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Abstract: The results of earthquake prediction largely depend on the quality of data and the methods
of their joint processing. At present, for a number of regions, it is possible, in addition to data from
earthquake catalogs, to use space geodesy data obtained with the help of GPS. The purpose of our
study is to evaluate the efficiency of using the time series of displacements of the Earth’s surface
according to GPS data for the systematic prediction of earthquakes. The criterion of efficiency is the
probability of successful prediction of an earthquake with a limited size of the alarm zone. We use a
machine learning method, namely the method of the minimum area of alarm, to predict earthquakes
with a magnitude greater than 6.0 and a hypocenter depth of up to 60 km, which occurred from
2016 to 2020 in Japan, and earthquakes with a magnitude greater than 5.5. and a hypocenter depth
of up to 60 km, which happened from 2013 to 2020 in California. For each region, we compare the
following results: random forecast of earthquakes, forecast obtained with the field of spatial density
of earthquake epicenters, forecast obtained with spatio-temporal fields based on GPS data, based on
seismological data, and based on combined GPS data and seismological data. The results confirm the
effectiveness of using GPS data for the systematic prediction of earthquakes.

Keywords: space geodesy data; GPS time series; spatio-temporal fields; earthquake prediction;
machine learning; method of minimum area of alarm

1. Introduction

In the immediate vicinity of the source of a future earthquake, anomalous changes in
a number of processes occur. Abnormalities are instrumentally recorded in the frequency
and intensity of seismic events, in the deformations of the Earth’s surface, in the chemical
composition of fluids, in the groundwater level, in the time of passage of seismic waves,
in the values of electric and geomagnetic fields, etc. [1–4]. Seismological monitoring data
are currently the most widely available. Therefore, systematic earthquake prediction
systems use only seismological data [5,6]. The use of additional information on spatial
and temporal changes in a geological environment can provide more accurate predictions
of earthquakes.

In recent years, the monitoring data of the Earth’s surface displacement obtained
by Global Positioning System (GPS) have been published in real time for a number of
seismically active regions. These data are used to study block models of the Earth’s crust
and in earthquake prediction studies. In the articles [7–10], the displacements of the
Earth’s surface were estimated from triplets of GPS ground network stations. Triangles
with vertices at the stations’ locations can intersect different plates. It was shown that
before strong earthquakes, there are changes in the area and other parameters of the
triangles. In a number of later works, artificial intelligence methods were used to study the
effectiveness of earthquake predictions based on GPS data [11–14]. In [15], GPS ground
displacement data were used to predict 15 major earthquakes in western North America in
2007–2016. The forecast algorithm uses time series of horizontal and vertical displacements
of GPS stations.
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It is known that the accuracy of GPS measurements for vertical components of co-
ordinates is 2–4 times less than for horizontal ones [16,17]. Therefore, in this paper, we
considered only the horizontal components of the displacement velocities. It was theoreti-
cally shown in [18] that the field of horizontal velocities of the Earth’s surface displacements
reflects the movements of the crustal blocks. Analysis of GPS data for the Bishkek geo-
dynamic test area in the Tien Shan showed that seismicity increases in those areas where
the horizontal component of the rate of change in the size and/or rotation of the Earth’s
surface is close to its maximum values [19].

In this article, we use a statistical approach to assess the effectiveness of using GPS
data for earthquake prediction. Our conclusion is based on the results of earthquake
forecasting in two regions, which differ significantly in the seismotectonic and geodynamic
regimes. Following a statistical approach, we consider GPS data to be effective if the result
of a successful prediction of earthquakes based on these data is significantly better than
the result of a random prediction of the same earthquakes or a prediction based on spatial
seismicity data.

Obviously, the forecast result depends on both the GPS time series preprocessing meth-
ods and the forecast method. Currently, a number of works are underway using machine
learning methods for predicting earthquakes. They include the study of mathematical
models for earthquake prediction, machine learning methods and testing earthquake pre-
diction algorithms [20–29]. Many articles are devoted to earthquake prediction using
artificial neural networks [30,31] and more sophisticated methods, including hybrid neu-
ral network [32], and recurrent neural network [33], and a lot of other machine learning
methods [34]. Despite the relatively positive results claimed in those studies, some simpler
models can offer similar or better predictive powers [35]. This is due to the fact that the
number of major seismic events is very low, making the forecasting of such events more
difficult [36].

Here we use a machine learning prediction method that we call the method of the
minimum area of alarm [37]. Forecast training is carried out according to the precedents
of the occurred target earthquakes. The learning-based minimum alarm zone method
systematically calculates a predictive alarm zone map in which a target earthquake with
a magnitude greater than a predetermined magnitude is expected. The alarm zone is
determined by the function of the grid spatio-temporal fields of features calculated on
the basis of the initial data. For many seismically active regions, the quality of machine
learning for predicting strong earthquakes is limited by a small number of precedents. Our
method uses a mathematical model that allows, during training, to select anomalies in
feature fields that precede target earthquakes, compare these anomalies with each other,
and select other anomalies in feature fields similar to those selected during training. This
model introduces constraints on the prediction rule that help compensate to some extent
for a small number of use cases during training.

This article is divided into three sections. In Section 2, we briefly discuss the method
of the minimum area of alarm. Sections 3 and 4 present and discuss the results of modeling
the forecast of strong earthquakes in Japan and California. For each region, we compare
the following results: random forecast of earthquakes, forecast obtained with the field
of spatial density of earthquake epicenters, forecast obtained with spatio-temporal fields
based on GPS data, based on seismological data, and based on combined GPS data and
seismological data.

2. Method

The method of the minimum area of alarm was designed to systematically predict
strong earthquakes with a magnitude above a certain threshold [37]. The platform for sys-
tematic earthquake prediction regularly with a step ∆t calculates the alarm zone, in which
the epicenter of the target earthquake is expected. A demo version of the platform has been
available since 2018 at https://distcomp.ru/geo/prognosis/ (accessed on 5 March 2021).

https://distcomp.ru/geo/prognosis/
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We assume that strong earthquakes are preceded by abnormal manifestations, which
can be represented in a spatio-temporal grid-based fields of features. The method of
the minimum area of alarm is trained to calculate alarm zones based on retrospective
observations consisting of the spatio-temporal fields of features, Fi, i = 1, . . . , I, and a
sample consisting of marked target abnormal objects and an unmarked mixture of target
and normal objects. The abnormal objects here are the field values selected by the machine
learning algorithm among the points preceding the epicenters of the target earthquakes
q = 1, . . . , Q with magnitudes m ≥ M (earthquake precursors). An unlabeled mixture of
objects is represented by points with field values at all other grid nodes. This formulation
in machine learning refers to one-class classification problems [38–40].

