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Abstract: Snow cover phenology has exhibited dramatic changes in the past decades. However,
the distribution and attribution of the hemispheric scale snow cover phenology anomalies remain
unclear. Using satellite-retrieved snow cover products, ground observations, and reanalysis climate
variables, this study explored the distribution and attribution of snow onset date, snow end date, and
snow duration days over the Northern Hemisphere from 2001 to 2020. The latitudinal and altitudinal
distributions of the 20-year averaged snow onset date, snow end date, and snow duration days are
well represented by satellite-retrieved snow cover phenology matrixes. The validation results by
using 850 ground snow stations demonstrated that satellite-retrieved snow cover phenology matrixes
capture the spatial variability of the snow onset date, snow end date, and snow duration days at
the 95% significance level during the overlapping period of 2001–2017. Moreover, a delayed snow
onset date and an earlier snow end date (1.12 days decade−1, p < 0.05) are detected over the Northern
Hemisphere during 2001–2020 based on the satellite-retrieved snow cover phenology matrixes. In
addition, the attribution analysis indicated that snow end date dominates snow cover phenology
changes and that an increased melting season temperature is the key driving factor of snow end date
anomalies over the NH during 2001–2020. These results are helpful in understanding recent snow
cover change and can contribute to climate projection studies.

Keywords: snow cover phenology; attribution analysis; Northern Hemisphere

1. Introduction

Snow cover is an integral component of the cryosphere and represents one of the
three Essential Climate Variables related to snow for the Global Observing System for
Climate, which plays a crucial role in the Earth’s climate system through the surface energy
budget [1–3], atmospheric circulation [4], and hydrological cycle [5–7], and influences
freshwater resources across a large proportion of the Northern Hemisphere (NH) [6]. Snow
cover phenology (SCP) variables including snow onset date (Do), snow end date (De),
and snow duration days (Dd) are key indicators of seasonal variation of terrestrial snow
cover over the NH and becoming increasingly valuable indicators of climate change [6,8],
especially in snow-dominated cold regions [6,9]. For example, SCP has considerable
impact on climate variabilities, such as alpine vegetation growth dynamics on the Tibetan
Plateau [10], green-up date across the NH [11], boreal springtime carbon uptake [12],
permafrost degradation in sub-arctic Sweden [9], and SCP indicators are expected to
provide feedback to temperature trends [13]. Moreover, abnormal snowmelt timing in
spring are creating a serious threat to water resource sustainability, including agricultural
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production [14] and even cause hydrological extremes such as spring floods [15]. Therefore,
accurate estimation and information on SCP are essential not only for evaluating the
impacts of climate change but also for disaster prevention.

Changes in SCP are directly related to observed snow cover extent (SCE) anomalies
over the NH. Published studies have reported a well-documented SCE reduction driven
by surface warming in the past decades [16–21]. For example, based on multi-model
ensemble results from the latest World Climate Research Programme Coupled Model
Intercomparison Project Phase 6 (CMIP6), Mudryk et al. [20] found that trends in the
snow cover extent (SCE) during 1981–2018 were negative in all months and exceeded
−50 × 103 km2 a−1 during November, December, March, and May. Through multiple
satellite observations, Brown et al. [19] estimated that the June SCE decreased by 46% over
the pan-Arctic regions during the 1967–2008 period. Moreover, the SCE has shrunk more
than expected in the past few decades. For example, Derksen and Brown [17] proved that
the June SCE decreased at twice the speed of the widely documented reduction in the
September sea-ice extent between 1979 and 2011, especially in the later part of that period.
In addition, a comparison of satellite observations and model simulations revealed that
SCE reductions in the 2008–2012 period exceeded climate model projections by Derksen
and Brown [17].

Driven by the rapid decline of SCE over the NH, SCP has exhibited remarkable
changes, including a sharp decrease in Dd [22], an earlier snowmelt onset date [23], an ad-
vanced De, and notable changes in Do [22] at local, regional, and hemispherical scales. For
example, using a satellite-retrieved SCE dataset at 25-km spatial resolution, Choi et al. [22]
concluded that the average Dd in the NH shortened at a rate of 0.8 weeks decade−1 be-
tween the winters of 1972/73 and 2007/08. Moreover, based on Passive Microwave (PM)
measurements at 25-km spatial resolution, Wang et al. [23] retrieved pan-Arctic snow
melt onset dates from 1979 to 2011 and found a significantly earlier date for melt onset
(2–3 days decade−1) over the Eurasian land sector of the Arctic. Through an investigation
of 636 ground-based snow depth observations over the NH, Peng et al. [13] revealed earlier
snow cover termination, and concluded that changes in SCP were related to the annual
snowmelt monthly temperature with a sensitivity of −0.077 ◦C day−1. Based on multiple
satellite and reanalysis data, Chen et al. [24] reported that De advanced by 5.11 (±2.20) days
in northern high latitudes (52–75◦ N) and was delayed by 3.28 (±2.59) days in northern
mid-latitudes (32–52◦ N) from 2001 to 2014, with a 90% confidence level. The above stud-
ies provide valuable insights into the distribution and attribution of SCP over the NH.
However, most of the above studies employed in situ observations, models, or satellite
observations with coarse spatial resolution. Therefore, the distribution of SCP at finer
spatial resolution, its attributions, and its response to climate change at the hemisphere
scale have yet to be determined using the latest observations.

