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Abstract: This paper deals with detecting small objects in remote sensing images from satellites or
any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhance-
ment using a deep-learning-based detection method. This paper provides a rationale for image
super-resolution for small objects by improving the current super-resolution (SR) framework by
incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA)
to improve detection performance. The novelty of the method is threefold: first, a framework is
proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced
with Faster R-CNN or any object detector to perform object detection; second, a residual feature
aggregation network was used in the generator, which significantly improved the detection perfor-
mance as the RFA network detected complex features; and third, the whole network was transformed
into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection
network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of
other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam,
VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed
that the detection performance increased by using super-resolution methods for spatial resolution
enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.

Keywords: object detection in satellite images; image classification; vehicle detection; remote sensing;
deep learning; generative adversarial networks; residual feature aggregation (RFA)

1. Introduction
1.1. Objective and Research Problem

The detection of objects of interest in remote sensing images has been challenging,
especially in small objects, because of the limitation of ground sampling distance (GSD). For
small objects, such as vehicles, a few pixels represent the whole object; thus, identification
and detection become challenging. A very high resolution (VHR) satellite image with a
GSD of 25 cm will have a 96 pixel (16 × 6) areal grid for a vehicle with a dimension of
4 × 1.5 m2. Recently developed deep-learning-based models that tackle the problem of
small object detection include Faster RCNN [1], one-stage detector [2], semantic-context-
aware network [3], and end-to-end MSCNN (multiscale convolutional neural network) [4].
Alganci et al. [5,6] also compare the object detection networks for further insight into object
detection in satellite images; this review is referred to the reader. Researchers have made
efforts to adapt the current object detectors to solve object detection in VHR satellite images.
In [7], a tree-based CNN was used to detect objects in VHR satellite images; the output
layer was fully connected while a single contained a convolution and a pooling layer. In [4],
the EssNet was proposed to ensure that the small objects in VHR images are given enough
attention using multiscale object detection that was not possible in the fusion–feature
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pyramid detection [2] because the deep feature levels dominated the learning process and
small objects were lost in the learning process. In [8], multi-spectral features were used to
improve object detection accuracy; however, the authors used this method for large object
detection, including gold course and a power plant. A deconvolution layer-based Deconv
R-CNN was used in [9] after the final convolutional layer, resulting in better localization of
the small-sized object features.

1.2. Background and Related Literature

The studies are classified as end-to-end learning for object detection or using a prior
network to enhance the image quality before object detection. Thus, for detection of
small objects in satellite/aerial images, multiscale learning with feature attention is being
used along with the state-of-the-art object detection methods, for instance, Fast/Faster
RCNN [10] (region-based convolutional neural network), Feature Pyramid Nets [11], You
Only Look Once (YOLOv3 [12], YOLOv4 [13], YOLOv5) Single Shot Detectors (SSD) [14],
and RetinaNet [15].

Compared to Faster R-CNN [10], the Deconv R-CNN reported an increase of 13% in
mean average precision (mAP) to detect objects. Intersection-over-union (IoU) represents
the overall between the actual and detected object boundaries, and the detection perfor-
mance is dependent on the selection of IoU value; for small objects, choosing a smaller
IoU usually results in higher detection accuracy while at the same time, it causes poor
localization due to an increased number of false positives [16]. An adaptable IoU-based
Deformable R-CNN was proposed in [16], which increased the detection performance
by 4.8% compared to baseline R-CNN. In [17], an optimal dense YOLOv2 based method
called DOLO was developed to detect small targets from images generated by unmanned
aerial vehicles (UAVs); the small targets which YOLOv2 and SSD poorly detected were
detected by DOLO (three blocks), and the authors reported the mean average precision
(mAP) of 0.762. In [17], Faster R-CNN and YOLOv3 reported a higher mAP of 0.817 and
0.867, respectively. Another method for detecting small objects in UAV was developed by
Liu et al. [18], termed UAV-YOLO. In [18], the original darknet in YOLOv3 was modified to
incorporate two Resblocks; furthermore, the authors increased the convolution operations
within the initial layers to enable the network to collect more spatial information. The
method was optimized to perform better on UAV images while it performed similarly to
YOLOv3 and SSD on datasets, such as VOC and COCO. In [19], the authors developed
a Tiramisu and YOLO-based method for counting vehicles for the images with a ground
sampling resolution of 50 cm. A semi-automated annotation method was used to segment
and annotate the 87 k vehicles in the dataset, creating a bottleneck in training, as the anno-
tation would take more time if the dataset was changed to images from a different satellite
sensor. While in [20], the authors introduced lower sub-sampling factors of four and two
in the YOLOv3 model to give attention to small-sized objects, which resulted in improved
detection of smaller objects due to smaller detection grids. In [21], Wang et al. proposed
SSS-YOLO with dilated Resblocks, which ensures a large receptive field, thereby capturing
the ships’ information, using a path augmentation fusion network (PAFN). The proposed
strategy worked well on SAR datasets, SAR-Ship-Dataset and Gaofen-3, by performing
better than YOLOv3 and Faster R-CNN in mAP and inference time.

