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Abstract: It is of great importance for climate change studies to construct a worldwide, long-term
surface downward longwave radiation (Ld, 4–100 µm) dataset. Although a number of global Ld

datasets are available, their low accuracies and coarse spatial resolutions limit their applications. This
study generated a daily Ld dataset with a 5-km spatial resolution over the global land surface from
2000 to 2018 using atmospheric parameters, which include 2-m air temperature (Ta), relative humidity
(RH) at 1000 hPa, total column water vapor (TCWV), surface downward shortwave radiation (Sd),
and elevation, based on the gradient boosting regression tree (GBRT) method. The generated Ld

dataset was evaluated using ground measurements collected from AmeriFlux, AsiaFlux, baseline
surface radiation network (BSRN), surface radiation budget network (SURFRAD), and FLUXNET
networks. The validation results showed that the root mean square error (RMSE), mean bias error
(MBE), and correlation coefficient (R) values of the generated daily Ld dataset were 17.78 W m−2,
0.99 W m−2, and 0.96 (p < 0.01). Comparisons with other global land surface radiation products
indicated that the generated Ld dataset performed better than the clouds and earth’s radiant energy
system synoptic (CERES-SYN) edition 4.1 dataset and ERA5 reanalysis product at the selected sites.
In addition, the analysis of the spatiotemporal characteristics for the generated Ld dataset showed an
increasing trend of 1.8 W m−2 per decade (p < 0.01) from 2003 to 2018, which was closely related to
Ta and water vapor pressure. In general, the generated Ld dataset has a higher spatial resolution and
accuracy, which can contribute to perfect the existing radiation products.

Keywords: surface downward longwave radiation; air temperature; relative humidity; surface
downward shortwave radiation; total column water vapor; gradient boosting regression tree

1. Introduction

The surface downward longwave radiation (Ld, 4–100 µm) is an indispensable compo-
nent needed to study the Earth’s surface radiation budget and energy balance [1]. Currently,
there are four main ways of obtaining Ld: ground measurement data, reanalysis retrieval
methods, general circulation model (GCM) simulations and satellite products. However,
Ld is not always treated as a conventional observation as other common meteorological
parameters are, such as air temperature (Ta), relative humidity (RH), etc. Moreover, its
observation stations are sparsely distributed and even entirely absent in certain areas due
to a high cost, a difficult calibration process, and a required quality control step [2–5].
In addition, there are uncertainties and biases in GCM simulations [6–8], reanalysis re-
trievals [9,10], and satellite products [11]. Therefore, establishing a more accurate long-term
global Ld dataset is not only useful for improving the knowledge of the surface radiation
balance but is also helpful for perfecting the existing Ld products.
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Under clear-sky conditions, Ld is primarily influenced by temperature profiles and
water vapor in the lower atmosphere. Zeppetello et al. [12] found that Ld is tightly cou-
pled to surface temperature, and changes in surface temperature cause at least 63% of the
clear-sky Ld response in greenhouse forcing. Water vapor is the most crucial atmospheric
gas contributing to thermal radiation which can absorb and emit longwave radiation,
thereby resulting in Ld estimates with great uncertainty [13]. RH, which is closely related
to water vapor pressure, is the percentage of water vapor pressure in the atmosphere to
the saturated vapor pressure at a given temperature. Numerous studies [5,14–20] have
estimated Ld on the basis of traditional methods using Ta, water vapor, RH, and other basic
variables derived from meteorological observations. These methods mainly include empir-
ical, physics-based, and hybrid methods. Among them, empirical models, including the
representative Brunt [14] and Brutsaert [15] equations, establish the regression relationship
between various meteorological parameters and Ld observations, with an accuracy that is
mainly limited by ground measurements and actual geographical environments, such as
climate and terrain. Although this method is relatively simple, it is difficult to apply to Ld
estimation on a large regional scope. Compared with empirical methods, physics-based
methods containing the LOWTRAN and MODTRAN models can not only estimate Ld
with a high accuracy but also describe the atmospheric radiative transfer process in de-
tail [21–23]. Due to the intricacy of the model and the difficulty associated with obtaining
an input dataset, however, this approach is only used for research and is difficult to apply
to business products [4]. Hybrid methods [24–28] establish the relationship between Ld
and the top-of-atmosphere radiance on the basis of physical radiative transfer processes. In
contrast, this method, with its higher simulation accuracy and greater general applicability,
can be applied on a global scale, which has become an effective method for Ld retrieval. For
example, Wang et al. [27] developed a hybrid method to estimate instantaneous land clear
Ld on the basis of extensive radiative transfer simulation and statistical analysis, obtaining
root mean squared error (RMSE) values of 17.60 W m−2 (Terra) and 16.17 W m−2 (Aqua)
for the nonlinear models.

Under cloudy conditions, the influence of clouds on Ld is also nonnegligible. Clouds
are visible polymers of tiny water droplets or ice crystals formed by the condensation of
water vapor in the atmosphere, which can absorb heat from the ground and radiate it
back to the surface to enhance Ld [29,30]. The cloud cover fraction is mostly utilized to
quantify the effects of clouds on Ld and is an essential parameter for Ld estimation under
cloudy conditions, which can be obtained from ground measurements and satellite cloud
detection products [31–33]. However, the effects of clouds cannot be corrected when cloud
cover fraction observations are not available. Crawford et al. [34] first proposed that the
cloud cover fraction under cloudy-sky conditions can be estimated from the proportion
of the observed surface downward shortwave radiation (Sd) to the theoretical clear-sky
Sd under the same conditions. They evaluated the performance of estimating Ld using Sd,
barometric pressure, vapor pressure, and temperature datasets. The evaluation results
showed that the RMSEs and mean bias errors (MBE) of the monthly Ld estimates ranged
from 11 to 22 W m−2 and −9 to 4 W m−2 compared to ground observations over a one-
year time period, respectively, which indicated that it is reliable to use Sd to represent
the impact of clouds on Ld. It is easier to obtain Sd data compared with cloud cover
fractions, so an increasing number of studies have utilized Sd to estimate Ld under cloudy
conditions [5,13,35–37]. Choi et al. [35] estimated the daily Ld using 2-m air temperature,
2-m RH, and Sd observations in Florida from 2004 to 2005, obtaining RMSEs of less than
13 W m−2 and squared correlation coefficients (R2) of more than 0.9 relative to the ground
measurements collected at 11 stations. Lhomme et al. [13] demonstrated that the cloud
correction function of the Crawford et al. [34] model also performed relatively credibly
for estimating Ld in high elevation regions between 3700 and 4100 m above sea level.
The presence of clouds makes it impossible for satellites to accurately observe surface
information. It is also difficult to model the properties of clouds due to the uncertainty
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associated with their distribution and variability. The ready availability of Sd data makes
the Ld estimation model more readily applicable under cloudy conditions.

In addition, Sd and Ld both show a strong dependence on altitude. Zeng et al. [38]
evaluated the global land surface satellite (GLASS) Ld product using the ground observa-
tions collected from 141 stations in six networks at different surface elevations. The RMSE
values are 22.09, 23.31, 26.94, and 26.99 W m−2 at elevations of <500, 500–1000, 1000–3000,
and >3000 m, respectively. The bias values are−3.19, −4.73, −2.26, and 15.34 W m−2 at the
four elevation intervals, respectively. The validation results showed that the performance
of Ld degraded as the surface elevation increased. This may be due to special environ-
mental conditions present at high altitudes with lower air pressures, smaller water vapor
densities, and fewer clouds, leading to a greater uncertainty in Sd and Ld data at high eleva-
tions [37,39–43]. In addition, some studies have also quantitatively measured the effect of
elevation on Ld and attempted to correct its deviation [37,39–42]. Yang et al. [42] reported
that the MBE of GEWEX-SRB V2.5 Ld can be reduced by 7–10 W m−2 after an altitudinal
correction of 2.8 W m−2 per hundred meters in the Tibet Plateau. It can be concluded that
the influence of elevation cannot be ignored in addition to the abovementioned influencing
factors including temperature profiles, water vapor, and clouds. Although the importance
of elevation has been verified by previous studies, few studies have taken elevation as an
important variable to predict Ld. This paper used elevation as the input variable of the
model, hoping to reduce the errors caused by elevation.

Based on the above summary, it is clear that Ld is closely related to Ta, RH, water
vapor, Sd, and elevation. Therefore, this study utilized the gradient boosting regression tree
(GBRT) method with the daily mean Ta of 2 m, RH at 1000 hPa, total column water vapor, Sd,
and elevation to estimate daily Ld over global land surface from 2000 to 2018. In contrast to
prior methods, this machine learning method can automatically establish the relationship
between the input data and target variable, and has a strong predictive ability [44,45],
which has been widely employed to retrieve radiation [46–49]. Yang et al. [46] applied
the GBRT method to estimate daily Sd with a spatial resolution of 5 km in China using
ground observations and satellite retrievals with good results. The RMSE and R between
the ground measurements and daily Ld estimates were 27.71 W m−2 and 0.91, respectively,
under cloudy conditions; these values were 42.97 W m−2 and 0.80, respectively, under clear
conditions. To date, few studies have used this method to predict Ld over the globe based
on ground observations. We demonstrated that it can be reasonably and reliably used for
Ld estimation by building the relationship between Ld observations and its influencing
factors based on the GBRT method [49,50]. Therefore, the objective of this study is to use
the GBRT model to generate a 5-km Ld dataset over the global land surface with a daily
time scale from 2000 to 2018.

The structure of this paper is as follows: Section 2 introduces the data used, including
the ground measurements, ERA5 reanalysis data, GLASS Sd, global multi-resolution terrain
elevation data 2010, and existing Ld products. The detailed model construction process
is displayed and described in Section 3. Section 4 provides the evaluation results and
analyzes the spatiotemporal distribution of Ld. Finally, the discussion and conclusion are
presented in Sections 5 and 6, respectively.