In addition to SCP distribution analysis, attribution of SCP anomalies are also con-
cerned in the past decades. Several studies have shown that changes in SCP are highly
sensitive to land surface temperature and precipitation anomalies [13,18,19,22,24]. For ex-
ample, earlier snow cover termination in the NH proved to be systematically correlated on
a year-to-year basis with a positive temperature anomaly during the snowmelt month [13].
Moreover, approximately 50 % of the interannual variance in the extent of NH spring snow
cover during 1922–2010 can be attributed to air temperature [18].

Recent studies have revealed significant changes in the land surface temperature
induced by the vanishing cryosphere [25–28], as well as increased winter precipitation
induced by changes in atmospheric circulation [29] and human activity [30,31]. According
to a World Meteorological Organization statement on the state of the global climate [32],
the past five years (2015–2019) were the five warmest years on record. Moreover, the
near-surface at high latitudes in the NH is warming at double the rate of lower latitudes
due to the rapid loss of both sea ice and snow cover in spring and summer [27]. Despite
climate warming on average, a large number of high-impact cold extremes have occurred
in the mid-latitudes of the NH over the past decade [33]. It is thus crucial to understand



Remote Sens. 2021, 13, 1843 3 of 18

how these climate change events, which exhibit high spatial heterogeneity, influence SCP.
Such information can contribute to snow water management, the sustainable development
of ecosystems, and predictions of catastrophic climate-related events.

To explore the latest terrestrial snow cover phenology changes and its attribution fac-
tors under the rapid climate change background, this study integrates 8-day Level 3 snow
cover fraction products derived from the Moderate Resolution Imaging Spectroradiometer
Satellite (MOD10C2) from September 2000 to August 2020, at a spatial resolution of 0.05◦

(approximately 5 km), as well as the binary snow mask from the Interactive Multi-sensor
Snow and Ice Mapping System (IMS) during 2005–2019, with a spatial resolution of 4 km.
These data are used to produce a 20-year gap-free MOD10C2-based snow cover extent
(GF-MOD10C2-SCE) with finer spatial resolution over the NH. Then, using the integrated
GF-MOD10C2-SCE, this study retrieves SCP matrices over the NH, including Do, De, and
Dd. Moreover, through reanalysis of the land surface temperature and precipitation, this
study explores the SCP anomalies over the NH in the past two decades.

2. Materials and Methods
2.1. Study Area

To focus on changes in SCP, the study area was confined to seasonal snow cover
gridcells with snow cover greater than 7 frames using 8-day MOD10C2 for 75% of the years
between 2001 and 2020, similar with Choi et al. [22]. Permanent snow-covered regions with
little change in SCP are beyond the scope of this study. Moreover, areas of thin or patchy
snow cover were excluded from the analysis because they may have been missed in the
optical satellite images [34]. The distribution of study area and excluded area calculated
from GF-MOD10C2-SCE from 2001 to 2020 is shown in Figure 1.
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2.2. Datasets

Three satellite-observed snow cover products, 850 ground-based daily snow depth
observations, and a reanalysis dataset were employed to explore the distribution and
attribution of terrestrial SCP anomalies over the NH.

2.2.1. Satellite-Observed Snow Cover Datasets

Satellite-observed snow cover datasets are preliminary input data for SCP detection
over the NH. Three snow cover datasets, including snow charts derived from the North-
ern Hemisphere Snow Cover Extent Climate Data Record (NH SCE CDR) v01r01 [35],
MOD10C2 [36], and IMS [37] were employed in this study.

Snow Cover Charts

Monthly snow charts over the NH from 1966 through 2020, calculated from the
NH SCE CDR v01r01 [35] were used to investigate the long-term SCE anomaly. These
snow chart data are widely used in large-scale SCE anomalies over the NH due to their
consistency and long time span [35].
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MOD10C2 Snow Cover Fraction Dataset

The MOD10C2 provides the 8-day composite global snow cover fraction (SCF) at
0.05◦ from February 2000 to the present. MOD10C2 is an aggregation of MOD10A2 prod-
ucts with 500-m spatial resolution, which is an 8-day composite of MOD10A1 daily SCE
maps [36]. The 8-day composite is considered useful because persistent cloudiness limits
the number of days available for surface observations in many regions, particularly at high
latitudes [38]. In this study, the MOD10C2 was used as the primary data in SCP retrieval
because MOD10C2 is the only consistent, objective snow estimate derived from optical
satellite observations over the last two decades with relatively finer spatial resolution.