As mentioned earlier, an alternate way is to perform pre-processing on the dataset
by improving the resolution of the images using image SR methods, thereby increas-
ing the level of details in the images before performing object detection as performed
by Courtrai et al. [22]. Various techniques help in generating a high-resolution (HR)
image from a low-resolution (LR) image where methods, such as single-image super-
resolution [23], perform the task using a single image as input to the network. In [24],
authors have reviewed deep-learning-based image SR methods, including convolutional
neural network (CNN)-based methods, such as SR-CNN [25], deeply-recursive convolu-
tional network (DRCN) [26], fast SRCNN (FSRCNN) [27], and very deep super-resolution
(VDSR) [28]. Residual learning-based SR methods include the Laplacian pyramid SR
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network (LapSRN) [29], enhanced deep SR network (EDSR) [30], and EnhanceNet [31].
At the same time, some of the current state-of-the-art methods include recurrent back-
projection network (RBPN) [32], second-order attention network (SAN) [33], and the
wavelet-based residual attention network (WRAN) [34]. In [24], further single image SR
methods are explored.

In [35], the authors used progressively supervised learning to detect salient objects in
remote sensing images (RSI), using a pseudo-label generation method to train the network
in a weakly supervised way while in [36], the authors used a generative adversarial network
(GAN) for super-resolution and further used a second stage for detection using SSD with
minor modifications. The results of [36] depict that image SR improved the detection and
classification performance compared to the LR images. Furthermore, in [22], Courtrai et al.
used EDSR as a base network to develop a YOLOv3-based cyclic GAN, which effectively
worked for a scale factor of eight in LR images with a GSD of 1 m. In [37], Rabbi et al.
combined the enhanced SRGAN (ESRGAN) [38] and edge-enhance GAN (EEGAN) [39] to
develop an end-to-end method edge-enhanced SRGAN (EESRGAN). The output of the
EESRGAN was fed to the detection network, which was comprised of a faster, region-based
convolutional network (FRCNN) and an SSD. The method in [37] improved the detection
and classification performance for VHR satellite images with a resolution of 15 cm and
30 cm, using a scaling factor of two and four.

1.3. Proposed Method

For a very low-resolution (LR) image, there is a need for a higher scaling factor, which
in the case for residual learning-based methods, which require more residual blocks to
capture adequate details from the training dataset and generate a high-resolution image.
Therefore, training a single network for detection tasks using conventional optimization
based on mean absolute error (MAE) or mean square error (MSE) would be a complex
task. In this research, the goal is to utilize super-resolution as a base model to improve
VHR images from satellites/aerial vehicles and then perform detection of small objects, i.e.,
vehicle detection.

We propose a super-resolution-based cyclic GAN for small object detection in remoter
sensing and aerial images with residual feature aggregation to enhance the image quality,
first using a weighted loss function of the generator, discriminator, and YOLO detector.
The proposed method is an improved image super-resolution network with a detector
to perform the final task of small object detection. The proposed method incorporates
three improvements: RFA based residual blocks for improved super-resolution under very
high scaling factors, a framework for object detection independent of the object detector
network, and a cyclic approach for improved training detection performance.