2. Data
2.1. Ground Measurements

The ground measurements of surface downward longwave radiation (Ld) used in this
study from 2000 to 2018 were collected from the AmeriFlux network (175 sites), AsiaFlux
network (26 sites), baseline surface radiation network (BSRN, 57 sites), surface radiation
budget network (SURFRAD, 7 sites), and FLUXNET (84 sites). The observation sites were
randomly divided into 90% (314 sites) and 10% (35 sites) datasets, as shown in Figure 1.
After removing the outliers, the Ld observations collected at 314 sites were used as target
variables to build and train the model. The remaining Ld observations collected at 35 sites
were used to evaluate the generated global land daily Ld. The spatial distribution of the
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observation sites used to build the model and validate it is shown in Figure 1. The detailed
information of ground sites is listed in the Appendix A Table A1.
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Critical quality control procedures were implemented to calculate the daily Ld because
the selected networks only provided instantaneous Ld values, except for FLUXNET. The
daily mean Ld was integrated from the instantaneous values if the portion of missing
instantaneous values was less than 20% in one day. The monthly mean values used for
validation were obtained by averaging the effective daily values if the missing daily data
reached less than 10 days in one month.

2.1.1. AmeriFlux, AsiaFlux, and FLUXNET Data

FLUXNET [51,52] is a joint regional network that provides continuous measure-
ments of various ecological parameters at five temporal resolutions, including carbon
dioxide, water, meteorological data, and radiation data. The FLUXNET2015 dataset con-
tains 1532 site-years of data from 1996 to 2014, of which daily Ld observations are used
to build and evaluate Ld estimates over global land surface in this study. The AmeriFlux
network [53–55] includes 151 sites with more than 100 active sites as of 2012, providing
half-hourly or hourly Ld data spanning from 1996 to present. Flux tower sites of the Asi-
aFlux network [56,57] are spread across various representative climate zones (from humid
to arid climates) and land cover types (forest, grass, cropland, and urban area), of which Ld
observations have half-hourly or hourly temporal resolutions from 1998 to 2018.

To reduce systematic measurement errors, the data QA/QC checks proposed by
Pastorello et al. [58], including single-variable, multi-variable, and specialized checks, are
implemented at each site within the three networks. Single-variable checks are aimed
at exploring the consistency of one variable in the long and short time series trends.
Multi-variable checks focus on the relationship among correlation variables to ascertain
discrepant periods. Specialized checks look at common issues in eddy covariance (EC) and
meteorological data, such as timestamp shifts or sensor deterioration patterns. The last
step for data QA/QC is automatic checks that use specific variable de-spiking routines
adapted from Papale et al. [59] to set a range for each variable.
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2.1.2. BSRN Data

The baseline surface radiation network (BSRN) was initiated by the world climate
research program (WCPR) and aimed to provide accurate observations for validation of
satellite radiometry and climate models [60]. The BSRN project has established more
than 60 stations globally since January 1992 spanning latitudes ranging from 80◦N to
90◦S, providing continuous meteorological and radiation data on a minute time scale. By
improving its calibration process, the difference between Ld observations from different
pyrgeometers only reached 10 W m−2 in 1995 [61]. Only 6.5% of the Ld data are missing,
which indicates that the pyrgeometers within the BSRN maintain high standards [62].
Moreover, the missing data have less influence on Ld because Ld has a small diurnal cycle.
Overall, the BSRN Ld observations are relatively accurate and reliable.

2.1.3. SURFRAD Data

The surface radiation budget network (SURFRAD) has provided meteorological and
radiation data used for evaluating satellite products and researching climate changes in the
United States since 1995. Currently, it is composed of seven stations representing diverse
climates with elevations ranging from 98 to 1689 m. It provides long-term and continuous
surface radiation measurements with 3 min and 1 min time intervals before and after 2009,
respectively. The Ld measured by SURFRAD, with an uncertainty of ±9 W m−2, covers
a wavelength spanning from 4 to 50 µm [63]. The time period of Ld measurements used
ranges from 2000 to 2018 in this study.

2.2. Input Data
2.2.1. ERA5 Reanalysis Dataset

ERA5 [64], produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF), is the fifth generation reanalysis dataset and a successor of ERA-Interim. It
provides complete and consistent hourly temperature, relative humidity, and radiation
datasets, in addition to many other atmospheric parameter datasets, with a 25-km spatial
resolution from 1979 to near real time. Compared with ERA-Interim [65], ERA5 applied
the updated integrated forecast system (IFS) “Cy41r2” 4D-var and produced many new
parameters, such as a 100-m wind vector [66]. Many studies have also compared the
accuracy of ERA5 and used it to analyze climate change. For example, Wang et al. [66]
found that the warm bias of ERA5 2-m air temperature (Ta) is smaller in the warm season
and larger in the cold season in relation to the buoy observations over Arctic sea ice. Zhen
et al. [67] indicated that the mean relative humidity (RH) of ERA5 displayed a sharp
decreasing jump for China during the early 2000s. In this study, the parameters of the
ERA5 hourly reanalysis dataset, including the 2-m Ta (◦C), the RH at 1000 hPa (%), and
the total column water vapor (TCWV, kg m−2) from 2000 to 2018, were consolidated into a
daily temporal resolution as input data to construct global land Ld (W m−2) dataset based
on the GBRT method.

2.2.2. GLASS Surface Downward Shortwave Radiation Product

The global land surface satellite (GLASS) daily surface downward shortwave radiation
(Sd, W m−2) product with a 5-km spatial resolution from 2000 to 2018 was produced from
the moderate resolution imaging spectroradiometer top-of-atmosphere (TOA) spectral
reflectance on the basis of a direct estimation method [68,69]. First, the TOA reflectance
was retrieved using atmospheric radiation transfer simulations under different solar or
view geometries. Then, surface shortwave net radiation (Sn) was estimated from the TOA
reflectance on the basis of a linear regression relationship between them under different
atmospheric conditions and surface properties. Finally, the GLASS daily Sd was produced
using daily Sn estimates and surface broadband albedo values. The GLASS daily Sd values
obtained an overall RMSE and bias of 32.84 and 3.72 W m−2, respectively, compared to the
ground observations at 525 sites from 2003 to 2005 [68].
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2.2.3. Global Multi-Resolution Terrain Elevation Data 2010

The 2010 Global Multi-resolution Terrain Elevation dataset (GMTED2010DEM) [70] is
a global continent-wide elevation dataset generated by the U.S. Geological Survey (USGS)
and the National Geospatial-Intelligence Agency (NGA). This product contains three spatial
resolutions (approximately 250, 500, and 1000 m) aimed at providing generic products for
different applications. Carabajal et al. [71] indicated that the GMTED2010DEM products
exhibited a great improvement relative to previous elevation data at comparable resolutions.
Compared to the global set of the ice, cloud, and land elevation satellite (ICESat) geodetic
ground control points, it obtained a positive bias of approximately 3 m. In this study,
GMTED2010DEM data with a spatial resolution of approximately 250 m were resampled
to a 5-km resolution as input data for estimating Ld to match the generated Ld dataset.

2.3. Exiting Surface Downward Longwave Radiation Datasets

The Ld products used for validation and comparison with the generated Ld dataset
contain the clouds and earth’s radiant energy system synoptic (CERES-SYN) edition 4.1
and ERA5 reanalysis datasets. The CERES-SYN product with a 100-km spatial resolution,
generated on the basis of the Langley Fu-Liou radiation transfer model [72], provides
flux estimates at the TOA and surface, as well as four atmospheric pressure levels (70,
200, 500, and 850 hPa) from 2000 to 2020. Compared with CERES-SYN Edition 3A, the Ld
of Edition 4A has been improved due to the improvement of nighttime retrieved cloud
properties [73,74]. The ERA5 hourly Ld with a 25-km spatial resolution from 1979 to near
real time used the more complicated method proposed by Morcrette [9] to replace the
old Ld parametrization [75]. Silber et al. [10] demonstrated that ERA5 underestimated Ld
compared with the ground measurements collected from the ARM West Antarctic radiation
experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet
(WAIS) divide. In this study, the daily ERA5 Ld dataset consolidated from the hourly
dataset and the CERES-SYN product were compared and used to evaluate the generated
Ld dataset from 2000 to 2018.

3. Method
3.1. Gradient Boosting Regression Tree

The gradient boosting regression tree (GBRT) is an ensemble approach that enhances
the accuracy of the model by aggregating multiple weak forms of regression and decision
trees first proposed by Friedman [76]. The GBRT method is capable of predicting and
solving overfitting problems [77]. The core idea of this model is to select the appropriate
decision tree function based on the current model and fitting function in order to minimize
the loss function. The model produces a strong predictive model by constructing an M
amount of different weak classifiers through multiple iterations in order to obtain an
accurate prediction rule. Each iteration is to improve the previous results by reducing
the residuals of the previous model and establish a new combined model in the gradient
direction of the reduced residual [46]. Supposing {xi, yi}N

i=1 is the training dataset, where
x represents the predictor variables, y represents the target variable, and N is the number
of the training dataset. The GBRT model constructs M different individual decision trees,
expressed as {h(x, αi)}M

i=1, which can be used to calculate the approximation function of
the target variable f (x) as follows:

f (x) =
M
∑

m=1
fm(x) =

M
∑

m=1
βmh(x; αm)

h(x; αm) =
J

∑
j=1

γjm I
(

x ∈ Rjm
)
, where I = 1 i f x ∈ Rjm; I = 0, otherwise

(1)

where βm and αm are the weight and classifier parameter of each decision tree, respectively.
A loss function L(y, f (x)) is introduced to describe the accuracy of the model. Each tree
partitions the input space into J regions R1m, R2m, · · · , Rjm and each Rjm corresponds to
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a predicted value γjm. The general process of the GBRT method is shown in Appendix A,
Algorithm A1. More details about the GBRT method can be found in Hastie et al. [78] and
Ridgeway [79].