The fields Fi are set in a single coordinate grid. The values of the fields at the grid
nodes n = 1, . . . , N correspond to the points of the I-dimensional feature space f(n) ∈ RI .
During training, the spatio-temporal field Φ, called the alarm field, is calculated. The values
of the alarm field φ(n) ≥ φ0 allocate a spatio-temporal area in it, called the alarm area.
The temporal slice of the alarm area at the time of the forecast t∗ is exactly the alarm zone
S(t∗), in which the appearance of the epicenter of the target earthquake is predicted at the
interval [t∗, t∗ + ∆t).

Figure 1 shows operations in the interval [t∗ − ∆t, t∗). The program downloads new
data from remote servers and user computer, then preprocess them, calculates spatial and
spatio-temporal fields of features, and selects data on target earthquakes from the catalog.
Then, using the algorithm of the method of the minimum area of alarm, the program
calculates the alarm field Φ in the interval from the beginning of training to the moment
of forecasting t∗. The time interval of the alarm field at the moment t∗ is a map of the
alarm zone.

Figure 1. Flowchart of operations in the intervals ∆t before the forecast.

The target earthquake is predicted at the step [t∗, t∗ + ∆t) if its epicenter falls into the
alarm zone. The larger the product S(t∗)∆t, the more successful the forecast. However,
it is obvious that the value of this spatio-temporal area should be reasonably limited.
The indicators of the forecast quality are the estimations of the probability of a successful
forecast of events (the forecast probability) and the size of the alarm area in the training
interval (volume of alarm). As a result of training, it is desirable to obtain a solution in
which the maximum number of successful forecasts of target events is achieved for a given
size of the volume of alarm.

The method of the minimum area of alarm is based on a model that introduces a
measure of the anomality for points in the feature space. The algorithm uses this measure
to select points that can be considered precursors of target earthquakes. The model contains
two assumptions:

1. Abnormality: In feature space, the target earthquakes are preceded by points (earth-
quake precursors) for which the values of some components (the values of some
feature fields) are unlikely and close to the maximum (or minimum). To simplify the
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explanation, we assumed without loss of generality that the precursors refer only to
the maximal values of the fields of features.

2. Monotonicity: Feature space points that are, component-wise, larger than the earth-
quake precursor can also be precursors of similar target events.

For training, the earthquake prediction algorithm requires determining the precursor
for each target event. Let the event q be preceded by a precursor f(q) ∈ RI . The precursor
is associated with a feature space area whose points are, component-wise, greater than or
equal to f(q), i.e., the area w(q) = {f(n) ∈ RI : f (n)i ≥ f (q)i , i = 1, 2, . . . , I}. We called this
area the orthant w(q) with a vertex at f(q) and the points f(n) ∈ w(q) are called the base points
of the target event q.

According to the monotonicity condition, base points are also precursors of events
that are similar to the event q. In geographical coordinates, each base point forms a cylinder
of alarm with the radius R and the element T. The alarm cylinder of the base point f(n)

has a circular base center at the grid node n with coordinates (x(n), y(n), t(n)), a radius of
the base R, and the elements [(x(n), y(n), t(n)), (x(n), y(n), t(n) + T)], where t(n) ∈ [t0, t∗], in
which t0 is the start time of training and t∗ is the time of action on forecast. An earthquake
can only be predicted if its epicenter falls into one of the alarm cylinders. The union
of alarm cylinders formed by the base points of the orthant w(q) selects a set of grid
nodes W(q), |W(q)| = L(q). Accordingly, it follows that an earthquake q with the epicenter
coordinates (x(q), y(q), t(q)) can be predicted only if the cylinder with the center of the
base of (x(q), y(q), t(q)), a radius R, and the elements [(x(q), y(q), t(q) − T), (x(q), y(q), t(q))]
contains at least one base point. This cylinder is called a precursor cylinder. The precursor
of event q is the point f(q) ∈ RI , which has the minimum value of the alarm volume
v(q) = L(q)/L among all points, corresponding to the grid nodes of the precursor cylinder,
where L is the number of all grid nodes of the spatio-temporal area of analysis. The quantity
v(q) (volume of the precursor) defines the measure of anomality for the precursor of event q.
In the paper [41], the measure of the abnormality for target events was determined by the
likelihood ratio estimate.

The forecast quality is determined by two indicators: (1) The probability of prediction
U, equal to the fraction of correctly forecasted target events Q∗ to all target Q events,
U = Q∗/Q, and (2) the volume of alarm V, equal to the fraction of the number of grid
nodes of the alarm field L∗ with the values φ(n) ≥ φ to the number of all grid nodes of the
analyzed area L, V = L∗/L. It can be seen from the definition that the alarm volume V
is equal to the probability of the detection of target events by random areas consisting of
L∗ = VL grid nodes. Usually, the quality of the forecast is determined by the dependence
U(V), which is analogous to the error curve represented by the ROC (receiver operating
characteristic) curve [42–44].

In classification problems, the decision rule is found by minimizing the function of
losses from target detection errors and false alarms. The training algorithm is optimal if it
calculates an alarm area with the volume V0, which, for any value V ≤ V0, provides the
maximum value of U. In our case, this solution requires large calculations because the
sets of base points associated with different precursors intersect. Therefore, we considered
solutions that are close to optimal [37].

Consider the algorithm for constructing the alarm field.

1. Generate a training sample set {f(q), v(q)}. Arrange the precedents f(q), q = 1, . . . , Q,
in accordance with the increase in the alarm volume of the target events v(1) ≤ v(2) ≤
· · · ≤ v(q) ≤ · · · ≤ v(Q).

2. Calculate the alarm field Φ.

(a) Assign to the nodes of the grid of the alarm field Φ a value of 1.
(b) Replace the value of 1 of the field Φ with V(1) = v(1) in the set W(1) of the

grid nodes corresponding to the base points of the precedent f(1); replace
the value of 1 with V(2) = |W(1) ∪W(2)| / L at the grid nodes W(2)\W(1);
replace the value of 1 with V(3) = |W(1) ∪W(2) ∪W(3)| / L at the grid nodes
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W(3)\(W(1) ∪W(2)) and then sequentially replace the values of 1 with the
corresponding values of the alarm volumes. The resulting field Φ takes the
values V(1) ≤ V(2) ≤ · · · ≤ V(q) ≤ · · · ≤ V(Q) or 1. The value V(1)
refers to grid nodes from the set W(1), V(2) refers to grid nodes from the set
(W(2)\W(1)), V(3) refers to grid nodes from the set (W(3)\(W(1) ∪W(2))), etc.