1.4. Organization of Research

The paper is organized as follows. Section 2 introduces the actual problem by dis-
cussing the EDSR architecture and its performance on LR images and how the scaling
factor affects the detection network’s performance. Furthermore, the Residual Feature
Aggregation is introduced in this section within the EDSR architecture which improved
the generated HR image. In Section 3, we propose improving the base EDSR network
to increase the overall performance, using a GAN-based cyclic approach while using
the loss function of YOLOv3 to train the proposed network. In Section 4, we discuss
and share the results of regressive experiments conducted to measure the proposed cyclic
super-resolution generative adversarial network’s performance with the residual feature ag-
gregation network and YOLO (SRCGAN-RFA-YOLO) on the ISPRS Potsdam data [40]. The
research problem is to detect and classify vehicles in remote sensing images whose ground
resolution has been artificially reduced by a factor of 16, i.e., from a GSD of 5 cm/pixel to
80 cm/pixel. For a vehicle of size 4 × 1.5 m2, this corresponds to 5 × 2 pixels having a
total of 10 pixels. In Section 4.1, we report the performance with the methods discussed in
this paper detection to validate our method’s performance. In Section 4.2, we compare the
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proposed method with other state-of-the-art object detectors. In Section 4.3, we show that
this method can be generalized to other datasets using the concept of transfer learning for
vehicle detection without any need for training, using two datasets, i.e., Draper Satellite
Image Chronology [41] and VAID [42] datasets. Section 5 discusses the results while the
conclusions and future research plans are shared in Section 6.

2. Residual Learning for the Image Super-Resolution

This section introduces some basic image super-resolution methods preceding the
state-of-the-art method EDSR [30], which is the fundamental model in this research. In
recent studies [22,37,43,44], the EDSR model has been used primarily in remote sensing
where the objects are of various scales and detection is difficult because of the images’
multiscale nature. The selection of the super-resolution method can be changed, as the
proposed framework is generic. The image SR focuses on the recovery of HR images from
LR image input, as, in principle, the recovered HR image IRHR can be represented as the
output of the super-resolution function ϕ as shown in Equation (1):

IRHR = ϕ(ILR, ∂) (1)

where ϕ is the image SR function responsible for converting the LR image to HR image, ILR
is the input LR image, whereas ∂ depicts the parameters of the image SR function. Image
SR parameters are usually features extracted from the network training on various LR–HR
image pairs. One of the fundamental architectures for image SR is the convolutional neural
networks (CNNs), which are stacked in layers to perform feature extraction followed by
a pixel rearrangement layer that also performs upsampling. Using the extracted feature
maps, the pixel rearrangement layer performs rearrangement of the pixels within the
image and transforms the input feature maps of dimensions {Bt, Ch2, H, W} to {Bt, Ch,
H × f, W × f}. Here, Bt, Ch, H, W represent the batch number, channel number, height,
and width of a feature map, while f is the scaling or the upsampling factor. For doubling
the feature dimensions in the x and y-axis, a scaling factor of two is required, which will
double the feature maps’ dimension in the pixel rearrangement layer as performed by
Shi et al. [45] and SR-CNN [46]. Compared to simple interpolation methods, such as bicubic
interpolation or the patch-based approach [47], these methods performed significantly
better in image quality and inference time due to a relatively shallow network architecture,
i.e., five convolutional layers, as seen in [45].

Instead of using the conventional CNNs, we can opt for residual learning, using resid-
ual blocks where each residual block contains convolution, normalization, and activation
layers. Furthermore, the input information is added to the feature maps extracted by the
residual maps, as in the EDSR method [30], shown in Figure 1. Figure 1 shows a standard
EDSR model for a scaling factor of four where a total of four residual blocks are used,
and each residual block has a convolution layer (in green), the normalization layer (in
yellow), ReLU activation layer (in blue) and pixel rearrangement layer (in brown). The
pixel rearrangement layer in Figure 1 is responsible for a scaling factor of two. Thus, two
layers create an overall scaling factor of four.

In Figure 1, the generic residual blocks fuse the residual features with the identity
features before propagation to the next module. Thus, the later blocks can only see fused
features, ignoring the basic residual features, leading to performance degradation in models
using these blocks. A recent approach to address this issue is residual feature aggregation
(RFA) [48] that concatenates the local features within the residual features, resulting in
improved representation of the features, which improves the final HR image. Figure 2
shows a four-block RFA-based residual network, and the local features of each block are
aggregated in the final output, using a 1 × 1 convolution layer. This section will show
how RFA improves performance metrics, such as peak signal-to-noise ratio (PSNR) and
structural similarity index metric (SSIM), for image super-resolution. Furthermore, the
dataset used in this study is the ISPRS 2D Semantic Labeling Contest dataset of the city of
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Potsdam [40]; the whole dataset contains VHR images (6000 × 6000 pixels per patch) of
the city divided into 38 patches of the same size with a GSD of cm/pixel.