The accuracy of the GBRT model which is implemented in the scikit-learn toolbox is
mainly affected by its n-estimator, learning rate, max-depth, and subsample parameters.
The n-estimator parameter is the maximum number of iterations completed by a weak
learner. Larger n-estimators are more likely to lead to overfitting due to a poorer prediction
ability with an increasing model complexity. The learning rate parameter is the weight
reduction factor of each weak learner, which is usually used together with the n-estimator
parameter to determine the fitting effect of the algorithm. The max-depth parameter is
the maximum depth of each regression tree, which limits the number of nodes in the tree.
The subsample parameter is the proportion of samples used for fitting the base decision
tree. Selecting a subsample less than 1 can reduce overfitting but increase the deviation of
sample fitting. In this study, the root mean square error (RMSE), mean bias error (MBE), and
correlation coefficient (R) between the Ld observations and estimates are used to evaluate
the accuracy of the model.

3.2. Model Construction

The daily 2-m air temperature (Ta), relative humidity (RH) at 1000 hPa, total column
water vapor (TCWV), surface downward shortwave radiation (Sd), and elevation datasets
are selected as predictor variables to estimate the daily surface downward longwave
radiation (Ld). The target variable is the daily Ld observations collected at AmeriFlux,
AsiaFlux, BSRN, FLUXNET, and SURFRAD from 2000 to 2018. First, the predictor variables
were extracted from global datasets corresponding to the ground stations. Then, the dataset
of 314 sites was divided into two portions at random: 80% for the training dataset and the
remaining 20% for the test dataset. To select the optimal model, 5-fold cross-validation was
applied during the training process. The main steps are as follows:

(1) Calculating daily Ld observations. The daily mean Ld was integrated from the in-
stantaneous values if the missing instantaneous values were less than 20% in one
day because the AmeriFlux, AsiaFlux, BSRN, and SURFRAD networks only provide
instantaneous Ld values;

(2) Data preprocessing. After resampling to a 5-km resolution, the ERA5 Ta, ERA5 RH,
ERA5 TCWV, GLASS Sd, and GMTED2010DEM elevation datasets were extracted
according to the latitude, longitude, and time corresponding to the ground stations;

(3) Training the GBRT model. By circulating within the range of each parameter displayed
in Table 1, the GBRT model where the n-estimator parameter is set to 50, the learning
rate is set to 0.1, the max-depth is set to 6, and the subsample parameter of 0.8 was
selected as the optimal model to estimate global land Ld, achieving the lowest RMSE
and MBE values on the test dataset;

(4) Implementing the model. The global land Ld was produced on the basis of the
trained model using the daily ERA5 Ta, ERA5 RH, ERA5 TCWV, GLASS Sd, and
GMTED2010DEM elevation datasets;

(5) Evaluation of the generated global land Ld dataset. Daily Ld values collected at 35
observation sites were used to validate the generated global land Ld dataset and
compare it with the existing Ld datasets. The main flowchart in this study is shown in
Figure 2.

Table 1. Parameter settings to determine the optimal parameters for the GBRT method.

Parameters Threshold Intervals

n-estimator 50–300 50
learning rate 0.1–0.9 0.1
max-depth 4–9 1
subsample 0.2–1 0.1
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Figure 2. The main flowchart in this study.

In order to investigate the impact of the predictor variables used in the GBRT model
on the Ld estimation, the feature importance measures provided by the GBRT method was
conducted. As shown in Table 2, the importance of the predictor variables of the GBRT
model was in the order of the total column water vapor (TCWV), 2-m air temperature
(Ta), relative humidity at 1000hPa (RH), surface downward shortwave radiation (Sd), and
elevation. The Ld estimates are shown to be more sensitive to the TCWV and Ta than to
most of other variables, thus highlighting the importance of taking TCWV and Ta as inputs.

Table 2. Importance rankings of all predictor variables for Ld estimation.

Predictor Variables Importance

Total column water vapor (TCWV) 0.78
2-m air temperature (Ta) 0.19

Relative humidity at 1000 hPa (RH) 0.01
Surface downward shortwave radiation (Sd) 0.01

Elevation 0.01

4. Results
4.1. Validation against Ground Measurements
4.1.1. Performance of the Model

After confirming the optimal parameters, 80% and 20% of the extracted dataset
collected at 314 stations were used as the training and test datasets, respectively, to train the
GBRT model and evaluate the Ld estimates. Figure 3 displays the evaluation results of daily
Ld estimates for the training and test datasets against the ground measurements collected
at the AmeriFlux, AsiaFlux, BSRN, FLUXNET, and SURFRAD networks from 2000 to 2018.
For the training dataset, the root mean square error (RMSE), mean bias error (MBE), and
correlation coefficient (R) are 16.73 W m−2, 0 W m−2, and 0.96 (p < 0.01), respectively,
between the ground observations and Ld estimates on the basis of the GBRT model from
2000 to 2018. Those values are 16.75 W m−2, 0.05 W m−2, and 0.96 (p < 0.01) for the test
dataset, respectively, which shows a tendency to slightly overestimate Ld. As a whole, the
performance of the GBRT model on the test dataset is satisfactory and reliable with an MBE
close to zero.
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Figure 3. Evaluation results of daily Ld estimates on the basis of the GBRT model for (a) the training dataset and (b) the test
dataset against the ground measurements from March 2000 to December 2018.

4.1.2. Validation of the Generated Ld Dataset

The Ld observations of 35 sites were used to evaluate the generated Ld dataset collected
at the AmeriFlux, AsiaFlux, BSRN, FLUXNET, and SURFRAD networks from March 2000
to December 2018. As shown in Figure 4, the RMSE, MBE, and R values on the daily time
scale are 17.78 W m−2, 0.99 W m−2, and 0.96 (p < 0.01), respectively, between the ground
observations and Ld estimates obtained by the GBRT model. On the monthly time scale,
those values are 11.53 W m−2, 0.68 W m−2, and 0.98 (p < 0.01), respectively. To further
evaluate the performance of the generated Ld dataset, the RMSE, MBE, and R values of
the daily Ld estimates at each site were calculated from 2000 to 2018. The minimum and
maximum RMSE of the 35 sites are 11.26 and 37.82 W m−2, respectively. As shown in
Figure 5, 24 out of the 35 sites had RMSEs less than 20 W m−2, and only two sites had
RMSEs greater than 30 W m−2. Overall, 35 sites had absolute MBE values varying from
0.12 to 36.83 W m−2, and 23 sites had MBEs between −10 and 10 W m−2. The number of
stations with MBE less than −10 W m−2 and greater than 10 W m−2 are both six.
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4.2. Comparison with Existing Ld Products

To better evaluate the accuracy of the generated Ld dataset, the valuation result against
the 35 sites from 2000 to 2018 was compared with the CERES-SYN and ERA5 products.
The generated Ld and ERA5 products were resampled to a 100-km resolution using the
nearest neighbor interpolation method to match the CERES-SYN product. As shown in
Figure 6, the RMSE and MBE are 17.94 and 0.25 W m−2, 18.81 and 1.76 W m−2, 18.52 and
−2.09 W m−2, respectively, for the daily generated, CERES-SYN, and ERA5 Ld datasets.
CERES-SYN and ERA5 Ld show overestimated and underestimated tends on the daily time
scale, respectively. Relatively speaking, the overestimated trend of the generated Ld dataset
with an MBE of 0.25 W m−2 is slight. In addition, the RMSE of the ERA5 daily Ld dataset
is less than that of the CERES-SYN product, and it can be concluded that the ERA5 Ld
product over land is more accurate than that of the CERES-SYN on the daily time scale.
This is consistent with the conclusion of Tang et al. [11] that the ERA5 Ld product over land
surface has a higher accuracy on average than the CERES-SYN on the hourly, daily, and
monthly time scales but has a worse accuracy than the CERES-SYN dataset over ocean
surface. On the monthly time scale, the RMSE and MBE are 11.75 and 0.18 W m−2, 13.55
and 1.63 W m−2, 12.20 and −2.69 W m−2, respectively, for the generated, CERES-SYN,
and ERA5 Ld datasets. It can be concluded that the generated Ld dataset based on the
GBRT model performed best on both daily and monthly scales. To further compare the
performance of the three daily Ld datasets, the RMSE, MBE, and R values at each site were
calculated from 2000 to 2018. The RMSE of the 35 sites varied from 11.21 to 31.90 W m−2,
9.09 to 41.99 W m−2, 8.68 to 35.51 W m−2, respectively, for the daily generated, CERES-SYN,
and ERA5 Ld datasets. As shown in Figure 7, there are 28, 28, and 25 sites with RMSEs
less than 25 W m−2 for the daily generated, CERES-SYN, and ERA5 Ld datasets. Only 3,
3, and 2 out of 35 sites had RMSEs greater than 30 W m−2 for the three daily Ld datasets,
respectively. These three daily Ld datasets have 23, 19, and 24 sites with MBEs between
−10 and 10 W m−2, respectively. However, the daily CERES-SYN Ld product obtained
10 sites with MBEs greater than 10 W m−2, compared with 6 for the generated Ld dataset
and 3 for the ERA5 Ld retrieval.
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4.3. Spatial and Temporal Analysis of Ld
4.3.1. Spatial Distribution