Figure 2 shows a flowchart of the algorithm. The grid feature fields and the sample
of target earthquakes are regularly updated with a step ∆t. For each epicenter from the
sample, the precursor cylinders are calculated. Then, among the points of the feature space
corresponding to the grid nodes in these cylinders, precursors f(q), orthants w(q), and alarm
volumes of precursors v(q) are selected. Then the precursors and orthants are ordered
according to the increase in the alarm volumes of the precursors. After that, the alarm area
and the map of the alarm zone are calculated.

Figure 2. Flowchart of the algorithm.

3. Modeling
3.1. Technology

The efficiency of using the information on the Earth’s surface displacements according
to GPS data for predicting earthquakes largely depends on the methods of data processing
and analysis. For earthquake prediction, we used the method of the minimum area of
alarm. Modeling simulates the operation of a demo platform (https://distcomp.ru/geo/
prognosis/) (accessed on 5 March 2021). We performed modeling on the GIS GeoTime 3
(http://geo.iitp.ru/GT3/) (accessed on 5 March 2021).

The modeling technology, similarly to the forecast, is as follows. The area of analysis
is selected. Point fields, time series, and rasters can be used as input. All initial data
are converted into uniform grid-based spatial and spatio-temporal fields, which are used
to calculate the zones of expected epicenters of target earthquakes at each moment of
the forecast. The forecast is carried out systematically with a constant step. At each
step n, training is performed using the data available from the start of training to the
moment of forecasting t∗, and the decision rule computed during training is checked
at the interval [t∗, t∗ + ∆t). In the process of training, according to the monitoring data,
new values of the forecast feature grid fields are calculated, the training sample of target
earthquake epicenters is supplemented, the alarm area Φ ≤ V0 and the alarm zone S(t∗)
are calculated. Testing verifies whether new epicenters of target earthquakes are in the
calculated alarm zone.

3.2. Area of Analysis

The regions under study are in Japan within the boundaries of 130–145.5◦E and
30–43◦N, and California (USA) within the boundaries of 125–114◦W and 32–43◦N. We

https://distcomp.ru/geo/prognosis/
https://distcomp.ru/geo/prognosis/
http://geo.iitp.ru/GT3/


Remote Sens. 2021, 13, 1842 6 of 24

forecasted earthquakes with a hypocenter depth of H ≤ 60 km for both regions, but with
different magnitudes: m ≥ 6.0 in Japan and m ≥ 5.5 in California. The analysis of the
depths of the hypocenters characteristic of the foci of tectonic earthquakes and the zones
of their preparation in each of the regions under consideration was not carried out in this
work. The area of analysis was determined by the intersection of two areas, A and B. Area
A was defined as the territory for which the distance from any point to GPS ground receiv-
ing stations does not exceed 50 km. Area B was calculated from seismological data. It was
selected such that, with an alarm volume of V = 0.2, the probability of predicting target
earthquakes from the field of spatial (2D) density of earthquake epicenters U2D ≈ 0.3–0.4.
For this, in the time interval before the start of training, the 2D density field of earthquake
epicenters S with an averaging radius of 50 km was calculated. The boundary of the area
of analysis was determined by the values of the field sn ≥ C. If the forecast probability
for the threshold C was greater than 0.3–0.4, then the threshold C had increased, and the
procedure was repeated. Furthermore, the area of analysis was found as the intersection of
areas A and B.

3.3. GPS Data Preprocessing

We analyzed the time series of daily horizontal displacements of the Earth’s surface
at the intervals 1 January 2009–26 July 2020 for Japan and 1 January 2008–14 November
2020 for California. The data were obtained from the Nevada Geodetic Laboratory (NGL),
http://geodesy.unr.edu/about.php (accessed on 5 March 2021) [45]. There are 1420 and
1803 GPS receiving stations in Japan and California, respectively, and the analysis areas
contain 1229 and 1204 stations, respectively. The networks of GPS receiving stations, the
areas of analysis, and the epicenters of target earthquakes are shown in Figure 3. The
stations evenly cover the analysis area. The average minimum distance between stations
is 12.8 km for Japan and 9.38 km for California, with standard deviations of 5.4 and
5.74 km, respectively.

Figure 3. Areas of analysis, Global Positioning System (GPS) ground receiving stations, and the epicenters of target
earthquakes. (Left) Japan, epicenters of target earthquakes with magnitude m ≥ 6.0 in the interval 1 January 2011–26 July
2020; (Right) California, epicenters of target earthquakes with magnitude m ≥ 5.5, in the interval 23 December 2009–14
November 2020. The epicenters of the target earthquakes for which the forecast was tested are highlighted in red and
the epicenters on which the forecast was initial trained in yellow.

The calculation of the feature fields used for the earthquake prediction based on GPS
data was performed in two stages. The purpose of the first stage was to extract a useful

http://geodesy.unr.edu/about.php
http://geodesy.unr.edu/about.php
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signal from the time series of coordinates of the receiving stations. The purpose of the
second stage was to calculate spatio-temporal fields of forecast features.

3.3.1. Time Series of the Earth’s Surface Displacement Velocities

The initial data were daily time series of coordinates x(t) and y(t) of GPS ground
receiving stations in the W–E and N–S directions in the intervals 1 January 2009–26
July 2020 for Japan and 1 January 2008–14 November 2020 for California. The daily
horizontal velocities of the Earth’s surface displacements gx(t) and gy(t) were deter-
mined by two coordinates of the GPS receiving station, spaced in time by the interval
T0: gx(t) = (x(t)− x(t− T0))/T0, gy(t) = (y(t)− y(t− T0))/T0. There were discontinu-
ities (gaps) in the time series. In our case, for each coordinate, there were 23,682 gaps
and 168,218 days of missed measurements for Japan, and 29,977 gaps and 357,067 days of
missed measurements for California. Since the displacement rate estimates are ahead of the
time of the values of the first station coordinates x(t− T0) and y(t− T0) by T0 days, each
gap in the time series of the station coordinates increases the number of missing values
in the time series of velocities by T0 days. With a large number of gaps, the number of
missing velocity values can significantly exceed the number of missing coordinate values.
To limit the number of missed velocity values, we linearly interpolated the coordinate
values in the gaps less than or equal to T0. For gaps of more than T0 days, we ended the
calculation of the speed at the last value of the station coordinate before the start of the
rupture and re-estimated the rates, starting from the first value of the station coordinate
after the rupture.