Figure 1. The pipeline of EDSR super-resolution architecture with four residual blocks: the green
color represents the convolution layers. The yellow color represents the normalization layer and
the blue color represents the ReLU activation layer while the brown color represents the pixel
rearrangement layer. The pipeline’s input is shown in grey and labeled as XLR (which is a low-
resolution image) while the output, represented in black, is the high-resolution images YHR.

Figure 2. A super-resolution pipeline using Residual Feature Aggregation (RFA) blocks. Color coding
is the same as Figure 1. The outputs of all RB (shown in the grey box) are aggregated at the output
using a 1 × 1 convolution layer.

The ISPRS Potsdam dataset was used to evaluate and rank segmentation methods
based on their capability of classifying the objects into six classes, namely, buildings,
vehicles, surface, vegetation, trees, and background/miscellaneous objects. However, this
dataset has been used in studies such as [22,49] to perform vehicle detection, using the
classification information of vehicle class within the dataset. Overall, there are 2244 vehicles,
including 1990 cars, 33 trucks, 181 vans, and 40 pickups; we shall be using the vehicle
class, especially the pixel information of cars, for vehicle detection. The images used were
in the RGB band, and the ground sampling distances of images used in this study are
5 cm/pixel (original resolution of the dataset), 40 cm/pixel (downscaled by a factor of 8),
and 80 cm/pixel (downscaled by a factor of 16). The original patches are reference HR
images, and LR–HR image pairs were generated using two degradation functions: bicubic
and blur degradation as defined by [50], using an EDSR architecture with 16 residual blocks
fixed block size of 64 × 64 and for both conventional residual blocks and RFA Blocks. A
normalization layer is used in EDSR to normalize the pixels in three color bands during the
training phase, and an L1 loss function was used to optimize the SR network along with
Adam optimizer; for a total of N LR–HR image pairs, the loss function (with parameters p)
is given in Equation (2).

L(p) =
1
N

N

∑
i=1

∥∥∥ϕ
(

Ii
LR

)
− Ii

HR

∥∥∥
1

(2)

Figure 3 depicts super-resolution with a scaling factor of eight, generating an HR
image with a GSD of 5 cm/pixel from an LR image of GSD 40cm/pixel, using bicubic
interpolation, EDSR, and EDSR with RFA (EDSR-RFA). Significant improvement in image
quality assessment (IQA) metrics, i.e., PSNR and SSIM, are observed compared to bicubic
interpolation, and RFA further improves the quality of the image compared to the EDSR
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method. To further assess the performance, we used the YOLOv3 [12] detector for detecting
vehicles using the SR images and compared the results with the detection performance
on the HR version of the images. For evaluation, we used Intersection over Union (IoU)
criterion, which measures the detected box’s overlapping on the SR images with the
ground truth box. The threshold value for object detection was set to an IoU of 0.25 because
objects in LR images occupy few pixels, and a low value of IoU would improve detection
performance. Thus, a low IoU would be preferable in this scenario. A confidence score in
the range of 0 to 1 was also used for detection. A box with an IoU and confidence score
value greater than 0.25 was considered a detected object. For object detection evaluation,
we have used the metrics of true positive (TP), false positive (FP), F1 score, and AP
(average precision), using two degradation models, i.e., blur degradation (BD) and bicubic
degradation (BI), as seen in Table 1. EDSR achieved better results than bicubic interpolation-
based detection, while EDSR–RFA achieved the best results with AP of 0.889 and 0.844
for BI and BD degradations, respectively. The image quality metrics of the reconstructed
images are summarized in Table 2 for scale factors of 8 and 16.

Figure 3. An illustration of the results provided by EDSR and EDSR-RFA: high-resolution (HR)
image at the top left has a ground resolution of 5 cm/pixel while the LR version was generated using
a scale factor of 8, which corresponds to a ground resolution of 40 cm/pixel, image super-resolution
at 5 cm/pixel using bicubic interpolation, EDSR with four residual blocks and EDSR with residual
feature aggregation (EDSR-RFA). Top: full image 512 × 512 pixels, Bottom: the zoomed image of
100 × 100 pixels showing a black car.

Table 1. Vehicle detection using YOLOv3 (Confidence and IoU threshold = 0.25): comparing re-
sults for HR images, a scaled image with a scale factor 8× using Bicubic interpolation, EDSR, and
EDSR-RFA.