IMS Datasets

The IMS snow cover product provides daily binary SCE maps for the NH from
February 1997 to December 2019 at three different resolutions, i.e., 1 km (since 2015), 4 km
(since 2004), and 24 km (since 1997), which are created manually by a snow analyst using
data from a combination of geostationary and polar orbiting satellites in visible, infrared,
and microwave spectrums [37]. The IMS dataset is widely used for data integration [39,40].
The daily rate of agreement between IMS snow maps and ground-based snow observations
between 2006 and 2010 was predominantly between 80% and 90% throughout the winter
seasons over the continental United States [41]. To fill the gaps in MOD10C2 at the highest
achievable spatial resolution, this study used the IMS at a spatial resolution of 4 km from
2005 to 2019.

2.2.2. Ground-Based Snow Depth Observations

Daily ground-based snow depth measurements generated by the Global Historical
Climatology Network (GHCN) [42] were used to detect the ground-observed SCP and
were employed as ground truth to verify the performance of the satellite-retrieved SCP in
this study. The daily GHCN contains records from over 75,000 stations in 180 countries
and territories [42]. By assembling and checking observations made in multiple different
nations, the GHCN provides daily snow depth records over the NH, especially at high
latitudes. As they are subject to the speed of data updates, GHCN data for the last three
years are incomplete. Therefore, only 850 stations covering September 2000 to August 2017
with Dd greater than 60 days were used for validation. The distribution of the selected
GHCN snow depth observations are shown in Figure 2.
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2.2.3. Reanalysis Temperature and Precipitation Dataset

Model resolution plays an important role in representing the orographic gradient
effects on temperature and precipitation simulations [43]. ERA5-Land is a replay of the
land component of the ERA5 climate reanalysis with a finer spatial resolution (0.10◦ grid
spacing) than ERA5 monthly averaged data on single levels from 1979 to the present (0.25◦

spatial resolution) [44] and the Climatic Research Unit (CRU) Time-Series (TS) Version 4.04
(0.50◦ spatial resolution) [45]. To address the changes of SCP over the NH, the monthly
averaged 2-m temperature and total precipitation derived from the European Centre for
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Medium Range Weather Forecasts (ECMWF) Reanalysis v5–Land (ERA5-Land) [44] are
used as surface air temperature and precipitation in the attribution analysis. Moreover,
the model used in the production of ERA5-Land is the tiled ECMWF scheme for surface
exchanges over land, which incorporates land surface hydrology (H-TESSEL) and has been
proven suitable for modeling the ground [46,47].

2.2.4. Data Preparation

Details of datasets used in this study are provided in Table 1. Abbreviations used in
this study are listed in Table A1. To match the spatial resolution of the satellite-retrieved
SCP matrixes, the monthly averaged 2-m temperature and total precipitation derived from
ERA5-Land were regridded at a spatial resolution of 0.05◦ by using the resampling method
of “cubic-spline” with the help of gdalwarp (http://www.gdal.org/gdalwarp.html).

Table 1. Summary of datasets used in this study.

Parameters Dataset Time Span Spatial
Resolution

Temporal
Resolution Purpose References

SCF MOD10C2 2001–2020 0.05◦ 8-day SCP maps Hall et al. [36]
Binary snow mask IMS 2005–2019 4 km Daily SCE gap filling Helfrich et al. [37]

SCE charts NH SCE CDR
v01r01 1966–2020 – – Longterm SCE changes

analysis Estilow et al. [35]

Snow depth
observations GHCN-Daily 2001–2017 – Daily Validation Menne et al. [42]

Reanalysis
temperature and

precipitation
ERA5-Land 2001–2020 0.10◦ Monthly Attribution analysis Muñoz [44]

2.3. Methods
2.3.1. Generation of Gap-Free MOD10C2-Based SCE Dataset

To overcome the shortage of optical MOD10C2 in snow discrimination caused by
invalid observations and cloud contamination, we produced GF-MOD10C2-SCE dataset
before SCP retrieving. First, using spatial complete IMS from 2005 to 2019, we produced an
8-day snow cover probability (SProb) map in each 8-day period of the year. For gridcell i in
a given 8-day period of the year, the SProbi was calculated by averaging non-zero values
in this 8-day period from 2005 to 2019. Second, the SProb map was used to fill the gaps in
MOD10C2. If SCFi = 0 and SProbi > 50%, the SProbi will replace SCFi in original MOD10C2.
Finally, the gridcells with SCF > 0 were used as the GF-MOD10C2-SCE and employed to
retrieve the SCP matrixes over the NH. Using homogeneous GF-MOD10C2-SCE in SCP
retrieval will reduce the error caused by missing observations in the original MOD10C2.
The flowchart of GF-MOD10C2-SCE generation is presented in Figure 3.
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2.3.2. Snow Cover Phenology Retrieval

We used the hydrological year in this study to explore interannual anomalies in
the SCP. Based on the seasonal cycles of snow cover for northern Eurasia and North
America [48], this study defined the hydrological year (t) as the period from September
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in year (t-1) to August in year (t). To further attribute changes in SCP, we defined the
accumulation season of snow cover from September to December and the melting season
from March to June in the attribution analysis.