To calculate the daily rates, the interval T0 = 30 days was selected. For this interval,
the station movement values were comparable to the noise values of the daily measure-
ments. For 30-day intervals, there were 23,119 gaps in each coordinate of the area in
Japan, which was 97.62% of all gaps in the time series, and 50,537 blanks in the mea-
surements (30.04%). For California, there were 27,990 measurement gaps (93.37%) and
88,387 blank measurements (24.75%) over a 30-day period for each coordinate. At the
same time, the number of missing speed values in each of the W–E and N–S direc-
tions increased for Japan by (23,682 – 23,119) ×30 = 16,890 (10.04%), and for California by
(29,977 – 27,990) × 30 = 59,610 (16.69%).

The first stage was completed by calculating the spatio-temporal fields of the rate
components Vx and Vy in the W–E and N–S directions. The fields were presented in the grid
∆x× ∆y× ∆t = 0.1◦ × 0.075◦ × 1 day. The calculation of the fields was carried out using
an interpolation technique known as inverse distance weighting. During interpolation,
the gaps in the values of the time series were not filled, but they were taken into account as
the absence of the receiving station. The values of the fields Vx and Vy at the grid points for
each time slice of the field of the velocity component W–E were calculated by the formula:

Vxn(t) =
∑K

k=1 g(t)xk /rp
k

∑K
k=1 1/rp

k

, (1)

where Vxn(t) is the value of the field of the W–E strain rate component at the grid node n
at the moment t, K is the maximum number of stations closest to the node n in the circle of
radius Rmax, the values of which were used for interpolation, gxk(t) is the value of the W–E
strain rate component for the station k, k = 1, . . . , K, at the time t, rk ≤ Rmax is the distance
from the k-th station to the grid node n, and p is the degree that determines the dependence
of the station weight on its distance to the grid node. The interpolation parameters were
K = 5, Rmax = 50 km, and p = 1. If rk = 0, then Vxn(t) = gxk(t). The calculations of the
field of the N–S strain rate components were similar.

Figures 4 and 5 show an example of the time series at the point with coordinates
35.45◦N and 139.2◦E for Japan: (A) coordinates of the receiving station, (B) daily velocities,
and (C) values of the field components Vx and Vy. The time series in the figure on the left
refer to the interval 1 January 2009–26 July 2020, and on the right, to the interval 1 January
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2016–14 December 2016. The jump in the time series of the station coordinates and the
ejection of the velocity series was caused by the Tohoku earthquake (11 April 2011). It can
be seen that the gaps in the values of the coordinates of the stations cause discontinuities
in the time series of the daily rates of the displacement of the Earth’s surface. However,
when calculating Vx and Vy strain rate fields, the missing velocity values were filled in by
interpolating data from other GPS receiving stations. Figures 6 and 7 show similar example
of the time series at the point with coordinates 39.49◦N and 123.2◦W for California for the
intervals 1 January 2008–14 November 2020 and 1 January 2013–1 October 2013.

Figure 4. Time series of displacements in the W–E direction of the Japanese receiving station at 35.45◦N and 139.2◦E.
(Left) Interval 1 January 2009–26 July 2020. (Right) Interval 1 January 2016–14 December 2016. (A,D) time series of
coordinates x(t) of the station (mm); (B,E) time series of daily rates gxk(t) of the station (mm/day); (C,F) time series Vxn(t)
at the point n of the field Vx (mm/day).

Figure 5. Time series of displacements in the N–S direction of the Japanese receiving station at 35.45◦N and 139.2◦E.
(Left) Interval 1 January 2009–26 July 2020. (Right) Interval 1 January 2016–14 December 2016. (A,D) time series of
coordinates y(t) of the station (mm); (B,E) time series of daily rates gyk(t) of the station (mm/day); (C,F) time series Vyn(t)
at the point n of the field Vy (mm/day).
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Figure 6. Time series of displacements in the W–E direction of the Californian receiving station at 39.49◦N and 123.2◦W.
(Left) Interval 1 January 2008–14 November 2020. (Right) Interval 1 January 2013–1 October 2013. (A,D) time series of
coordinates x(t) of the station (mm); (B,E) time series of daily rates gxk(t) of the station (mm/day); (C,F) time series Vxn(t)
at the point n of the field Vx (mm/day).

Figure 7. Time series of displacements in the N–S direction of the Californian receiving station at 39.49◦N and 123.2◦W.
(Left) Interval 1 January 2008–14 November 2020. (Right) Interval 1 January 2013–1 October 2013. (A,D) time series of
coordinates y(t) of the station (mm); (B,E) time series of daily rates gyk(t) of the station (mm/day); (C,F) time series Vyn(t)
at the point n of the field Vy (mm/day).

3.3.2. Spatio-Temporal Fields of Features

We assume that strong earthquakes are preceded by spatio-temporal anomalous
changes in the regime of various deformations of the Earth’s surface. Therefore, we
looked for fields containing information about the anomalous values of the change in
the deformation mode. The basis of the considered fields of features was the following
invariants of the strain rate fields.

• F1 is the field of divergence of the strain rates:

divVn =
∂Vxn

∂x
+

∂Vyn

∂y
(2)
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The maximum and minimum values of the divergence field refer to places where there
is a relative contraction or expansion of the size of a small horizontal area.

• F2 is the field of rotor of the strain rates:

rotVn =
∂Vxn

∂y
−

∂Vyn

∂x
(3)

The field values determine the direction and intensity of the field twisting around the
vertical axis.

• F3 is the field of shear of the strain rates:

shVn =
1
2

√(
∂Vxn

∂x
−

∂Vyn

∂y

)2

+

(
∂Vxn

∂y
+

∂Vyn

∂x

)2

(4)

Figures 8 and 9 show a time series of fields F1, F2, and F3 at the same points as in
Figures 4–7.