Degradation Model Method TP FP AP F1 Score

HR 1390 55 0.962 0.963

Bicubic
Degradation

Bicubic 976 393 0.713 0.683

EDSR 1176 177 0.869 0.864

EDSR-RFA 1261 145 0.897 0.889

Blur
Degradation

Bicubic 934 422 0.689 0.656

EDSR 1044 240 0.813 0.798

EDSR-RFA 1213 211 0.852 0.844
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Table 2. Bicubic degradation result of super-resolution for downscaling factors of 8 and 16, indicating
PSNR and SSIM of the generated HR images from bicubic interpolation, EDSR, and EDSR-RFA.

Scale Factor Method PSNR (dB) SSIM

8×
Bicubic 23.42 0.6814
EDSR 28.39 0.8732

EDSR-RFA 29.87 0.9081

16×
Bicubic 15.74 0.4531
EDSR 18.74 0.6240

EDSR-RFA 19.47 0.6604

It is worth noticing that for a scaling factor of 8, the detection performance is ade-
quate, but as we further increase the scaling factor to 16 (which corresponds to a GSD of
80 cm/pixel), the detection performance degraded drastically. Both EDSR and EDSR-RFA
performed poorly on LR images generated using a factor of 16, as shown in Figure 4, which
shows that the reconstructed images are of poor quality.

Figure 4. Comparing SR images generated by EDSR and EDSR-RFA: HR image at the top left has
a ground resolution of 5 cm/pixel while the LR version was generated using a scale factor of 16,
which corresponds to a ground resolution of 80 cm/pixel, image super-resolution at 5 cm/pixel using
bicubic interpolation, EDSR, and EDSR-RFA. Top: full image 512 × 512 pixels, Bottom: the zoomed
image of 100 × 100 pixels showing a black car.

For a scale factor of 16, the best image quality metrics (PSNR:19.47dB and SSIM: 0.66),
as shown in Figure 4, were reported by EDSR-RFA, leading to a detection AP of 0.308 and
0.203 for bicubic and blur degradations, respectively (See Table 3). Although employing
image super-resolution enhanced the LR image’s resolution, it was still not enough for
the detector to perform object detection. Furthermore, as mentioned in previous studies,
adding more residual blocks to the network improves the quality of images, so we added 16
more blocks to the network pipeline, and the total number of residual blocks was changed
to 32. The block size was also changed from 64 × 64 to 128 × 128; these changes resulted in
an increase in the detection AP at the cost of higher training time and a significant increase
in network parameters. The training time increased by 445%, and the network parameters
increased from 1,145,671 to 3,742,897 (327%) while the image quality (see Figure 5) and
detection AP increased (see Table 4). The detection AP increased by ~33% for both bicubic
and blur degradations, but the overall detection AP was still low as compared to detection
AP for the true HR images (i.e., 0.962).

The EDSR-RFA with 32 residual blocks still comes short in terms of object detection,
and due to the limitation of optimization using Adam optimizer, the overall training
remains unstable, thereby providing different results for the same distribution of dataset
for a block size of 128× 128. Along with this issue, there is a significant increase in network
parameters and training time; thus, adding more residual blocks are not an optimal choice.
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In the next section, we have introduced some modifications in the base EDR-RFA method
to enhance the detection accuracy with a more stable image super-resolution.

Table 3. Vehicle detection using YOLOv3 SPP (both confidence threshold and IoU threshold were
set to 0.25): comparison of results for HR image, the scaled image with a scale factor of 16×, using
bicubic interpolation, EDSR, and EDSR-RFA.

Degradation Model. Method TP FP AP F1 Score

HR 1390 55 0.962 0.963

Bicubic
Degradation

Bicubic 24 97 0.198 0.028

EDSR 27 86 0.239 0.034

EDSR-RFA 28 63 0.308 0.036

Blur
Degradation

Bicubic 16 123 0.115 0.018

EDSR 23 104 0.181 0.028

EDSR-RFA 25 98 0.203 0.031

Figure 5. An illustration of the results for changing the number of blocks and block size for scale
factor 16.

Table 4. The impact of the total residual block and block size on vehicle detection of EDSR-RFA with
a scale factor of 16. For RFA-16, the block size is 64 × 64, while the block size for RFA-32 is 128 × 128.