Definition of Satellite-Retrieved Snow Cover Phenology

Published study have used full snow seasons and core snow seasons in SCP identi-
fication [22], in which full snow seasons is the interval between the first appearance and
the last disappearance of snow cover and core snow seasons is the longest interval of the
season with an unbroken string of weeks for which a grid cell is snow covered. In this
study, we mainly focus on SCP changes in core snow seasons.

The definition of Do, De, and Dd in a hydrological year using original 8-day MOD10C2
SCF dataset is shown in Figure 4. To avoid the impact of missing observations (D-G) on SCP
retrieval, we used GF-MOD10C2-SCE in SCP retrieve. For the 8-day GF-MOD10C2-SCE
dataset, we first identified the 8-day interval frames (day index i to i + 7) between the
frames when the SCE was superior to zero and when it equaled zero in core snow seasons,
then defined Do and De at i+3.5 days of the first frame when the SCE was superior to zero
and when it equaled zero in core snow seasons, respectively.
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based on the original MOD10C2 SCF dataset.

Definition of Ground-Based Snow Cover Phenology

To avoid the impact of ephemeral snow on SCP retrieval and match the temporal
resolution of 8-day GF-MOD10C2-SCE, Do was defined as the first four consecutive days in
the accumulation season and De was defined as the last four consecutive days of persistent
snow cover in the melting season. Dd was defined as the number of days between Do
and De.

2.3.3. Validation of Satellite-Retrieved Snow Cover Phenology Using Ground Observations

Although there are large differences in the spatial representation of satellite-retrieved
SCP and ground-based SCP, the ground observations still provide the most convincing re-
sults when compared with satellite-retrieved SCP. In this study, the root-mean-square error
(RMSE), mean relative error (MRE), and bias were used as criteria to evaluate the relative
accuracy of the satellite-retrieved SCP (Xsat) relative to ground-based SCP (Xobs) during
2001–2017. The RMSE, MRE, and bias of Xsat relative to Xobs are expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(Xsat,i − Xobs,i)
2, (1)

MRE =
100%

n

n

∑
i=1

∣∣∣∣Xsat,i − Xobs,i

Xobs,i

∣∣∣∣, (2)
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Bias =
1
n

n

∑
i=1

(Xsat,i − Xobs,i), (3)

where Xsat,i and Xobs,i are the satellite-retrieved SCP and ground-based SCP in a given
gridcell i, respectively.

2.3.4. Attribution Analysis

As anomalies in Dd are directly correlated to variabilities in Do and De, we mainly
focus on the attribution analysis of Do and De in this study. To compare the contributions
of Do and De from each climate variable consistently, all variables were converted to
standardized anomalies (z-score) using the mean and standard deviation in the attribution
analysis.

Published studies have shown that changes in SCP are largely determined by surface
air temperature and precipitation variability [6,13]. Therefore, we assumed that the inter-
annual variability of Do was driven by the competing effects of surface air temperature
(Ta) and precipitation (Pa) in the snow accumulation seasons. To attribute changes in Do,
we regressed Do as the dependent variable with Ta and Ps as the independent variables,
following Chen et al. [24].

Do = β1 × Ta + β2 × Pa + ε1, (4)

Here, β1 and β2 are regression coefficients for Ta and Pa, and ε1 is the residual. The
contributions of Ta and Pa to Do anomalies are reflected by the terms β1 × Ta and β2 × Pa,
respectively. The contributions of Ta and Pa to Do were computed by regressing the annual
time series of Do z-scores against the time series of z-scores of Ta and Pa. The resulting
regression coefficients β1 and β2 were multiplied by Ta and Pa z-scores to derive the
contributions of Ta and Pa to the Do z-scores.

Moreover, De mainly depends on the maximum spring snow depth to melt and the
surface air temperature in the snow melting season (Tm), in which the maximum snow
depth in spring is determined using Ta and Pa. Therefore, we assumed that the interannual
variability of De was driven by Ta, Pa, and Tm. We regressed De as the dependent variable,
with Ta, Pa, and Tm as the independent variables, as performed in Chen et al. [24].