The multiyear seasonal and annual mean values of the generated Ld dataset from
2003 to 2018 (i.e., not from 2000 to 2018) were calculated due to the absence of daily Ld
values from 2000 to 2002. The CERES-SYN and ERA5 Ld products were resampled to a
5-km resolution by the bilinear interpolation method for comparison with the generated Ld
dataset. The spatial distributions of the multiyear seasonal and annual mean Ld estimations
over the global land surface from 2003 to 2018 are displayed in Figures 8 and 9, respectively.
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The highest multiyear seasonal mean Ld value is 333.21 W m−2 in Northern hemisphere
summer (June, July, and August), followed by 311.94 W m−2 in Northern hemisphere
autumn (September, October, and November), and the lowest value is 286.09 W m−2 in
Northern hemisphere winter (December, January, and February). The seasonal variation in
Ld is closely related to the annual solar zenith cycle and the maximum sunshine duration.
After the winter solstice, the direct sun point moves northward from the Tropic of Capricorn,
causing changes in the global heat distribution, which increases the overall Ld value in the
Northern hemisphere. Overall, the multiyear annual mean value of the generated Ld dataset
is 308.76 W m−2, which is greater than the ERA5 value of 306.92 W m−2 and less than the
CERES-SYN value of 313.83 W m−2 from 2003 to 2018. The spatial distribution of Ld not
only shows significant latitudinal dependencies in which the mean Ld value decreases with
increasing latitude but also relates to the surface elevation and regional climate. The mean
Ld values estimated over the Andes and Tibetan Plateau are comparatively and obviously
low due to their high elevation with a low cloud coverage, thin air and readily lost heat. The
mean Ld values of Antarctica and Greenland are always lowest owing to the perennial snow
cover and frigid climate. Apparently, the generated Ld value is lower than the CERES-SYN
value and higher than the ERA5 value. The lowest and highest differences between the
generated Ld and the CERES-SYN product are −81.44 and 60.56 W m−2, respectively; and
the values between the generated Ld and the ERA5 product are −46.17 and 58.83 W m−2,
respectively. The generated Ld value is significantly lower than the CERES-SYN in the
Tibetan Plateau, Andes Mountains, and Antarctica, and is significantly higher than it in a
small area of the northern Amazon Rainforest and eastern Indonesia. Compared with the
CERES-SYN dataset, the difference between the generated Ld dataset and the ERA5 product
is evenly distributed with no obvious high and low values over the global land surface.
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The multiyear annual mean Ld values of the generated dataset, ERA5 retrieval, and
CERES-SYN product are consistent with the evaluation results against the ground mea-
surements that ERA5 and CERES-SYN tend to underestimate and overestimate Ld value,
respectively. However, there is still much debate about the specific multiyear annual
mean Ld value over the global land surface. The uncertainty of the global land mean Ld
estimation is difficult to quantify, and different periods may influence the estimated values.
Ma et al. [80] summarized that multiyear annual mean Ld values over the global land
surface varied between 287.35 and 316.62 W m−2 for 44 general circulation models (GCM)
in the coupled model intercomparison project phase 5 (CMIP5) from 1990 to 2005, and its
median was 304.59 W m−2. Wang et al. [81] calculated that the annual mean Ld values
over the global land surface of the GEWEX-SRB, MERRA, and CERES-SRB datasets were
308, 295, and 307 W m−2 from 2001 to 2007, 2001 to 2010, and 2003 to 2010, respectively,
and estimated that the best Ld estimate was 307±3 W m−2 over the global land surface
from 2003 to 2010 based on reference studies and evaluation results compared against
the ground measurements. The multiyear annual mean value of the generated Ld dataset
over the global land surface is 308.76 W m−2 from 2003 to 2018 which is consistent with
these results.

4.3.2. Time Series and Long-Term Trend

To study the temporal variations of the generated Ld dataset, we calculated the monthly
and annual mean Ld from 2003 to 2018, as shown in Figure 10. We analyzed whether the
interannual changes in the generated Ld dataset were reliable by comparing with the ERA5
and CERES-SYN Ld datasets. Overall, ERA5 has a relatively lower value, and CERES-SYN
shows a larger value for the multiyear monthly mean Ld. The multiyear monthly mean
Ld of the ERA5, generated dataset, and CERES-SYN are all lowest in January, with values
of 280.02, 284.22, and 284.49 W m−2, respectively; they are all largest in July, with values
of 336.12, 336.24, 343.94 W m−2, respectively. The multiyear monthly mean Ld values of
the three datasets all increase from January to July and decrease from July to December in
connection with the revolution of the earth around the sun resulting in more total solar
radiation in Northern hemisphere summer than in Northern hemisphere winter. Compared
with ERA5 and CERES-SYN, the boxed part of the box-plot (Figure 10a) of the generated Ld
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dataset is relatively compact, indicating that its monthly mean Ld values in different years
are concentrated. Similar to the monthly mean Ld, the annual mean Ld values of ERA5 and
CERES-SYN are lower and higher than the generated Ld dataset, respectively, in the same
year. The annual mean Ld values ranged from 304.93 to 309.92 W m−2, 306.94 to 311.99 W
m−2, and 311.88 to 316.29 W m−2 from 2003 to 2018, respectively, for the ERA5 retrieval,
the generated Ld dataset, the CERES-SYN product. The three datasets all obtained the
lowest and largest annual mean Ld values in 2008 and 2016, respectively.
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As displayed in Figure 10c, before 2015, the anomalies of the annual mean Ld values
are negative for the generated and ERA5 Ld datasets, except for 2005 and 2010, which
implies that the annual mean Ld values for this period are below the multiyear average
over 16 years. In addition, the anomalies of annual mean Ld values are also more than
zero for the CERES-SYN product in 2003. Moreover, the CERES-SYN Ld product had a
smaller growth trend of 0.8 W m−2 per decade (p = 0.20) from 2003 to 2018, but the growth
trend was not significant. Overall, the temporal variation and trend of the generated Ld
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dataset are more consistent with the ERA5 product, and the annual mean Ld values display
a gradual increasing trend from 2003 to 2018. Ma et al. [80] concluded that the trend of
the annual mean Ld over the global land surface for 44 CMIP5 GCMs varied from 0.69 to
2.86 W m−2 per decade (p < 0.01) during the time period of 1970–2005, and its median
value is 1.86 W m−2 per decade. Therefore, it is reliable for the generated and ERA5 Ld
datasets, with trends of 1.8 (p < 0.01) and 1.9 (p < 0.01) W m−2 per decade over the global
land surface, respectively.

4.3.3. Relationships between the Long-Term Ld and the Key Factors

Previous studies indicated that the accuracy of Ld estimation mainly depends on
the reliability of the air temperature, precipitable water vapor, cloud, and elevation data
retrieved from the reanalysis and satellite products. In view of the small variations in
elevation and cloud cover over the long time series, the trend of Ld estimation is mainly
influenced by air temperature and water vapor pressure. Therefore, we calculated the
anomalies of the 2-m air temperature (Ta, ◦C) and water vapor pressure (e, hPa) datasets
based on the ERA5 hourly products from 2003 to 2018. e can be calculated with Ta using
the following equations based on the Ta and relative humidity at 1000 hPa (RH) derived
from the ERA5 products.

RH =
e
es
× 100% (2)

es = 6.11 exp
(

Lv

Rv

(
1

273.15
− 1

Ta + 273.15

))
(3)

where e and es are the water vapor pressure and saturation water vapor pressure, respectively.
Figure 11 presents the temporal variation in the annual mean anomalies for the

generated Ld estimation, Ta and e from 2003 to 2018. The annual mean values ranged
from 9.12 to 10.22 ◦C, and 7.82 to 8.26 hPa from 2003 to 2018 for Ta and e, respectively.
Before 2015, the annual mean anomalies were negative for Ta and e, excluding 2005 and
2010, which was similar to the Ld estimation. In addition, the anomalies of annual mean
Ta values were also greater than zero in 2007. The Ld increases with the increase in Ta
and e. The increasing rates are 0.3 ◦C per decade (p < 0.01), 0.1 hPa per decade (p < 0.05),
and 1.8 W m−2 per decade (p < 0.01), respectively, for Ta, e, and Ld from 2003 to 2018.
Overall, Ta and e positively influence Ld with correlation coefficients of 0.96 (p < 0.01) and
0.97 (p < 0.01), respectively. The strong absorption and re-emission of radiation by water
vapor molecules result in a high correlation between e and Ld. However, the influence of
temperature on Ld relies on the dependence of the outgoing longwave radiation on the
absolute temperature of the Earth. In addition, the spatial distributions of the annual mean
values of Ta and e from 2003 to 2018 are shown in Figure 12. The minimum and maximum
annual mean values are −53.35 and 34.12 ◦C, and 0.05 and 32.85 hPa, respectively, for Ta
and e. Their distribution characteristics are similar to that of the generated Ld dataset that
its spatial distribution not only shows notable latitudinal dependencies as the annual mean
values decrease with increasing latitudes but it also relates to the surface elevation and
regional climate. The annual mean Ta and e values on the Andes and Tibetan Plateau are
comparatively and obviously low due to their high elevations. The annual mean Ta values
of Antarctica and Greenland are always the lowest due to their perennial snow coverage
and frigid climates. The annual mean e values are relatively low, less than 21.72 hPa at
middle to high latitudes. The spatial distribution of R between the generated Ld estimation
and Ta and e from 2003 to 2018 is also drawn, as shown in Figure 13. Only significant pixels
where p values are less than 0.05 appeared. The R values ranged from 0.50 and −0.67 to 1
for Ta and e, respectively. There was a positive correlation between the generated Ld and Ta
in the region where the R passed the significant test. For the e, there are few pixels with
R value less than 0, which even cannot be shown up on the map. Except for values less
than 0, the minimum value of R between the generated Ld and e is also 0.50. The R values
between annual mean Ld estimates and Ta and e failed the significant test mainly occurred
in the Andes Mountains, Brazilian Plateau, Tibet Plateau, Australia, Southern Africa, and



Remote Sens. 2021, 13, 1848 16 of 30

southern North America. This may be due to the influences of clouds, elevation controls,
and carbon dioxide emissions [29,30,41,82], that play a dominant role in these regions. The
possible reasons need to be further explored.
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5. Discussion
5.1. Shortcomings of the GBRT Model

The gradient boosting regression tree (GBRT) method has advantages in forecasting
and solving overfitting problems [76]. The evaluation results demonstrated that the gener-
ated Ld dataset based on the GBRT method performed better at selected stations than the
ERA5 and CERES-SYN products on daily and monthly time scales. However, there are still
some disadvantages in the machine learning methods for radiation estimation represented
in the GBRT method [45,77,83]. Alizamir et al. [77] utilized six different machine learning
models to estimate solar radiation from two stations of two different locations, and found
that the six models all tend to overestimate Ld for low values of it and to underestimate
Ld for high values of it. Fan et al. [83] also exposed similar problem in using support
vector machine and extreme gradient boosting methods to predict daily solar radiation
in China. With reference to Figures 3, 4 and 6, it is evident that the GBRT method for Ld
estimation also overestimate Ld at low values and underestimate Ld at high values. Since
the departures of slope from 1 and intercept from 0 for fitting linear regression equations
can measure the degree of deviation, the linear regression equations were fitted between
the ground measurements of 35 stations and the generated, ERA5, and CERES-SYN Ld
datasets on daily and monthly time scales, as listed in Table 3. Compared to those two Ld
products, the fitted linear regression equations of the generated Ld has a smaller slope and
a greater intercept on both daily and monthly time scales, which indicates that the fitted
line deviates more from the 1:1 line and that the GBRT method underestimates Ld for high
values and overestimates it for low values. Other machine learning methods, including
support vector regressions, multivariate adaptive regression splines, and artificial neural
networks used to estimate Ld, also show the same problem [49]. On the other hand, the
GBRT method makes predictions by learning rules from many sample data, so it has higher
requirements for the accuracy and quantity of its training datasets. However, the ground
measurements of Ld used as the target variable exhibit missing values and deviations,
although the obviously incorrect data have been removed, which may be limit the accuracy
of the GBRT method. Finally, the learning and training process of the GBRT method is a
black box whose processes are not known and may not be effective [45].