Degradation Method TP FP AP F1 Score

HR 1390 55 0.962 0.963
Bicubic

Degradation
EDSR-RFA-16 27 86 0.239 0.034
EDSR-RFA-32 173 130 0.571 0.206

Blur
Degradation

EDSR-RFA-16 23 104 0.181 0.028
EDSR-RFA-32 154 148 0.510 0.175

3. Methodology
3.1. Basic Network Architecture for Image SR

Like other SR networks, we use the generic three-part network, namely, the initial
layer for extraction of shallow features, the middle part consisting of residual blocks for
further extraction of features while the end part performs image reconstruction. The shallow
features generated by the initial layer (F0) is given by the following:

F0 = S(ILR) (3)

where S is the feature extraction function of the initial layer while F0 is the extracted feature;
this is transferred to the residual blocks for deep feature learning based on residual feature
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aggregation using the residual blocks shown in Figure 2. The trunk part is comprised
of 48 RFA residual blocks, and for K residual blocks, the feature functions are related as
shown below:

Fk = Mk(Fk−1) = Mk(Mk−1(. . . (M0(F0)) . . .)) (4)

where Mk represents the kth residual module, which has the input Fk−1 and output Fk, the
reconstruction part is responsible for upscaling the extracted feature Fk using

ISR = <(Fk + F0) = ϕ(ILR, ∂) (5)

where ISR is the super-resolved image while < is the reconstruction function which is equal
to ϕ(ILR, ∂) as shown in Equation (1), this is the overall SR function of the network.

The proposed network was optimized using the L1 loss function as shown in Equation (1).

3.2. Network Improvements

In this section, further improvements in the primary network proposed in Section 3.1
are proposed to enhance the overall detection accuracy for small objects in aerial/satellite
images. The overall network is improved by making cyclic GAN, using the improved
Wasserstein generative adversarial network [50], and the generator of the network is
defined in Section 3.1. Finally, a YOLO-v3 detector is added to facilitate object detection
and train the network, using the YOLO detector’s loss function.

3.2.1. Using Generative Adversarial Network Pipeline

In computer vision and pattern recognition, generative adversarial networks (GANs)
have been used for their generic nature, from simple tasks of binary classification to
learning image super-resolution, using a generator along with the discriminator that rates
the output of the generator. For super-resolution, the first GAN-based proposed was
SR-GAN [51], using the EDSR-based residual blocks in the generator network; a similar
approach was used in [39], Jiang et al., which proposed Edge-enhanced super-resolution
GAN for remote sensing applications. We modify the generator network in the SR-GAN
and incorporate residual feature aggregation (See Figure 6) to enhance the generator’s
performance. The objective of the generator network is to generate SR images, which are
then evaluated by the discriminator D to rate the output of the generator as real (HR image)
or fake. Feedback from the discriminator is used by the generator to fine-tune the network
parameters, using the L1 loss function, to generate more realistic images while at the same
time, the discriminator network also improves itself in each iteration.

Figure 6. SR-GAN with an EDSR-RFA generator at the top with the discriminator at the bottom. The
layers include convolution (RFA block) (green), normalization (RFA block) (yellow), ReLU activation
(RFA Block) (blue), a 1 × 1 reduction layer (light blue), and a pixel rearrangement layer (brown).
Output YHR of the generator is the input XHRD to the discriminator.

The first improvement is incorporated, using a generator network Gen, as shown in
Figure 6, using RFA-based 32 residual blocks of the size 128 × 128 while the discriminator
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network D is the same as in SR-GAN for evaluating the generated HR images. We also
utilized the improvements proposed by Arjovsky et al. [50] in the form of Wasserstein
GANs, which use gradient penalty in the loss function of the discriminator that is given by
the following:

L(SR− CGAN) = ∑
IHR∼Pt

[D(IHR)]− ∑
ISR∼Pg

[D(ISR)] + λ ∑
Ir∼Pr

[
(‖∆D(Ir)‖2 − 1)2

]
, (6)

where IHR, ISR, and Ir respectively are the HR image, SR image, and a random image
which is uniformly sampled from IHR and ISR while Pt, Pg, and Pr are probability density
distributions of true HR images, generated images, and randomly sampled images respec-
tively while λ is the gradient penalty coefficient, which is assigned a high value of 10 as
recommended in [52].

