Moderate Resolution Imaging Spectroradiometer
NASS National Agricultural Statistics Service
NDVI Normalized Difference Vegetation Index
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NESDIS NOAA National Environmental Satellite, Data, and Information Service
OPI Optimal Productivity Index
PCI Precipitation Condition Index
PDSI Palmer Drought Severity Index
PET Potential evapotranspiration
RMSE Root Mean Square Error
SDCI Scaled Drought Condition Index
SI Severity index
SM Soil moisture content
SPEI Standardized Precipitation Evapotranspiration Index
SPI Standardized Precipitation Index
SWDI Soil Water Deficit Index
TCI Temperature Condition Index
TRMM Tropical Rainfall Measuring Mission
USDA United States Department of Agriculture
USDM United States Drought Monitor
USGS United States Geological Survey
VCI Vegetation Condition Index
VegDRI Vegetation Drought Response Index
VHI Vegetation Health Index
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