De = β3 × Ta + β4 × Pa + β5 × Tm + ε2, (5)

Here, β3, β4, and β5 are regression coefficients for Ta, Pa, and Tm, respectively, and ε2
is the residual. The contributions of Ta, Pa, and Tm to the De anomalies are reflected by the
terms β3 × Ta, β4 × Pa, and β5 × Tm, respectively. Similarly, the contributions of Ta, Pa,
and Tm to De were computed by regressing the annual and zonal time series of De z-scores
against the time series of z-scores of Ta, Pa, and Tm. The resulting regression coefficients
were multiplied by the time series of Ta, Pa, and Tm z-scores to derive the contributions of
Ta, Pa, and Tm to the De z-scores. A similar formula was employed by Peng et al. [13] and
Chen et al. [24] to identify the sensitivity of SCP to climate variabilities over the NH.

3. Results

To explore changes in SCP over the NH, we first analyzed the monthly SCE changes
over the NH from 1966 to 2020. Then, we mapped the latest 20-year averaged SCP
over the NH from 2001 to 2020 and explored its changes and attribution during the
corresponding period.

3.1. Observed Long-Term Anomalies in Snow Cover Extent over the NH

The monthly SCE anomalies from 1966 to 2020 are shown in Figure 5, and detailed
changes in the monthly SCE over the NH are presented in Table 2. Compared with the
monthly averaged SCE in the earlier period of 1966–2000, the later period of 2001–2020
exhibited large differences; the SCE decreased during the melting season from May to
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August (Table 2), with a maximum SCE reduction of up to 30% in June (−3.22 106 km2).
In contrast to the negative changes of SCE in the melting seasons, SCEs largely increased
during the accumulation season from September to November; the maximum SCE increase
occurred in October (2.29 106 km2), with an amplitude of up to 12.96% greater than the
monthly averaged October SCE in the period of 1966–2000. Increased SCE in the snow
accumulation season coincides with increasing snow cover and widespread boreal winter
cooling since 1990 [33]. Moreover, the contrasting seasonal anomalies in SCE directly
corresponded to SCP anomalies during 2001–2020.
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Figure 5. Monthly snow cover extent (SCE) anomalies from 1966 to 2020 over the NH derived from
NH SCE CDR v01r01. Anomalies were calculated by subtracting the 55-year averaged SCE in each
month from the monthly SCE.

Table 2. Snow cover extent changes (106 km2) in each month over the NH from 1966 to 2020. Changes
are expressed as linear trends multiplied by the time interval.

Season Month
Mean (106 km2) Changes (106 km2)

1966–2000 2001–2020 1966–2000 2001–2020

Spring
Mar 40.81 (±1.91) 39.83 (±1.59) −0.0728 (**) −0.0297
Apr 30.93 (±1.74) 29.75 (±1.24) −0.0497 (*) 0.0009
May 20.00 (±1.71) 17.79 (±1.48) −0.0626 (**) −0.1012 (**)

Summer
Jun 10.71 (±1.98) 7.49 (±1.68) −0.0899 (***) −0.1848 (***)
Jul 4.53 (±1.19) 2.98 (±1.47) −0.0721 (***) −0.0482 (***)

Aug 3.23 (±0.79) 2.58 (±0.21) −0.0329 (**) −0.0072

Autumn
Sep 5.39 (±1.02) 5.44 (±0.83) 0.0104 0.0119
Oct 17.67 (±2.62) 19.96 (±2.13) −0.0886 (**) 0.1583 (**)
Nov 33.74 (±2.17) 35.15 (±1.69) 0.0187 0.1784 (***)

Winter
Dec 43.27 (±1.95) 44.51 (±1.22) 0.0126 −0.0257
Jan 46.82 (±1.59) 47.71 (±1.21) −0.0373 0.0068
Feb 45.84 (±1.87) 46.13 (±1.69) −0.0691 (**) −0.0245

Significance levels: * 90%; ** 95%; *** 99%; others are not significant at the 90% level.

3.2. Climatology of Snow Cover Phenology over the NH from 2001 to 2020

To explore the distribution of SCP over the NH, we first generated 20-year averaged
Do, De, and De values over the NH from 2001 to 2020 from the implemented GF-MOD10C2-
SCE dataset.
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3.2.1. Climatology of Snow Cover Phenology from 2001 to 2020

The spatial distributions of the 20-year averaged Do, De, and Dd over the NH from
2001 to 2020 are shown in Figure 6. The 20-year averaged Do, De, and Dd over the study
area were day of year (DOY) 279.69 (±85.37), DOY 109.13 (±48.75), and 166.29 (±75.29)
days, respectively, based on satellite-retrieved SCP matrixes.
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Figure 6. Climatology of snow cover phenology over the NH from 2001 to 2020. 20-year averaged (a)
snow onset date (Do), (b) snow end date (De), and (c) snow duration days (Dd) over the NH from
2001 to 2020.