3.2.2. Cyclic Network

The next improvement involves using a cyclic approach in GANs as proposed by
Zhu et al. [53] by adding another GAN to generate LR images from the output of the first
generator as shown in Figure 7.

Figure 7. The cyclic approach: GAN-EDSR-RFA. Gen (HR) and its discriminator is shown on top,
and Gen (LR) for cyclic feedback is shown in the lower half of the figure.

The final LR image as generated by the second generator is compared with the original
LR image. Using the loss function, it adjusts the network parameters as follows:

L(SRCGAN) = LL1(GenHR(ILR), IHR) + LMSE(GenHR(GenLR(IHR)), IHR)+
LL1(GenLR(IHR), ILR) + LMSE(GenLR(GenHR(ILR)), ILR)

(7)

where IHR and ILR are HR, and LR images; GenHR and GenLR are the corresponding HR
and LR generators as shown in Figure 7.

As shown in Equation (7), the loss function of cyclic GAN shows our significant
improvement, which ensures that the two GAN networks operate to minimize the overall
loss function by evaluating one another’s output. The final reconstructed LR image (IRLR)
generated by GenLR is compared with the actual LR image (ILR), generated using the
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true HR image, using bicubic and blur degradations. The key idea is to ensure the two
low-resolution images (i.e., IRLR and ILR) are identical, thereby ensuring that the generated
HR image is also close to the true HR image. Further results and analysis of this choice are
shown in Section 4.

3.2.3. Detection Network

We further add the state-of-the-art object detection network YOLOv3 to perform the
final detection task on the SR images generated by the cyclic GAN. The primary objective
is to ensure that the object of interest in the generated HR image is like the true HR images,
thus using YOLOv3 to ensure this in the overall model. The YOLOv3 detection network is
trained on the HR images. Thereby, its network weights are fixed while integrating it in
the cyclic GAN model; the resulting model is shown in Figure 8. In the training phase, the
generated HR image is fed into the YOLO network to detect objects while the coordinates
of the prediction boxes are used to compute the loss function of the YOLO network, i.e.,
L(Y) . The total loss function is calculated, and using backpropagation, the weights of
generator and discriminator networks are updated, using the gradient of total loss.

Figure 8. The network architecture for super-resolution SRCGAN with RFA and YOLOv3 detector
(SRCGAN-RFA-YOLO).

As seen in Figure 8, there are three components in the proposed method; thus, three
different loss functions are used, as shown in Equations (8)–(10):

L(G) = L(pram) =
1
N

N

∑
i=1

∥∥∥G
(

Ii
LR

)
− Ii

HR

∥∥∥
1
, (8)

where L(G) is the generator loss, pram are parameters, N is the total number of samples,
G
(

Ii
LR
)

is the i−th generated HR image, and Ii
HR is the ground truth HR image.

A 48 ResBlock-based generative network G(ILR, γ) with a block size of 64 × 64 and
kernel of 3 × 3 and a discriminator, which is based on the improved Wasserstein GAN [8],
with a high value of gradient penalty coefficient in the discriminator loss function is shown
in Equation (9):

L(D) = ∑
IHR∼Pt

[D(IHR)]− ∑
ISR∼Pg

[D(ISR)] + λ ∑
Ir∼Pr

[
(‖∆D(Ir)‖2 − 1)2

]
, (9)
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where IHR, ISR, and Ir, respectively, are the HR image, SR image, and a random image
which is uniformly sampled from IHR and ISR while Pt, Pg, and Pr are probability density
distributions of true HR images, generated images, and randomly sampled images, respec-
tively, while λ is the gradient penalty coefficient, which is assigned a high value of 10 as
recommended in [52].

The detection network (YOLO) loss function is given by the following:

L(Y) =
DG2

∑
i=0

A2

∑
j=0

[(
x− x′

)2
+
(
y− y′

)2
+
(
h− h′

)2
+
(
w− w′

)2
]
, (10)

where DG and A represent the detection grid and the number of anchor boxes associated
with the YOLO detector while (x, y, h, w) and (x′, y′, h′, w′) depict the coordinates of the
ground truth and predicted boundary boxes; (x, y) and (x′, y′) show the coordinate of the
center point while (h, w) and (h′, w′) represent the dimensions of boundary boxes. The
overall loss of the network shown in Figure 8 is as follows:

L(T) = µ1L(G) + µ2L(D) + µ3L(Y) , (11)

where µ1, µ2, and µ3 are the weights associated with the generator, discriminator, and
detector networks. During the training process, weights were assigned values of µ1 = 0.95,
µ2 = 10, and µ3 = 0.1 to ensure the range of the errors is similar for the three loss functions,
which guaranteed balanced learning in all three aspects. Using super-resolution to achieve
HR images, using the generator, realistic-looking images are ensured by the discriminator,
and object detection and localization are performed by the detection network.