The fields of features F4, F5, and F6 represent changes in the fields of the strain rate
invariants over time. They are equal to the ratios of the mean values of the invariants in
two consecutive intervals to the standard deviation of this difference. The values of the
fields are converted into the grid ∆x× ∆y× ∆t = 0.1◦ × 0.075◦ × 30 days.

Figure 8. Japan. Time series at point 35.45◦N and 139.2◦E. (A) The divergence field F1 (10−6/day); (B) the rotor field F2

(10−6/day); (C) the shear field F3 (10−6/day).
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Figure 9. California. Time series at point 39.49◦N and 123.2◦W. (A) The divergence field F1 (10−6/day); (B) the rotor field
F2 (10−6/day); (C) the shear field F3 (10−6/day).

• F4 is the field of the temporal variations in the divergence strain rate.

The value of the field f4n(t) at time t is equal to the ratio of the difference (div2n − div1n)
between the mean values of the divergence in two consecutive intervals, namely, T1 and T2,
to the standard deviation of this difference σn(div), T1 = T2 = 361 days.

f4n(t) = (div2n − div1n)/σn(div), (5)

where div2n is calculated from the values of field F1 at the interval (t − T2, t), div1 is
calculated at the interval (t− T2 − T1, t− T2).

• F5 is the field of the temporal variations in the rotor rate.

The values of field f5(t) are calculated similarly to the values of field F4,

f5n(t) = (rot2n − rot1n)/σn(rot). (6)

• F6 is the field of the temporal variations in the shear deformation rate.

The values of field f6(t) are calculated similarly to the values of field F4,

f6n(t) = (sh2n − sh1n)/σn(sh), (7)

Figures 10 and 11 show a time series of fields F4, F5, and F6 at the same points as in
Figures 4–7.
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Figure 10. Japan. Time series at point 35.45◦N and 139.2◦E. (A) Field F4; (B) field F5; (C) field F6.

Figure 11. California. Time series at point 39.49◦N and 123.2◦W. (A) Field F4 ; (B) field F5; (C) field F6.
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Fields F7, F8, and F9 represent spatial correlations of strain rate changes in a sliding
window of 75× 75 km2. With this window size, the correlation coefficients are estimated
in approximately 70–80 grid points of the fields.

• F7 is the field of spatial correlations in fields F4 and F5.
• F8 is the field of spatial correlations in fields F4 and F6.
• F9 is the field of spatial correlations in fields F5 and F6.

The time series of the correlation fields at the same points as in Figures 4–7 are shown
in Figures 12 and 13.

Figure 12. Japan. Time series at point 35.45◦N and 139.2◦E. (A) Field F7; (B) field F8; (C) field F9.

Correlation fields F7, F8, and F9 carry information about the spatial relationship be-
tween the values of the change in the rate of different pairs of deformation types. The mini-
mum or maximum fields of the correlation fields combine this information.

To combine information on the spatial relationship between the values of the change
in the rate of different pairs of deformation types, you can use the field of maximum or
minimum values of the correlation fields F7, F8, and F9. This operation can be interpreted
in terms of fuzzy logic [46]. For Japan, the most successful prediction of target earthquakes
was obtained using the F10 field:

• F10 is the field of minimum values of the fields F7 and F9:

f10n(t) = min( f7n(t), f9n(t)) (8)

The time series of field F10 at point 35.45◦N and 139.2◦E in Japan and 39.49◦N and
123.2◦W in California are shown in Figures 14 and 15.
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Figure 13. California. Time series at point 39.49◦N and 123.2◦W. (A) Field F7; (B) field F8; (C) field F9.

Figure 14. Japan. The time series of field F10 at point 35.45◦N and 139.2◦.

Figure 15. California. The time series of field F10 at point 39.49◦N and 123.2◦W.
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3.4. Seismological Data Preprocessing

Seismological data for Japan and California were taken from the Japan Meteorological
Agency earthquake catalogs [47,48] and the National Earthquake Information Center
(NEIC) [49] at intervals 02 June 2002–26 July 2020 and 1 January 1995–20 December 2020,
represented by earthquakes with a magnitude of m ≥ 2.0 and a hypocenter depth of
H ≤ 160 km.

• S1 is the 3D field of the density of earthquake epicenters.
• S2 is the 3D field of the mean earthquake magnitude.
• S3 is the 3D field of the negative temporal anomalies of the density of earthquake

epicenters.
• S4 is the 3D field of the positive temporal anomalies of the density of earthquake

epicenters.
• S5 is the 3D field of the negative temporal anomalies of the mean earthquake magni-

tude.
• S6 is the 3D field of the positive temporal anomalies of the mean earthquake magni-

tude.
• S7 is the 2D field of the density of earthquake epicenters: Kernel smoothing with the

parameter R = 50 km in the interval from the beginning of the analysis to the start
of training.

• S8 is the 3D field of quantiles of the background density of earthquake epicenters,
calculated using the interval from the beginning of the analysis to the start of training,
which corresponds to the density values of earthquake epicenters at the current time.

The estimation of 3D fields S1 and S2 was performed with the method of local kernel re-
gression. The kernel function for the q-th earthquake has the form Kq = [cosh2(rq/R)2cosh2

(tq/T)]−1, where rq < Rε and tq < Tε are the distance and time interval between the q-th
epicenter of the earthquake and the node of the 3D grid of the field, ε = 2, R = 50 km,
T = 100 days for S1 and R = 100 km, and T = 730 days for S2. The field S7 was calculated
with the kernel function Kq = [cosh2(rq/R)2]−1. The parameters for evaluating the fields,
the radii R, and the interval T were chosen empirically, considering the step of the network
of fields and the approximate number of events in the evaluation window. To calculate the
fields S3, S4, S5, and S6, Student’s t-test was used. This t-statistic was determined for each
grid node as the ratio of the difference in the average values of the current interval T2 and
the background interval T1 to the standard deviation of this difference. Positive values of
the t-statistic correspond to an increase in the value on the test interval.

We also analyzed fields similar to the fields S3, S4, S5, and S6, but with different
values of the T2 and T1 intervals.

When predicting from seismological data, the following three fields turned out to be
the most informative.

• S9 = S1/(S8 + 0.001) is the field of ratios of the density values of the earthquake
epicenters s1n to the values of the quantiles of the density of the epicenters calculated
on the interval from the beginning of the analysis to the start of training, which corre-
sponds to the density values of earthquake epicenters at the current time (s8n + 0.001).

• S10 is the field of negative anomalies of Student’s t-statistic of the density of earthquake
epicenters with the intervals T1 = 1095 and T2 = 365 days.