As shown in Figure 6, satellite-derived SCP clearly describes the spatial patterns of
Do, De, and Dd (Figure 6c) from low latitudes to high latitudes over the NH. In addition,
the impacts of elevation on SCP attributes were also well represented in the satellite-
retrieved SCP maps. As a result of the temperature gradient over the NH, the snow cover
appears earlier in high-latitude areas around the Arctic and high-altitude regions including
the Rocky Mountains, Tibetan Plateau, Sayan Mountains, and Yablonovy Mountains.
Comparably, snow cover appears later in the central United States and low latitudes of
Eurasia (Figure 6a). As shown in Figure 6b, the spatial distribution of De is generally the
opposite to that of Do, i.e., an earlier Do typically corresponds to a later De. The combined
spatial distributions of Do and De result in longer Dd in grid cells located in high latitudes
and high-altitude regions (Figure 6c), but shorter Dd in areas including lower-latitude
regions of the United States, Eurasia, and China.

3.2.2. Validating Snow Cover Phenology Using In Situ Observations

Subject to the data availability of GHCN daily snow depth observations, the accuracy
of satellite-retrieved SCP using ground observations was estimated for the period of
2001–2017. The spatial distributions of 17-year averaged Do, De, and Dd values calculated
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from GHCN observations, as well as a comparison with satellite-retrieved SCP matrixes,
are shown in Figure 7.
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Figure 7. 17-year averaged (a) snow onset date (Do), (b) snow end date (De), and (c) snow duration
days (Dd) derived from GHCN observations from 2001 to 2017. Scatter plots between GHCN
observations and (d) Do, (e) De, and (f) De from satellite-retrieved SCP matrices.

Similar to the satellite-retrieved SCP, clear latitudinal and altitudinal gradient patterns
were observed for Do (Figure 7a), De (Figure 7b), and Dd (Figure 7c) from middle to high
latitudes over the NH. At most sites, the observed Do, De, and Dd were consistent with the
satellite-retrieved Do, De, and Dd results, with r values of 0.57, 0.54, and 0.66, respectively,
at the 95% confidence level. However, compared with the bias in Do (−6.70 d) and De
(−7.87 d), the bias in Dd (14.58 d) was much larger. This is mainly because the bias in
Dd superimposes the biases in Do and De. Moreover, the value of satellite-retrieved SCP
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was higher than that of ground-based SCP in low Do, De, and Dd value regions, with the
opposite trends in high Do, De, and Dd value regions, as demonstrated in Figure 7d–f. This
phenomenon was mainly caused by the coarse spatial resolution of the satellite-retrieved
SCP series from 2001 to 2017, in which the satellite-retrieved SCP provides average Do, De,
and Dd values at a pixel scale of 0.05◦, which cannot completely capture and reflect the
“real” value of Do, De, and Dd at a specific location.

Previous research has proved that ground observations yield results that are highly
dependent on the specific location (latitude and elevation). Therefore, results from ground
observations mostly reflect the local conditions instead of meaningful information about
the climate [49]. However, as shown in Figure 7, the satellite-retrieved Do, De, and Dd
values generally captured the spatial variability of Do, De, and Dd over the NH, which
proves the suitability of satellite-retrieved SCP for current climate change studies, also
validated by the latitudinal distributions of Do, De, and Dd in Figure 7d–f.

3.3. Changes in Snow Cover Phenology from 2001 to 2020

The 20-year changes in Do, De, and Dd during the period of 2001–2020 and their
latitudinal distribution are displayed in Figures 8 and 9. Changes are estimated using the
five-year averaged SCP during 2016–2020 minus the comparable values during 2001–2005.
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Compared with the five-year averaged Do in the period of 2001–2005, a general delay
in Do (1.69 ± 5.93 days) was observed over the NH for the period of 2016–2020 (Figure 8a),
except in the middle Rocky Mountain region around 50◦ N and Central Asia near 35◦ N
(Figure 9a). Meanwhile, De exhibited a notable advance over the NH for the period of
2001–2020 (−0.94 ±5.90 days), in which De moved forward significantly at a latitude of
approximately 55◦ N, but was delayed in the Eastern United States and northeast Tibetan
Plateau (Figure 8b), which led to contrasting De anomalies over the NH from low to high
latitudes (Figure 9b). The contrasting De anomalies for the period of 2001–2020 agrees with
the findings of Chen et al. [24], who observed an advance in De at northern high latitudes
(52–75◦ N) but a delay in De at northern mid-latitudes (32–52◦ N) at the 90% confidence
level. The combination of anomalies in Do and De led to a shortened duration of snow
cover (−2.63 ± 7.26 days) over the NH from 2001 to 2020 (Figures 8c and 9c). In addition
to the central United States, Tibetan Plateau, and Scandinavian Mountains, most grid cells
within the study presented negative changes in Dd over the last two decades. Moreover,
the observed Dd increase in Central North America is consistent with the increased snow
cover days reported by Wang et al. [50] from 2001 to 2015 and Allchin and Déry [51] from
1971 to 2014.