Table 3. The fitted linear regression equations for the generated, ERA5, and CERES-SYN Ld datasets
on both daily and monthly time scales. Where the x and y represent the ground measurements of Ld

and the Ld estimates, respectively.

Time Scale Dataset Fitted Linear Regression Equation

Daily time scale
Ld estimation y = 0.91 ∗ x + 27.99 *

ERA5 Ld y = 0.97 ∗ x + 6.39 *
CERES-SYN Ld y = 0.96 ∗ x + 13.38 *

Monthly time scale
Ld estimation y = 0.94 ∗ x + 19.06 *

ERA5 Ld y = 0.99 ∗ x + 1.64 *
CERES-SYN Ld y = x + 0.59 *

* The coefficient of the fitted linear regression equation passed the significance test (p < 0.01).

5.2. Accuracy and Completeness of Input Datasets and Ground Measurements

Because Ld was estimated based on the relationships between its ground observations
and input variables, including the 2-m air temperature (Ta), relative humidity (RH) at
1000 hPa, total column water vapor (TCWV), surface downward shortwave radiation (Sd),
and elevation, the accuracy and completeness of the input datasets and ground measure-
ments are vital. However, ground observations exist measurement errors and problem
of spatial representativeness, which are potential sources of errors in Ld estimation. A
larger part of measurements errors is caused by systematic deviations and calibration
process differences. Ohmura et al. [60] demonstrated the accuracy of Ld observations in the
baseline surface radiation network improved from 30 W m−2 in 1999 to 10 W m−2 in 1995
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due to improvement of the calibration process. Currently, although pyrgeometers for Ld
measurement are regularly maintained and calibrated, there is still a lack of recognized
world reference calibration standard [60,84]. The different calibration methods of different
observation networks can lead to inconsistencies of Ld measurements at the close positions,
which also brings uncertainties of ground measurements [81]. The spatial representa-
tiveness plays an important role in the surface radiation retrieval and validation [85–88].
Jiang et al. [87] indicated the accuracy of Sd retrieval can be improved, that maximum
improvement of root mean square error is up to 9%, after considering the scale information.
In this study, we only compared the accuracies of the generated, ERA5, and CERES-SYN Ld
datasets at 100-km spatial resolution but did not examine the representativeness of surface
observation points, which maybe lead to the uncertainty of compared result.

On the other hand, the completeness of input datasets limits the continuity of the
generated Ld dataset. For example, the generated daily Ld dataset was discontinuous before
2003 due to the data missing of the global land surface satellite (GLASS) daily Sd product
which was produced by using moderate resolution imaging spectroradiometer (MODIS) top
of atmosphere (TOA) reflectance data. Compared with the previous methods of Sd retrieval,
however, GLASS Sd had a higher spatial resolution of 5 km and was directly estimated
using TOA reflectance without the need for cloud and aerosol data, which contributes to a
better ability to demonstrate temporal variations in Sd over a long time period. Moreover,
the ERA5 and elevation datasets were resampled to a 5-km spatial resolution matching
with Sd, which can also introduce uncertainty into the data. In summary, the Ld estimates
will be more accurate if the accuracy and completeness of the input datasets and ground
measurements are improved.

6. Conclusions

It is of great importance for studying the Earth’s surface radiation budget and energy
balance to construct a long-term surface downward longwave radiation (Ld, 4–100 µm)
dataset worldwide. This study generated a daily Ld dataset with a 5-km spatial resolution
over the global land surface utilizing the gradient boosting regression tree (GBRT) method
with 2-m air temperature (Ta), relative humidity (RH) at 1000 hPa, total column water
vapor (TCWV), surface downward shortwave radiation (Sd), and elevation datasets from
2000 to 2018. The Ld observations of 349 stations collected at the AmeriFlux, AsiaFlux,
baseline surface radiation network (BSRN), surface radiation budget network (SURFRAD),
and FLUXNET networks were randomly divided into 90% (314 sites), as the target variable
to build the model, and 10% (35 sites), as the evaluation dataset to independently validate
the Ld estimates. First, the predictor variables were extracted from the global datasets
according to the latitude, longitude, and time corresponding to the ground stations. Then,
the dataset of 314 sites was further divided into two portions at random to train the GBRT
model: 80% for the training dataset and the remaining 20% for the test dataset. Then, the
daily Ld observations collected at 35 stations were used to validate the generated global
land Ld dataset.

The evaluation results showed that the root mean square error (RMSE), mean bias
error (MBE), and correlation coefficient (R) values on the daily time scale were 17.78 W m−2,
0.99 W m−2, and 0.96 (p < 0.01), respectively, between the Ld estimates with a 5-km spatial
resolution and the ground measurements. On the monthly time scale, those values are
11.53 W m−2, 0.68 W m−2, and 0.98 (p < 0.01), respectively. At a 100-km spatial resolution,
the performance of the generated Ld dataset is better than that of ERA5 and CERES-SYN. On
the daily time scale, the RMSE and MBE are 17.94 and 0.25 W m−2, 18.81 and 1.76 W m−2,
18.52 and−2.09 W m−2, respectively, for the generated, CERES-SYN, and ERA5 Ld datasets.
The multiyear seasonal and annual mean values of the generated Ld dataset from 2003 to
2018 were calculated due to the absence of daily Ld from 2000 to 2002. In terms of their
temporal variation, the multiyear monthly mean Ld values of the three datasets increase
from January to July and decrease from July to December in connection with the revolution
of the earth around the sun resulting in more total solar radiation in Northern hemisphere



Remote Sens. 2021, 13, 1848 19 of 30

summer than in Northern hemisphere winter. Overall, the temporal variation and trend of
the generated Ld dataset are more consistent with the ERA5 product that the annual mean
Ld values display a gradual increasing trend from 2003 to 2018. The spatial distribution of
Ld not only shows a notable latitudinal dependency in which the mean Ld value decreases
with increasing latitudes but also relates to the surface elevation and regional climate. In
addition, Ld is positively affected by the 2-m air temperature and water vapor pressure
with R values of 0.96 (p < 0.01) and 0.97 (p < 0.01), respectively.

Overall, the generated Ld dataset has a higher spatial resolution and accuracy, con-
tributing to knowledge of the surface radiation budget and energy balance of the Earth.
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Appendix A

Table A1. Detailed information of the ground sites.

Number Site Code Site Name Latitude
(deg)

Longitude
(deg)

Elevation
(m) Time Period

1 BR-Npw Northern Pantanal Wetland −16.50 −56.41 120 2013–2017
2 BR-Sa3 Santarem-Km83-Logged Forest −3.02 −54.97 100 2001–2004
3 CA-ARF Attawapiskat River Fen 52.70 −83.96 88 2011–2015

4 CA-Ca1 British Columbia–1949
Douglas-fir stand 49.87 −125.33 300 2000–2010

5 CA-Ca3 British Columbia–Pole sapling
Douglas-fir stand 49.53 −124.90 \ 2002–2016

6 CA-Cbo Ontario–Mixed Deciduous, Borden
Forest Site 44.32 −79.93 120 2005–2018

7 CA-DBB Delta Burns Bog 49.13 −122.98 4 2016–2018

8 CA-Gro Ontario–Groundhog River, Boreal
Mixedwood Forest 48.22 −82.16 340 2003–2014

9 CA-Na1
New Brunswick–1967 Balsam

Fir–Nashwaak Lake Site 01 (Mature
balsam fir forest)

46.47 −67.10 341 2003–2005

10 CA-Oas Saskatchewan–Western Boreal,
Mature Aspen 53.63 −106.20 530 2000–2010

11 CA-Obs Saskatchewan–Western Boreal,
Mature Black Spruce 53.99 −105.12 628.94 2000–2010

12 CA-Ojp Saskatchewan–Western Boreal,
Mature Jack Pine 53.92 −104.69 579 2000–2010

https://doi.org/10.5281/zenodo.4704019
https://doi.org/10.5281/zenodo.4704019
https://doi.org/10.5281/zenodo.4739724
https://ameriflux.lbl.gov
http://www.asiaflux.net/
https://fluxnet.org/
https://fluxnet.org/
https://dataportals.pangaea.de/bsrn
https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://ceres.larc.nasa.gov/
https://ceres.larc.nasa.gov/
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Table A1. Cont.