• S11 is the field of negative anomalies of Student’s t-statistic of the mean earthquake
magnitude with the intervals T1 = 1095 and T2 = 730 days.

For Japan, the most informative were the fields S9 and S10. Both of them previously
proved to be the most effective in predicting earthquakes and their magnitudes in Kam-
chatka and the Aegean region [50]. The anomalous values of the S9 field correspond to
areas of the seismic process in which the density values of earthquake epicenters are quite
high but significantly less than the average values of the density of epicenters in the interval
from the beginning of the analysis to the start of training. The anomalous values of the
S10 field correspond to the spatio-temporal regions of the seismic process, in which the
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average values of the density of earthquake epicenters in the T2 interval are significantly
lower than the average field values in the T1 interval. These changes highlight anomalous
areas in which a quiescence sets in after the activation of the seismic process. The time
series of the S10 field simulates the preparation of strong earthquakes proposed by the IPE
model (named after the Institute of Physics of the Earth) proposed in [51]. For California,
the most informative were the fields S9 and S11.

3.5. Earthquake Forecast

The initial training intervals started for Japan and California on 1 January 2011 and 23
December 2009 and ended before the next forecast, starting on 20 November 2015 and 19
January 2013, respectively. The testing intervals were 20 November 2015–10 September 2020
for Japan and 19 January 2013–14 November 2020 for California. The areas of analysis at the
testing intervals contained 14 epicenters of target earthquakes in Japan with a magnitude
of m ≥ 6.0 and 12 epicenters of target earthquakes in California with a magnitude of
m ≥ 5.5. The alarm cylinder parameters were the cylinder radius R = 16 km and its
generatrix T = 91 days for Japan and R = 18 km and its generatrix T = 61 days for
California. The best forecast of target earthquakes according to GPS data for Japan was
obtained from the F10 field and for California from the F4 and F6 fields. Tables 1 and 2
show the forecast results for each target event in Japan and California. The forecast is
considered successful if the epicenter of the target event falls into the alarm zone with the
alarm volume value V ≤ 0.20. The final forecast results are summarized in Tables 3 and 4.
It can be seen that the forecast probabilities from GPS data with an alarm volume V ≤ 0.20
are significantly higher than the forecast probability for a random field and a spatial density
field of earthquake epicenters S7.

Table 1. Japan. Results of forecasting earthquakes with magnitudes m ≥ 6.0 from field F10 and field S7.

N Date Time Long. Lat. Earthquake
Magnitude

Alarm Volume
for Prediction
from Field F10

Alarm Volume
for Prediction
from Field S7

1 14 January 2016 06:25:33 142.80 41.97 6.7 0.46 0.24
2 14 April 2016 15:26:34 130.81 32.74 6.5 0.13 0.50
3 14 April 2016 18:03:46 130.78 32.70 6.4 0.13 0.50
4 15 April 2016 19:25:05 130.76 32.76 7.3 0.13 0.50
5 21 October 2016 08:07:22 133.86 35.38 6.6 0.32 1.00
6 24 November 2016 00:23:36 141.35 37.18 6.2 0.69 0.02
7 28 December 2016 15:38:49 140.57 36.72 6.3 0.04 0.02
8 8 April 2018 19:32:30 132.59 35.19 6.1 0.20 0.86
9 18 June 2018 01:58:34 135.62 34.84 6.1 0.45 0.76

10 7 July 2018 14:23:48 140.59 35.17 6.0 0.15 0.16
11 8 January 2019 15:39:30 131.17 30.57 6.0 0.10 0.28
12 18 June 2019 16:22:19 139.48 38.61 6.7 0.68 1.00
13 19 April 2020 23:39:05 142.10 38.89 6.2 0.20 0.03
14 24 June 2020 23:39:05 141.11 35.55 6.1 0.77 0.04
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Table 2. California. Results of forecasting earthquakes with magnitudes m ≥ 5.5 from fields F4 and F6 and field S7.

N Date Time Long. Lat. Earthquake
Magnitude

Alarm Volume for
Prediction from
Fields F4 and F6

Alarm Volume
for Prediction
from Field S7

1 24 May 2013 03:47:08 121.06 40.19 5.7 0.18 0.84
2 24 August 2014 10:20:44 122.31 38.21 6.0 0.17 0.62
3 8 December 2016 08:18:00 118.90 38.38 5.6 0.10 0.48
4 28 December 2016 08:22:12 118.90 38.40 5.6 0.10 0.48
5 28 December 2016 09:13:47 118.90 38.38 5.5 0.10 0.48
6 23 June 2019 03:53:02 124.30 40.28 5.6 0.47 0.30
7 4 July 2019 17:33:49 117.50 35.70 6.4 0.10 0.04
8 6 July 2019 03:19:53 117.60 35.77 7.1 0.10 0.04
9 6 July 2019 03:47:53 117.75 35.90 5.5 0.10 0.04
10 15 May 2020 11:03:27 117.85 38.17 6.5 0.03 0.29
11 4 June 2020 01:32:11 117.43 35.61 5.5 0.48 0.04
12 24 June 2020 17:40:49 117.98 36.45 5.8 0.03 0.29

Table 3. Japan. Probabilities of predicting earthquakes with magnitudes m ≥ 6.0.

Feature Field F10 Spatial Field of Epicenter Density S7

Alarm
Volume

Number of
Successful
Predictions

Probability of
Successful
Predictions

Number of
Successful
Predictions

Probability of
Successful
Predictions

0.01 0 0.00 0 0.00
0.05 1 0.07 4 0.29
0.10 2 0.14 4 0.29
0.15 5 0.36 4 0.29
0.20 8 0.57 5 0.36

Table 4. California. Probabilities of predicting earthquakes with magnitudes m ≥ 5.5.

Feature Fields F4 and F6 Spatial Field of Epicenter Density S7

Alarm
Volume

Number of
Successful
Predictions

Probability of
Successful
Predictions

Number of
Successful
Predictions

Probability of
Successful
Predictions

0.01 0 0.00 0 0.00
0.05 2 0.17 4 0.33
0.10 2 0.17 4 0.33
0.15 8 0.67 4 0.33
0.20 10 0.83 4 0.33

Let us consider the prediction of target earthquakes based on feature fields calculated
from the earthquake catalog. The alarm fields for Japan and California were calculated in
the same grid and with the same parameters of the alarm cylinders as for the forecasted
results from the GPS fields.