3.4. Attribution of Snow Cover Phenology Changes over the NH

The snow accumulation season temperature, Ta, precipitation, Pa, and snow melting
season temperature, Tm, were employed to attribute the anomalies in the SCP over the
NH during 2001–2020. The spatial distributions of changes in Ta, Pa, and Tm are shown
in Figure 10a–c. The attribution analysis of the SCP is presented in Figure 10d–f. The
Ta (Figure 10a) and Tm (Figure 10b) values displayed a general warming trend over
the NH from 2001 to 2020. This is reasonable according to the latest WMO Statement
on the State of the Global Climate [32], as the past five years (2015–2019) are the five
warmest on record. Moreover, both Ta and Tm exhibited significant latitude differences
under the influence of decreasing snow cover and sea-ice extent [25–28], in which the
temperature increased at a higher rate in high latitudes and at a much lower rate in
middle latitudes. The anomalies in Ta and Tm over the NH during 2001–2020 agree with
the land surface temperature anomalies mapped from the Goddard Institute for Space
Studies (GISS) (https://data.giss.nasa.gov/gistemp/maps/) based on the latest GHCN
Monthly version 4 [52]. In addition, changes in atmospheric circulation [29] and human
activity [30,31] resulted in a notable increase in precipitation during the snow accumulation
season, Pa (Figure 10c), in the Central United States, Tibetan Plateau, Northern Europe,
and Northeastern Russia, but led to a significant decline in Pa in Central Russia, Northeast
Canada, and Southern Europe.

https://data.giss.nasa.gov/gistemp/maps/
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Figure 10. Attribution of changes in snow cover phenology over the NH from 2001 to 2020. Changes in (a) snow
accumulation season temperature, Ta, (b) precipitation, Pa, and (c) snow melting season temperature, Tm. (d) Contribution
of snow onset date (Do) and snow end date (De) to snow duration day (Dd) anomalies over the NH from 2001 to 2020.
Attribution analysis of (e) Do and (f) De anomalies over the NH from 2001 to 2020.

The interannual variability analysis revealed a shortening trend in Dd over the NH
from 2001 through 2020 at a rate of −1.64 days decade−1 (p < 0.05). Owing to an excep-
tionally strong El Niño, 2016 was the warmest year on record in all major global surface
temperature datasets [53], which resulted in the shortest Dd in the past two decades.
The attribution analysis of Dd anomalies over the NH during 2001–2020 is displayed in
Figure 10d, in which anomalies in Dd are highly correlated with variabilities in Do and De.
Moreover, Pearson correlation analysis of Do, De, and Dd revealed significant relationships
between De and Dd (r = 0.82, p < 0.01) over the 2001–2020 period. Correlations between Do
and Dd (r = 0.66, p < 0.01) were also significant. Considering that there were no statistically
significant changes in Do, Dd changes over the NH from 2001 to 2020 are mostly attributed
to changes in De.

The attribution analysis of Do and De is demonstrated in Figure 10e,f. The contri-
butions of each variable to Do and De variability were computed annually to display the
changing influence of climate variables on underlying SCP variability. An analysis of linear
correlations of Do with Ta and Pa over the snow accumulation season revealed that Do was
largely determined by Ta anomalies (Figure 10e). Meanwhile, a similar analysis revealed
that changes in De were highly correlated with Ta, Tm, and Pa at the 95% confidence level.
However, compared with contributions from Ta and Pa, Tm dominated De anomalies over
the NH from 2001 to 2020 (Figure 10f).

4. Discussion

Accurate estimates of SCP are highly relevant for improving atmospheric reanaly-
sis [54], climate predictions [55], and climate projections. To overcome the shortage of
individual datasets in the SCP retrieve, in situ measurements are highly dependent on the
location (latitude and elevation) and limited in spatial coverage, visible and near-infrared
satellite data are largely influenced by cloud coverage, and it is difficult to distinguish wet
and shallow snow in PM snow maps, this study employed the combination of MOD10C2
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and IMS prior to the retrieval of SCP matrices. The combination of MOD10C2 and IMS
data largely reduced the error in retrieved SCP caused by missing observations in optical
SCE products.

Validating satellite-retrieved SCP matrixes using field measurements involves uncer-
tainties because there is a large spatial bias between satellite-retrieved SCP at a spatial
resolution of 0.05◦ and ground measurements at specific locations. Moreover, the different
temporal resolution between satellite-retrieved SCP and ground measurements may result
in systematic bias in the cross validation process. However, the validation of satellite-
retrieved SCP matrixes using GHCN ground-based snow depth observations indicated
that satellite-retrieved SCP matrixes can generally capture the “real” distributions of Do
(r = 0.57), De (r = 0.54), and Dd (r = 0.66) at the 95% significance level, which indicate the
fitness of using satellite-retrieved SCP in climate change studies over the NH.