Number Site Code Site Name Latitude
(deg)

Longitude
(deg)

Elevation
(m) Time Period

13 CA-Qcu Quebec–Eastern Boreal, Black
Spruce/Jack Pine Cutover 49.27 −74.04 392.3 2004–2010

14 CA-Qfo Quebec–Eastern Boreal, Mature
Black Spruce 49.69 −74.34 382 2003–2010

15 CA-SCB Scotty Creek Bog 61.31 −121.30 280 2014–2017
16 CA-SCC Scotty Creek Landscape 61.31 −121.30 285 2013–2016

17 CA-SF1 Saskatchewan–Western Boreal, forest
burned in 1977 54.49 −105.82 536 2003–2006

18 CA-SF2 Saskatchewan–Western Boreal, forest
burned in 1989 54.25 −105.88 520 2002–2005

19 CA-SF3 Saskatchewan–Western Boreal, forest
burned in 1998 54.09 −106.01 540 2002–2006

20 CA-SJ1 Saskatchewan–Western Boreal, Jack
Pine forest harvested in 1994 53.91 −104.66 580 2001–2010

21 CA-SJ2 Saskatchewan–Western Boreal, Jack
Pine forest harvested in 2002 53.95 −104.65 580 2003–2010

22 CA-SJ3
Saskatchewan–Western Boreal, Jack

Pine forest harvested in 1975
(BOREAS Young Jack Pine)

53.88 −104.65 \ 2004–2010

23 CA-TP4 Ontario–Turkey Point 1939 Plantation
White Pine 42.71 −80.36 184 2003–2017

24 CA-TPD Ontario–Turkey Point
Mature Deciduous 42.64 −80.56 260 2012–2017

25 CA-WP1 Alberta–Western Peatland–LaBiche
River,Black Spruce/Larch Fen 54.95 −112.47 540 2003–2009

26 US-A03 ARM-AMF3-Oliktok 70.50 −149.88 5 2014–2018
27 US-A10 ARM-NSA-Barrow 71.32 −156.61 4 2011–2018
28 US-A32 ARM-SGP Medford hay pasture 36.82 −97.82 335 2015–2017
29 US-A74 ARM SGP milo field 36.81 −97.55 337 2016–2017

30 US-AR1 ARM USDA UNL OSU Woodward
Switchgrass 1 36.43 −99.42 611 2009–2012

31 US-AR2 ARM USDA UNL OSU Woodward
Switchgrass 2 36.64 −99.60 646 2009–2012

32 US-ARM ARM Southern Great Plains site-
Lamont 36.61 −97.49 314 2003–2018

33 US-An1 Anaktuvuk River Severe Burn 68.99 −150.28 600 2008–2009
34 US-An2 Anaktuvuk River Moderate Burn 68.95 −150.21 600 2008–2019
35 US-An3 Anaktuvuk River Unburned 68.93 −150.27 600 2008–2010
36 US-Bi1 Bouldin Island Alfalfa 38.10 −121.50 −2.7 2016–2018
37 US-Bi2 Bouldin Island corn 38.11 −121.54 −5 2017–2018
38 US-Bkg Brookings 44.35 −96.84 510 2004–2010
39 US-Blk Black Hills 44.16 −103.65 1718 2004–2008
40 US-Bo1 Bondville 40.01 −88.29 219 2000–2008
41 US-Br1 Brooks Field Site 10- Ames 41.97 −93.69 313 2005–2011
42 US-Br3 Brooks Field Site 11- Ames 41.97 −93.69 313 2005–2011
43 US-CPk Chimney Park 41.07 −106.12 2750 2009–2013
44 US-ChR Chestnut Ridge 35.93 −84.33 286 2005–2010
45 US-Ctn Cottonwood 43.95 −101.85 744 2006–2009
46 US-Dia Diablo 37.68 −121.53 323 2010–2012
47 US-Dk1 Duke Forest-open field 35.97 −79.09 168 2004–2008
48 US-Dk2 Duke Forest-hardwoods 35.97 −79.10 168 2004–2008
49 US-Dk3 Duke Forest–loblolly pine 35.98 −79.09 163 2004–2008
50 US-EDN Eden Landing Ecological Reserve 37.62 −122.11 \ 2018

51 US-EML Eight Mile Lake Permafrost thaw
gradient, Healy Alaska. 63.88 −149.25 700 2011–2018

52 US-FPe Fort Peck 48.31 −105.10 634 2000–2008
53 US-FR2 Freeman Ranch- Mesquite Juniper 29.95 −98.00 271.9 2008
54 US-FR3 Freeman Ranch- Woodland 29.94 −97.99 232 2008–2012
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Table A1. Cont.

Number Site Code Site Name Latitude
(deg)

Longitude
(deg)

Elevation
(m) Time Period

55 US-Fmf Flagstaff–Managed Forest 35.14 −111.73 2160 2005–2010
56 US-Fuf Flagstaff–Unmanaged Forest 35.09 −111.76 2180 2005–2010
57 US-Fwf Flagstaff–Wildfire 35.45 −111.77 2270 2005–2010
58 US-GLE GLEES 41.37 −106.24 3197 2004–2018
59 US-Goo Goodwin Creek 34.25 −89.87 87 2002–2006
60 US-HBK Hubbard Brook Experimental Forest 43.94 −71.72 367 2017–2018
61 US-HRA Humnoke Farm Rice Field–Field A 34.59 −91.75 \ 2016–2017
62 US-HRC Humnoke Farm Rice Field–Field C 34.59 −91.75 \ 2016–2017
63 US-Ha2 Harvard Forest Hemlock Site 42.54 −72.18 360 2014–2018

64 US-Hn3 Hobcaw Barony Longleaf Pine
Restoration 46.69 −119.46 120.9 2017–2018

65 US-Ho1 Howland Forest (main tower) 45.20 −68.74 60 2007–2018
66 US-Ho2 Howland Forest (west tower) 45.21 −68.75 61 2007–2009
67 US-Ho3 Howland Forest (harvest site) 45.21 −68.73 61 2007–2009
68 US-Ivo Ivotuk 68.49 −155.75 568 2003–2006
69 US-KFS Kansas Field Station 39.06 −95.19 310 2008–2018
70 US-KLS Kansas Land Institute 38.77 −97.57 373 2012–2017

71 US-KM4 KBS Marshall Farms Smooth Brome
Grass (Ref) 42.44 −85.33 288 2010–2018

72 US-KS3 Kennedy Space Center (salt marsh) 28.71 −80.74 0 2018
73 US-KUT KUOM Turfgrass Field 44.99 −93.19 301 2006–2009
74 US-Kon Konza Prairie LTER (KNZ) 39.08 −96.56 417 2006–2018
75 US-Los Lost Creek 46.08 −89.98 480 2014–2018
76 US-MMS Morgan Monroe State Forest 39.32 −86.41 275 2000–2018
77 US-MOz Missouri Ozark Site 38.74 −92.20 219.4 2004–2017
78 US-MRf Mary’s River (Fir) site 44.65 −123.55 263 2007–2011
79 US-MSR Montana Sun River winter wheat 47.48 −111.72 1110 2016
80 US-Me2 Metolius mature ponderosa pine 44.45 −121.56 1253 2005–2018
81 US-Me3 Metolius-second young aged pine 44.32 −121.61 1005 2009
82 US-Me6 Metolius Young Pine Burn 44.32 −121.61 998 2010–2018

83 US-Men Lake Mendota, Center for Limnology
Site 43.08 −89.40 260 2012–2018

84 US-Mpj Mountainair Pinyon-Juniper
Woodland 34.44 −106.24 2196 2008–2018

85 US-MtB Mt Bigelow 32.42 −110.73 2573 2009–2018
86 US-NC1 Mt Bigelow 35.81 −76.71 5 2005–2012
87 US-NC2 NC_Loblolly Plantation 35.80 −76.67 5 2005–2018
88 US-NC3 NC_Clearcut#3 35.80 −76.66 5 2013–2018
89 US-NC4 NC_AlligatorRiver 35.79 −75.90 1 2015–2018
90 US-NGB NGEE Arctic Barrow 71.28 −156.61 5.273 2012–2018
91 US-NGC NGEE Arctic Council 64.86 −163.70 35 2017–2018
92 US-NR1 Niwot Ridge Forest (LTER NWT1) 40.03 −105.55 3050 2000–2018
93 US-Ne1 Mead–irrigated continuous maize site 41.17 −96.48 361 2001–2018

94 US-Ne2 Mead–irrigated maize-soybean
rotation site 41.16 −96.47 362 2001–2018

95 US-Ne3 Mead–rainfed maize-soybean rotation
site 41.18 −96.44 363 2001–2018

96 US-Orv Olentangy River Wetland Research
Park 40.02 −83.02 221 2011–2016

97 US-Oho Oak Openings 41.55 −83.84 230 2004–2013
98 US-PHM Plum Island High Marsh 42.74 −70.83 1.4 2013–2018
99 US-Pnp Lake Mendota, Picnic Point Site 43.09 −89.42 260 2016–2018

100 US-Prr Poker Flat Research Range Black
Spruce Forest 65.12 −147.49 210 2010–2016

101 US-Rls RCEW Low Sagebrush 43.14 −116.74 1608 2014–2018
102 US-Rms RCEW Mountain Big Sagebrush 43.06 −116.75 2111 2014–2018
103 US-Ro1 Rosemount- G21 44.71 −93.09 260 2004–2016
104 US-Ro2 Rosemount- C7 44.73 −93.09 292 2015–2016
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105 US-Ro4 Rosemount Prairie 44.68 −93.07 274 2015–2018
106 US-Ro5 Rosemount I18_South 44.69 −93.06 283 2017–2018
107 US-Ro6 Rosemount I18_North 44.69 −93.06 282 2017–2018

108 US-Rpf
Poker Flat Research Range:

Succession from fire scar to deciduous
forest

65.12 −147.43 497 2013–2018

109 US-Rwe RCEW Reynolds Mountain East 43.07 −116.76 2098 2005–2007
110 US-Rwf RCEW Upper Sheep Prescibed Fire 43.12 −116.72 1878 2014–2018

111 US-Rws Reynolds Creek Wyoming big
sagebrush 43.17 −116.71 1425 2014–2018

112 US-SFP Sioux Falls Portable 43.24 −96.90 386 2007–2009
113 US-SRC Santa Rita Creosote 31.91 −110.84 950 2008–2014
114 US-SRG Santa Rita Grassland 31.79 −110.83 1291 2008–2018
115 US-SRM Santa Rita Mesquite 31.82 −110.87 1120 2004–2018
116 US-Seg Sevilleta grassland 34.36 −106.70 1622 2007–2018
117 US-Ses Sevilleta shrubland 34.33 −106.74 1604 2007–2018