Two fields of features were selected for Japan: Field S9 = S1/(S8 + 0.001) and field
S10. The results of the forecasting based on seismological feature fields S9 and S10, as well
as based on fields S9, S10, and F10 are shown in Table 5. Table 6 shows the probabilities
of a successful prediction for several alarm volumes. From Tables 5 and 6, it can be seen
that the forecast results for fields S9, S10, and F12 practically do not differ from the forecast
for fields S9 and S10. Fields S9 and S11 proved to be the most informative for predicting
earthquakes in California. The results of the forecasting and the probabilities of a successful
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prediction based on seismological feature fields S9 and S11, as well as based on fields S9,
S11, F4, and F6 are shown in Tables 7 and 8.

Table 5. Japan. Results of forecasting earthquakes with magnitudes m ≥ 6.0 from seismological fields and from the same
fields together with the GPS field.

N Date Time Long. Lat. Earthquake
Magnitude

Alarm Volume
for Prediction

from Fields
S9 and S10

Alarm Volume
for Prediction
from Fields S9,

S10, and F10

1 14 January 2016 06:25:33 142.80 41.97 6.7 0.20 0.24
2 14 April 2016 15:26:34 130.81 32.74 6.5 0.17 0.15
3 14 April 2016 18:03:46 130.78 32.70 6.4 0.17 0.15
4 15 April 2016 19:25:05 130.76 32.76 7.3 0.17 0.15
5 21 October 2016 08:07:22 133.86 35.38 6.6 1.00 1.00
6 24 November 2016 00:23:36 141.35 37.18 6.2 0.01 0.01
7 28 December 2016 15:38:49 140.57 36.72 6.3 0.04 0.01
8 8 April 2018 19:32:30 132.59 35.19 6.1 0.84 0.38
9 18 June 2018 01:58:34 135.62 34.84 6.1 0.05 0.18
10 7 July 2018 14:23:48 140.59 35.17 6.0 0.19 0.09
11 8 January 2019 15:39:30 131.17 30.57 6.0 0.20 0.09
12 18 June 2019 16:22:19 139.48 38.61 6.7 0.84 1.00
13 19 April 2020 23:39:05 142.10 38.89 6.2 0.02 0.05
14 24 June 2020 23:39:05 141.11 35.55 6.1 0.02 0.07

Table 6. Japan. Probabilities of earthquake prediction with magnitudes m ≥ 6.0 from seismological
fields and from the same fields together with the GPS field.

Feature Fields S9 and S10 Feature Fields S9, S10, and F10

Alarm
Volume

Number of
Successful
Predictions

Probability of
Successful
Predictions

Number of
Successful
Predictions

Probability of
Successful
Predictions

0.01 1 0.07 2 0.14
0.05 5 0.36 3 0.21
0.10 5 0.36 6 0.43
0.15 5 0.36 9 0.64
0.20 10 0.71 10 0.71

Table 7. California. Results of forecasting earthquakes with magnitudes m ≥ 5.5 from seismological fields and from the
same fields together with GPS fields.

N Date Time Long. Lat. Earthquake
Magnitude

Alarm Volume
for Prediction

from Fields
S9 and S11

Alarm Volume
for Prediction

from Fields
S9, S11, F4, and F6

1 24 May 2013 03:47:08 121.06 40.19 5.7 0.03 0.01
2 24 August 2014 10:20:44 122.31 38.21 6.0 0.05 0.02
3 8 December 2016 08:18:00 118.90 38.38 5.6 0.15 0.05
4 28 December 2016 08:22:12 118.90 38.40 5.6 0.15 0.05
5 28 December 2016 09:13:47 118.90 38.38 5.5 0.15 0.05
6 23 June 2019 03:53:02 124.30 40.28 5.6 0.20 0.11
7 4 July 2019 17:33:49 117.50 35.70 6.4 1.00 0.05
8 6 July 2019 03:19:53 117.60 35.77 7.1 0.20 0.05
9 6 July 2019 03:47:53 117.75 35.90 5.5 0.20 0.05

10 15 May 2020 11:03:27 117.85 38.17 6.5 1.00 1.00
11 4 June 2020 01:32:11 117.43 35.61 5.5 0.11 0.04
12 24 June 2020 17:40:49 117.98 36.45 5.8 0.44 0.07
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Table 8. California. Probabilities of earthquake prediction with magnitudes m ≥ 5.5 from seismologi-
cal fields and from the same fields together with GPS fields.

Feature Fields S9 and S11 Feature Fields S9, S11, F4, and F6

Alarm
Volume

Number of
Successful
Predictions

Probability of
Successful
Predictions

Number of
Successful
Predictions

Probability of
Successful
Predictions

0.01 0 0.00 1 0.08
0.05 1 0.08 6 0.50
0.10 2 0.17 10 0.83
0.15 3 0.25 11 0.92
0.20 9 0.75 11 0.92

Figure 16 shows the dependencies U(V) obtained for Japan and for California from
the GPS and seismological fields.

Figure 16. Dependences U(V) of the probability of a successful earthquake prediction U on the alarm volume V ob-
tained with the different fields. (Left) Japan: (1) field S7; (2) field F10; (3) fields S9 and S10; (4) fields S9, S10, and F10.
(Right) California: (1) field S7; (2) fields F4 and F6; (3) fields S9 and S11; (4) fields S9, S11, F4, and F6.

4. Discussion

The results of forecasting earthquakes in Japan and California based on the data of
space geodesy were considered herein. The criterion for the effectiveness of forecasting
according to GPS data was the probability of successful forecasting of strong earthquakes,
obtained by the method of the minimum area of alarm. We can see from Figure 16 that for
alarm volume V = 0.2, the probability of forecasting target earthquakes according to GPS
data was significantly higher than the probability of forecast based on random data and
forecast based on the field of spatial density of earthquake epicenters. However, the U(V)
dependencies, the plots of which are shown in Figure 16, were found for a small number of
target events. More convincing results about the effectiveness of GPS data in predicting
strong earthquakes can be obtained using statistical hypothesis testing models. To do this,
we compared the results of the prediction of target earthquakes using GPS data with the
forecast results using a random field. If the target events were independent, we used the
binomial distribution statistics.