Based on satellite-retrieved SCP matrixes, this study reported a delayed Do, associated
with an advanced De over the NH from 2001 to 2020. The above findings are consistent
with the published results of Choi et al. [22] and Chen et al. [24], who reported that
changes in SCP are largely determined by De anomalies for the periods of 1967–2008 and
2001–2014. However, the results are in contrast with the findings reported by Allchin and
Déry [56], who observed shifting spatial and temporal patterns in the onset of seasonally
snow-dominated conditions in the NH from 1972 to 2017. Because the attribution analysis
is significantly influenced by temporal coverage, the different time interval may be the
possible reason for the inconsistency of the analysis results.

According to the latest climate projections, the reduction of NH SCE will continue in
the future [20,57], along with hemispheric land surface warming and a positive feedback
on the Earth’s climate system through snow-albedo mechanisms [1,18,19,58]. Therefore,
the response of SCP to SCE reduction should be investigated in future studies. Moreover,
reductions in terrestrial snow cover accounted for one-third of the Arctic albedo decline
from 1982 to 2014 [59]. Thus, a coupled study between terrestrial snow cover and Arctic
sea ice should be conducted in the future.

5. Conclusions

With the help of satellite-retrieved snow cover observations, ground-based snow
depth records, and reanalysis climate variables, this study explored the SCP distribution
and its causes over the NH in the past two decades from 2001 to 2020, which are important
data for current cryosphere change studies and future climate projections.

The observed longterm anomalies in SCE over the NH demonstrated that, compared
with the monthly averaged SCE in the earlier period of 1966–2000, the later period of
2001–2020 exhibited an increased SCE in the snow accumulation season from September to
November, but a decreased SCE in the snow melting season from May to August in the later
period of 2001–2020. The enhanced seasonal SCE differences between snow accumulation
season and melting season led to corresponding SCP anomalies. The climatology of 20-year
averaged Do, De, and Dd over the NH from 2001 to 2020 are well represented in spatial and
temporal by satellite-retrieved SCP matrixes. Moreover, the validation results by using 850
GHCN snow depth observations revealed that satellite-retrieved SCP matrixes generally
capture the spatial variability of Do, De, and Dd at the 95% significance level during the
overlapping period of 2001–2017, which makes it reasonable to employ satellite-retrieved
SCP in climate change studies.

Based on satellite-retrieved SCP matrixes, this study reported a delay in Do
(1.69 ± 5.93 days) and an advanced De (−0.94 ± 5.90 days) over the NH for the period of
2016–2020, compared with the period of 2001–2005. The combination of anomalies in Do
and De result in a shortened Dd (−2.63 ± 7.26 days) over the NH at the corresponding
period. Moreover, Pearson correlation analysis revealed that changes in Dd are highly cor-
related with variabilities in both Do and De. However, linear analysis displayed unnoticed
changes in Do. Therefore, Dd changes over the NH from 2001 to 2020 are mostly attributed
to anomalies in De. Furthermore, attribution analysis revealed that the increased melting
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season temperature is a key driving factor of De anomalies over the NH from 2001 to 2020.
Compared with total precipitation, surface air temperature should be of high concern in
SCP analysis.

Although the distribution and attribution of NH SCP has been discussed in previous
research, this study provides better results with finer spatial resolution and present the
latest SCP changes, which is necessary in the rapid climate change background. Hence,
we believe that our study benefits understanding of terrestrial SCP changes and related
climate projection studies in response to surface warming in the past decades.
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Appendix

Table A1. Abbreviations used in this study.

Abbreviations Definitions

SCP snow cover phenology
NH Northern Hemisphere
SCE Snow cover extent
SCF Snow cover fraction

SProb Snow cover probability
Do Snow onset date
De Snow end date
Dd Snow duration days

MOD10C2 8-day Level 3 snow cover fraction products derived from the Moderate
Resolution Imaging Spectroradiometer Satellite

IMS Interactive Multi-sensor Snow and Ice Mapping System
NH SCE CDR Northern Hemisphere Snow Cover Extent Climate Data Record

GHCN Global Historical Climatology Network
RMSE Root Mean Square Error
MRE Mean Relative Error

Ta Surface air temperature in snow accumulation season
Tm Surface air temperature in snow melting season
Pa Precipitation in snow accumulation season
Pm Precipitation in snow melting season

https://doi.org/10.5067/MODIS/MOD10C2.006
https://doi.org/10.7265/N52R3PMC
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https://www.ncdc.noaa.gov/ghcnd-data-access
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