118 US-Skr Shark River Slough (Tower SRS-6)
Everglades 25.36 −81.08 0 2004–2011

119 US-Slt Silas Little- New Jersey 39.91 −74.60 30 2007–2012
120 US-Sne Sherman Island Restored Wetland 38.04 −121.75 −5 2016–2018
121 US-Snf Sherman Barn 38.04 −121.73 −4 2018
122 US-Srr Suisun marsh–Rush Ranch 38.20 −122.03 8 2014–2017
123 US-Ton Tonzi Ranch 38.43 −120.97 177 2014–2018
124 US-Tw1 Twitchell Wetland West Pond 38.11 −121.65 −5 2011–2018
125 US-Tw2 Twitchell Corn 38.10 −121.64 −5 2012–2013
126 US-Tw3 Twitchell Alfalfa 38.12 −121.65 −4 2013–2018
127 US-Tw4 Twitchell East End Wetland 38.10 −121.64 −5 2013–2018
128 US-Tw5 East Pond Wetland 38.11 −121.64 −5 2018
129 US-UM3 Douglas Lake 45.57 −84.67 234 2013–2014
130 US-UMB Univ. of Mich. Biological Station 45.56 −84.71 234 2007–2018
131 US-UMd UMBS Disturbance 45.56 −84.70 239 2008–2018
132 US-Uaf University of Alaska, Fairbanks 64.87 −147.86 155 2009–2018
133 US-UiA University of Illinois Switchgrass 40.06 −88.20 224 2015
134 US-Var Vaira Ranch- Ione 38.41 −120.95 129 2004–2018
135 US-Vcm Valles Caldera Mixed Conifer 35.89 −106.53 3003 2009–2018
136 US-Vcp Valles Caldera Ponderosa Pine 35.86 −106.60 2542 2007–2018

137 US-Vcs Valles Caldera Sulphur Springs Mixed
Conifer 35.92 −106.61 2752 2016–2018

138 US-WBW Walker Branch Watershed 35.96 −84.29 283 2001–2007
139 US-WCr Willow Creek 45.81 −90.08 520 2000–2018
140 US-WPT Winous Point North Marsh 41.46 −83.00 175 2011–2013
141 US-Wdn Walden 40.78 −106.26 2469 2006–2008
142 US-Wgr Willamette Grass 45.11 −122.66 52 2015
143 US-Whs Walnut Gulch Lucky Hills Shrub 31.74 −110.05 1370 2009–2018
144 US-Wjs Willard Juniper Savannah 34.43 −105.86 1931 2007–2018
145 US-Wkg Walnut Gulch Kendall Grasslands 31.74 −109.94 1531 2004–2018
146 US-Wpp Willamette Poplar 44.14 −123.18 111 2015
147 US-Wrc Wind River Crane Site 45.82 −121.95 371 2000–2015
148 US-xAB NEON Abby Road (ABBY) 45.76 −122.33 363 2017–2018

149 US-xBN NEON Caribou Creek–Poker Flats
Watershed (BONA) 65.15 −147.50 263 2018

150 US-xBR NEON Bartlett Experimental Forest
(BART) 44.06 −71.29 232 2017–2018

151 US-xCP NEON Central Plains Experimental
Range (CPER) 40.82 −104.75 1654 2017–2018

152 US-xDC NEON Dakota Coteau Field School
(DCFS) 47.16 −99.11 559 2017–2018

153 US-xDJ NEON Delta Junction (DEJU) 63.88 −145.75 529 2017–2018
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154 US-xDL NEON Dead Lake (DELA) 32.54 −87.80 22 2017–2018

155 US-xGR NEON Great Smoky Mountains
National Park, Twin Creeks (GRSM) 35.69 −83.50 579 2018

156 US-xHA NEON Harvard Forest (HARV) 42.54 −72.17 351 2017–2018
157 US-xHE NEON Healy (HEAL) 63.88 −149.21 705 2017–2018

158 US-xJE NEON Jones Ecological Research
Center (JERC) 31.19 −84.47 44 2017–2018

159 US-xJR NEON Jornada LTER (JORN) 32.59 −106.84 1329 2017–2018

160 US-xKA NEON Konza Prairie Biological
Station–Relocatable (KONA) 39.11 −96.61 1329 2017–2018

161 US-xKZ NEON Konza Prairie Biological
Station (KONZ) 39.10 −96.56 381 2017–2018

162 US-xNG NEON Northern Great Plains
Research Laboratory (NOGP) 46.77 −100.92 578 2017–2018

163 US-xNQ NEON Onaqui-Ault (ONAQ) 40.18 −112.45 1685 2017–2018

164 US-xRM NEON Rocky Mountain National
Park, CASTNET (RMNP) 40.28 −105.55 2743 2017–2018

165 US-xSE NEON Smithsonian Environmental
Research Center (SERC) 38.89 −76.56 15 2017–2018

166 US-xSL NEON North Sterling, CO (STER) 40.46 −103.03 1364 2017–2018
167 US-xSP NEON Soaproot Saddle (SOAP) 37.03 −119.26 1160 2017–2018

168 US-xSR NEON Santa Rita Experimental
Range (SRER) 31.91 −110.84 983 2017–2018

169 US-xST NEON Steigerwaldt Land Services
(STEI) 45.51 −89.59 481 2017–2018

170 US-xTE NEON Lower Teakettle (TEAK) 37.01 −119.01 2147 2018
171 US-xTR NEON Treehaven (TREE) 45.49 −89.59 472 2017–2018

172 US-xUK NEON The University of Kansas Field
Station (UKFS) 39.04 −95.19 335 2017–2018

173 US-xUN
NEON University of Notre Dame
Environmental Research Center

(UNDE)
46.23 −89.54 518 2017–2018

174 US-xWD NEON Woodworth (WOOD) 47.13 −99.24 579 2017–2018

175 US-xWR NEON Wind River Experimental
Forest (WREF) 45.82 −121.95 407 2018

176 MSE Mase paddy flux site 36.05 140.03 13 2001
177 PSO Pasoh Forest Reserve 2.97 102.31 75–150 2003–2009
178 BKS Bukit Soeharto -0.86 117.04 20 2001–2002
179 CBS Changbaishan Site 41.40 128.10 731 2003–2005
180 FHK Fuji Hokuroku Flux Observation Site 35.44 138.76 1050–1150 2006–2012
181 GCK Gwangreung Coniferous forest 37.75 127.16 132 2007–2008
182 HBG Haibei Potentilla fruticisa bosk Site 37.48 101.20 756 2003–2004
183 HFK Haenam Farmland 34.55 127.57 12 2008
184 IRI IRRI Flux Research Site 14.14 121.27 21 2009–2014
185 KBU Kherlenbayan Ulaan 47.21 108.74 1235 2003–2009
186 LSH Laoshan 45.28 127.58 340 2002
187 MBF Moshiri Birch Forest Site 44.38 142.32 585 2003–2005
188 MKL Mae Klong 14.59 98.84 585 2003–2004
189 MMF Moshiri Mixd Forest Site 44.32 142.26 340 2003–2005
190 PDF Palangkaraya drained forest −2.35 114.04 30 2002–2005
191 QYZ Qianyanzhou Site 26.73 115.07 100 2003–2004
192 SKR Sakaerat 14.49 101.92 543 2001–2003
193 SKT Southern Khentei Taiga 48.35 108.65 1630 2003–2006
194 SMF Seto Mixed Forest Site 35.26 137.08 205 2002–2015
195 SWL Suwa Lake Site 36.05 138.11 759 2015–2018

196 TKC Takayama evergreen coniferous forest
site 36.14 137.37 800 2007

197 TMK Tomakomai Flux Research Site 42.74 141.51 140 2001–2003
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198 TSE CC-LaG Teshio Experimental Forest 45.06 142.11 70 2001–2005
199 YCS Yuchen Site 36.83 116.57 28 2003–2005
200 YLF Yakutsk Spasskaya Pad larch 62.26 129.17 220 2003–2007
201 YPF Yakutsk Pine 62.24 129.65 220 2004–2007
202 ALE Alert 82.49 −62.42 127 2004–2014
203 ASP Alice Springs −23.80 133.89 547 2000–2018
204 BAR Barrow 71.32 −156.61 8 2000–2017
205 BIL Billings 36.61 −97.52 317 2000–2017
206 BON Bondville 40.07 −88.37 213 2009–2018
207 BOS Boulder 40.13 −105.24 1689 2009–2018
208 BOU Boulder 40.05 −105.01 1577 2000–2016
209 BRB Brasilia −15.60 −47.71 1023 2008–2018
210 CAB Cabauw 51.97 4.93 0 2005–2018
211 CAM Camborne 50.22 −5.32 88 2001–2017
212 CAR Carpentras 44.08 5.06 100 2000–2018
213 CNR Cener 42.82 −1.60 471 2009–2018
214 COC Cocos Island −12.19 96.84 6 2004–2018
215 DAA De Aar −30.67 23.99 1287 2000–2018
216 DAR Darwin −12.43 130.89 30 2002–2015
217 DOM Concordia Station, Dome C −75.10 123.38 3233 2006–2018
218 DRA Desert Rock 36.63 −116.02 1007 2009–2018
219 DWN Darwin Met Office −12.42 130.89 32 2008–2018
220 E13 Southern Great Plains 36.61 −97.49 318 2000–2017
221 ENA Eastern North Atlantic 39.09 −28.03 15.2 2013–2015
222 EUR Eureka 79.99 −85.94 85 2007–2011
223 FLO Florianopolis −27.60 −48.52 11 2013–2018
224 FPE Fort Peck 48.32 −105.10 634 2009–2018
225 FUA Fukuoka 33.58 130.38 3 2010–2018
226 GAN Gandhinagar 23.11 72.63 65 2014–2015
227 GCR Goodwin Creek 34.25 −89.87 98 2009–2018
228 GOB Gobabeb −23.56 15.04 407 2012–2018
229 GUR Gurgaon 28.42 77.16 259 2014–2018
230 GVN Georg von Neumayer −70.65 −8.25 42 2000–2018
231 HOW Howrah 22.55 88.31 51 2014–2018
232 ISH Ishigakijima 24.34 124.16 5.7 2010–2018
233 LAU Lauder −45.05 169.69 350 2000–2018
234 LER Lerwick 60.14 −1.18 80 2001–2017
235 LIN Lindenberg 52.21 14.12 125 2000–2017
236 LRC Langley Research Center 37.10 −76.39 3 2014–2018
237 LYU Lanyu Station 22.04 121.56 324 2018
238 MAN Momote −2.06 147.43 6 2000–2013
239 NAU Nauru Island −0.52 166.92 7 2000–2013
240 NEW Newcastle −32.88 151.73 18.5 2017–2018
241 NYA Ny-Ålesund 78.93 11.93 11 2000–2018
242 PAL Palaiseau, SIRTA Observatory 48.71 2.21 156 2003–2018
243 PAY Payerne 46.82 6.94 491 2000–2018
244 PSU Rock Springs 40.72 −77.93 376 2009–2018
245 PTR Petrolina −9.07 −40.32 387 2008–2018
246 REG Regina 50.21 −104.71 578 2000–2011
247 SAP Sapporo 43.06 141.33 17.2 2010–2018
248 SBO Sede Boqer 30.86 34.78 500 2003–2012
249 SMS São Martinho da Serra −29.44 −53.82 489 2008–2017
250 SON Sonnblick 47.05 12.96 3108.9 2013–2018
251 SOV Solar Village 24.91 46.41 650 2000–2002
252 SXF Sioux Falls 43.73 −96.62 473 2009–2018
253 SYO Syowa −69.01 39.59 18 2000–2018
254 TAM Tamanrasset 22.79 5.53 1385 2000–2018
255 TAT Tateno 36.06 140.13 25 2000–2018
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256 TIR Tiruvallur 13.09 79.97 36 2014–2018
257 TOR Toravere 58.25 26.46 70 2003–2018
258 XIA Xianghe 39.75 116.96 32 2005–2015
259 AT-Neu Neustift 47.12 11.32 970 2005–2012
260 AU-ASM Alice Springs −22.28 133.25 \ 2010–2014
261 AU-Ade Adelaide River −13.08 131.12 \ 2007–2009
262 AU-Cpr Calperum −34.00 140.59 \ 2010–2014
263 AU-Cum Cumberland Plain −33.62 150.72 \ 2012–2014
264 AU-DaP Daly River Savanna −14.06 131.32 \ 2007–2013
265 AU-DaS Daly River Cleared −14.16 131.39 \ 2008–2014
266 AU-Dry Dry River −15.26 132.37 \ 2008–2014
267 AU-Emr Emerald −23.86 148.47 \ 2011–2013
268 AU-Fog Fogg Dam −12.55 131.31 \ 2006–2008