Considering the results of earthquake forecasts in Japan. The test data contained 14
events. Table 1 shows that events 2, 3, and 4 were dependent. We will consider them as one
event. Then, our sample consisted of Q = 12 independent target events. Table 1 shows that
Q∗ = 6 events were predicted in a sample of 12 events according to the GPS data. For the
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forecast, we chose the alarm volume V = 0.2. We interpreted the value of the alarm volume
V as the probability p of a successful prediction of events with a purely random distribution
of alarm locations with a total alarm volume V in the analysis area. The observed frequency
of a successful forecast p∗ = Q∗/Q = 0.5 exceeded the probability p = 0.2 of successful
forecast for a random field. Thus, the question arises: Can the observed difference between
these two values be explained by the random nature of the sample? In terms of hypothesis
testing, this means that the null hypothesis p = 0.2 requires testing against the right-sided
alternative p∗ > 0.2. Taking a binomial distribution model with Q = 12 number of trials
and a p = 0.2 probability of a successful event, we found from the binomial distribution
tables that the probability of obtaining Q∗ = 6 or more successful predictions was 0.0194.
Since this value is significantly less than the generally accepted significance levels of 0.05,
the null hypothesis was rejected.

A number of transformations were required to calculate feature fields based on GPS
data. These included interpolation of time series at relatively small time intervals of
discontinuity in the operation of GPS receiving stations, calculation of time series of
components of the rates of horizontal displacements of stations, calculation of spatio-
temporal fields of components of the rate of the Earth’s surface deformations, calculation
of fields of invariants of velocities and fields of variation of invariants of rates in time,
calculation of spatial correlation fields, and calculation of minimum and maximum values
of correlations. A number of parameters were used in the algorithms for calculating these
transformations: the time interval for estimating the daily displacement rates, the sizes
of the spatial and temporal smoothing windows, and the windows for estimating the
spatial correlation coefficients, as well as the time intervals for calculating the field of
invariants of the strain rates. The GPS fields for Japan and California were calculated
with the same parameters. The choice of transformation parameters, as well as the choice
of the feature fields themselves, requires special study. In this work, such a study was
not carried out. The types of transformations of the initial data into the fields of features
and transformation parameters were selected based on qualitative considerations about
the methods of cleaning signals from noise, recovering missing values, and disclosing
information about the spatio-temporal properties of geodynamic processes.

The best forecast for Japan was given by the F10 field, and for California was given by
the F4 and F6 fields. Field F10 carries information about the consistency of the processes
of changing the rates of various types of deformations in space. Fields F4 and F6 carry
information about the positive values of the change in the mean values of the divergence
and shift of the strain rate with an interval of 361 days. When simulating earthquake
predictions, we analyzed several types of such fields. A number of fields containing
information on the change in strain rate invariants provided similar results for a successful
prediction. We considered the field F10 for Japan and the fields F4 and F6 for California to
be more efficient, since, for them, the probability of a successful forecast practically did
not change with small changes in the parameters of the alarm field: With the radius of
the signal cylinder, R changed from 14 to 18 km when its generatrix T changed from 61 to
91 days.

Figure 17 shows maps of alarm zones when forecasting earthquakes using GPS data.
Alarm zones highlight subdomains in which the values of the fields F10 for Japan, F4 and
F6 for California take on anomalous values. Shaded alarm zones indicate the volume of
the alarm. The level of shading of the alarm zones shows the value of the alarm volume.
On alarm zone maps, these values are approximately equal to fractions of the alarm area
relative to the analysis area. On the maps, target events fell into subdomains: for Japan, the
proportion of the alarm area is about 15%, and for California, about 3%.
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Figure 17. Alarm area zones of prognosis for Japan and California. (Left) Japan alarm area zone on 14 December 2018 with
the epicenter of target earthquake with magnitude m = 6.3 on 8 January 2019; (Right) California alarm area zone on 17
April 2020 with the epicenter of target earthquake with magnitude m = 6.5 on 15 May 2020. The epicenters of the target
earthquake are highlighted in red. Alarm volume values are shown on palettes in the picture. Field values with V > 0.2 are
not shown.

In the modeling, we used the experience of our previous studies to assess the rela-
tionship between data on horizontal displacements of the Earth’s surface with seismic-
ity [19,52] and on the application of the method of the minimum area of alarm to earthquake
prediction [50].

5. Conclusions

A number of seismically active regions are equipped with a rather dense network
of GPS receiving stations that track the movements of the Earth’s surface. In our study,
we tried to answer two questions: (1) Are space geodesy data effective for systematic
earthquake prediction?; (2) is the earthquake forecast improved if seismological data are
supplemented with space geodesy data? Obviously, the answers to these questions depend
on the spatial density of the network of receiving stations, on the parameters of the time
series of GPS measurements, on the method of preprocessing of GPS data, and on the
method for forecasting earthquakes.

The results in this article were obtained from data from Japan and California. Space
geodesy data are represented by daily time series of horizontal displacements of the Earth’s
surface. The heart of the processing of GPS time series is occupied by the calculation of
spatio-temporal fields of changes in the invariants of the seismic strain rate. To predict
earthquakes, we used our developed machine learning method that we called the method
of the minimum area of alarm. For Japan, it was shown that with an alarm volume of
V = 0.2, the probability of forecasting earthquakes with magnitudes m ≥ 6.0 according to
GPS data was statistically significantly higher than a forecast based on random data. It can
be seen from the tables and Figure 16 that with the same volume of alarms, the probability
of predicting earthquakes with magnitudes of m ≥ 5.5 according to GPS data in California
significantly exceeded the probability of forecasting based on random data and spatial
density field earthquakes. Figure 16 also shows that adding GPS data to seismological data
increased the probability of predicting an earthquake at an alarm volume of V ≤ 0.2.
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The method of the minimum area of alarm is universal for various types of initial data
since, for forecasting, all data are converted into uniform spatial and spatio-temporal grid
fields. Modeling earthquake predictions in the regions of Japan and California showed
that the anomalous field values that determine the change in the rates of deformations of
the Earth’s surface, the change in the characteristics of the seismic regime, and the spatial
correlation of these processes quite well distinguish the spatio-temporal areas preceding
the appearance of the epicenters of strong earthquakes. Taking into account that this
result was obtained for regions that differ significantly in seismotectonic and geodynamic
regimes [53,54], it can be concluded that fields reflecting anomalous changes in seismotec-
tonic and geodynamic processes are the most informative for predicting earthquakes.

The obtained results require additional verification, since the analysis material was
limited by a relatively short observation time, two investigated regions, and a small number
of target earthquakes.
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