269 AU-GWW Great Western Woodlands, Western
Australia, Australia −30.19 120.65 \ 2013–2014

270 AU-Gin Gingin −31.38 115.71 \ 2011–2014
271 AU-Lox Loxton −34.47 140.66 \ 2008–2009

272 AU-RDF Red Dirt Melon Farm, Northern
Territory −14.56 132.48 \ 2011–2013

273 AU-Rig Riggs Creek −36.65 145.58 \ 2011–2014
274 AU-Rob Robson Creek, Queensland, Australia −17.12 145.63 \ 2014
275 AU-Stp Sturt Plains −17.15 133.35 \ 2008–2014
276 AU-TTE Ti Tree East −22.29 133.64 \ 2012–2014
277 AU-Tum Tumbarumba −35.66 148.15 1200 2007–2014
278 AU-Whr Whroo −36.67 145.03 \ 2011–2014
279 AU-Wom Wombat −37.42 144.09 705 2010–2014
280 AU-Ync Jaxa −34.99 146.29 \ 2012–2014
281 BE-Bra Brasschaat 51.31 4.52 16 2007–2014
282 BE-Lon Lonzee 50.55 4.75 167 2005–2014
283 CH-Cha Chamau 47.21 8.41 393 2005–2014
284 CH-Dav Davos 46.82 9.86 1639 2006–2014
285 CH-Fru Früebüel 47.12 8.54 982 2005–2014
286 CH-Lae Laegern 47.48 8.36 689 2005–2014
287 CH-Oe1 Oensingen grassland 47.29 7.73 450 2003–2008
288 CH-Oe2 Oensingen crop 47.29 7.73 452 2004–2014
289 CN-Cha Changbaishan 42.40 128.10 \ 2003–2005
290 CN-Cng Changling 44.59 123.51 \ 2007–2010
291 CN-Dan Dangxiong 30.50 91.07 \ 2004–2005
292 CN-Din Dinghushan 23.17 112.54 \ 2003–2005
293 CN-Ha2 Haibei Shrubland 37.61 101.33 \ 2003–2005
294 CN-Qia Qianyanzhou 26.74 115.06 \ 2003–2005
295 CZ-wet Trebon (CZECHWET) 49.02 14.77 426 2006–2014
296 DE-Akm Anklam 53.87 13.68 −1 2009–2014
297 DE-Geb Gebesee 51.10 10.91 161.5 2001–2014
298 DE-Gri Grillenburg 50.95 13.51 385 2006–2014
299 DE-Hai Hainich 51.08 10.45 430 2002–2012
300 DE-Kli Klingenberg 50.89 13.52 478 2004–2014
301 DE-Lkb Lackenberg 49.10 13.30 1308 2009–2013
302 DE-Lnf Leinefelde 51.33 10.37 451 2002–2012
303 DE-Obe Oberbärenburg 50.79 13.72 734 2008–2014
304 DE-RuR Rollesbroich 50.62 6.30 514.7 2011–2014
305 DE-RuS Selhausen Juelich 50.87 6.45 102.755 2011–2014
306 DE-SfN Schechenfilz Nord 47.81 11.33 590 2012–2014
307 DE-Spw Spreewald 51.89 14.03 61 2010–2014
308 DE-Tha Tharandt 50.96 13.57 385 2004–2014
309 DE-Zrk Zarnekow 53.88 12.89 0 2013–2014
310 FI-Hyy Hyytiala 61.85 24.29 181 2009–2014
311 FI-Lom Lompolojankka 68.00 24.21 274 2007–2009
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312 FR-Gri Grignon 48.84 1.95 125 2004–2014
313 FR-LBr Le Bray 44.72 −0.77 61 2003–2008
314 FR-Pue Puechabon 43.74 3.60 270 2005–2014
315 IT-BCi Borgo Cioffi 40.52 14.96 20 2006–2011
316 IT-CA1 Castel d’Asso1 42.38 12.03 200 2011–2014
317 IT-CA2 Castel d’Asso2 42.38 12.03 200 2011–2014
318 IT-CA3 Castel d’Asso3 42.38 12.02 197 2011–2014
319 IT-Col Collelongo 41.85 13.59 1560 2004–2014
320 IT-Isp Ispra ABC-IS 45.81 8.63 210 2013–2014
321 IT-La2 Lavarone2 45.95 11.29 1350 2000–2002
322 IT-Lav Lavarone 45.96 11.28 1353 2003–2004
323 IT-MBo Monte Bondone 46.01 11.05 1550 2003–2013
324 IT-Noe Arca di Noe–Le Prigionette 40.61 8.15 25 2004–2014
325 IT-Ren Renon 46.59 11.43 1730 2003–2013
326 IT-Ro2 Roccarespampani 2 42.39 11.92 160 2010–2012
327 IT-SR2 San Rossore 2 43.73 10.29 4 2013–2014
328 IT-SRo San Rossore 43.73 10.28 6 2004–2008
329 IT-Tor Torgnon 45.84 7.58 2160 2008–2014
330 JP-MBF Moshiri Birch Forest Site 44.39 142.32 \ 2003–2005
331 NL-Hor Horstermeer 52.24 5.07 2.2 2004–2011
332 NL-Loo Loobos 52.17 5.74 25 2000–2014
333 RU-Che Cherski 68.61 161.34 6 2002–2005
334 RU-Fyo Fyodorovskoye 56.46 32.92 265 2000–2014
335 SE-St1 Stordalen grassland 68.35 19.05 351 2012–2014
336 SJ-Blv Bayelva, Spitsbergen 78.92 11.83 25 2008–2009
337 US-CRT Curtice Walter-Berger cropland 41.63 −83.35 180 2011–2013
338 US-GBT GLEES Brooklyn Tower 41.37 −106.24 3191 2000–2006
339 US-Syv Sylvania Wilderness Area 46.24 −89.35 540 2012–2014
340 US-Tw4 Twitchell East End Wetland 38.10 −121.64 −5 2013–2014
341 ZA-Kru Skukuza −25.02 31.50 359 2000–2003
342 ZM-Mon Mongu −15.44 23.25 1053 2000–2009
343 BND Bondville 40.05 −88.37 230 2000–2018
344 DRA Desert Rock 36.62 −116.02 1007 2000–2018
345 FPK Fort Peck 48.31 −105.10 634 2000–2018
346 GWN Goodwin Creek 34.25 −89.87 98 2000–2018
347 PSU Penn State 40.72 −77.93 376 2000–2018
348 SXF Sioux Falls 43.73 −96.62 473 2003–2018
349 TBL Table Mountain 40.13 −105.24 1689 2000–2018

The first 175 stations are the AmeriFlux sites, followed by 26 AsiaFlux sites (beginning with site code named “MSE”), 57 BSRN sites
(beginning with site code named “ALE”), 84 FLUXNET sites (beginning with site code named “AT-Neu”), and 7 SURFRAD sites (beginning
with site code named “BND”).

Algorithm A1. The Gradient Boosting Regression Tree Algorithm.

Initialize f0(x)= arg minρ

N
∑

i=1
L(yi, ρ)

For m = 1 to M do
For i= 1 to N do

Compute the negative gradient ỹim = −
[

∂L(yi , f (xi))
∂ f (xi)

]
f (x)= fm−1(x−1)

End
Fit a regression tree h(x;αm) to predict the targets ỹim from covariates xi for all training dataset

Compute a gradient descent step size as ρm= arg minρ

n
∑

i=1
L(yi, fm−1(xi)+ρh(xi; αm))

Update the model as fm(x) = fm−1(x) + ρmh(xi; αm)
End
Output the final model fM(x)
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