3.3. Implementation Details

The proposed method was implemented on the PyTorch framework with an Ubuntu
20.04 computer with 16 GB RAM and a Nvidia Titan XP graphics processor. A gradient
penalty coefficient of 10 was selected for training Wasserstein GAN, while the total loss
function weights, µ1, µ2, and µ3, were assigned values of 0.95, 10, and 0.1, respectively. The
network was trained for a total of 250 epochs.

4. Results

In this section, we discuss and evaluate the results achieved by the proposed novel
SRCGAN-RFA-YOLO network. Initially, we focus on the main task of object detection and
compare the results with the prevailing methods reported in this research. In Section 4.2,
we compare the results of our approach with state-of-the-art object detectors in terms of AP
for an IoU of 0.10. Lastly, we discuss the concept of transfer learning, using a pre-trained
network to perform image super-resolution and object detection on other aerial datasets,
such as Draper Satellite Image Chronology [41] and VAID [42].

4.1. Improvement in Image Quality and the Detection Accuracy

The SR results of various methods in terms of image quality metrics (PSNR and SSIM)
are shown in Figure 9a. The LR version is for a scale factor of 16, which corresponds to
a GSD of 80 cm/pixel. The image SR methods, EDSR and EDSR-RFA, when used alone,
do not achieve high image quality as seen in Figure 9a, while the cyclic approaches, i.e.,
SRCGAN and SRCGAN-RFA-YOLO, generate good quality, super-resolved images with
PSNR of 28.13 dB and 30.41 dB, respectively. The zoomed images in Figure 9b show the
quality of recovered details for the various methods. Figure 9 shows that the cyclic models
performed best by reconstructing the images with SSIM of 0.86 and 0.93 for SRCGAN
and SRCGAN-RFA-YOLO, respectively. The proposed method of SRCGAN-RFA-YOLO
achieved the best results especially for recovering texture information within the low-
resolution image, as seen in Figure 9a, due to the improvements introduced in Section 3.2.
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Figure 9. Comparison of the results for SR with a scale factor of 16 using EDSR-RFA, SR-CGAN,
and SRGAN-RFA-YOLO. The LR version is 80 cm/pixel while the HR image is 5 cm/pixel. (a) SR
images of different methods and their image quality metrics in terms of PSNR and SSIM; (b) zoomed
sections for two different locations.

Finally, we compare training performance and precision/recall curves of the proposed
SRCGAN-RFA-YOLO method compared with bicubic interpolation, EDSR, EDSR-RFA, SR-
GAN, and SR-CGAN for 250 epochs. The training performance of our methods surpasses
all the other reported methods in terms of AP (See Figure 10a); at the same time, our
methods achieved higher AP within a few epochs, which shows that the proposed method
converges fast and that the training is stable. Precision/recall curves also show the superior
performance of our method in Figure 10b. The green line in Figure 10b represents the
precision/recall curve for the HR image. The precision/recall curve of the proposed
SRCGAN-RFA-YOLO method is shown in red. Compared to EDSR and EDSR-RFA, our
method approached the performance achieved by the HR images, thus offering superior
detection performance for low-resolution images.
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Figure 10. Performance evaluation of various methods used in this study based on AP and preci-
sion/recall curves with a YOLOv3 detector and an IoU of 0.10. (a) AP of the various methods during
training; (b) precision versus recall curves.

The detection performance was measured in terms of precision, recall, and F1 score,
as shown in Table 5.

Table 5. Detection performance on ISPRS Potsdam dataset for a scale factor of 16 and IoU of 0.10.

Method Precision Recall F1 Score

HR 0.96 0.96 0.96
Bicubic 0.20 0.02 0.03
EDSR 0.24 0.02 0.03

EDSR-RFA 0.31 0.02 0.04
SR-GAN 0.86 0.48 0.61

SR-CGAN 0.90 0.56 0.69
SRCGAN-RFA-YOLO 0.87 0.84 0.86

As shown in Table 5, SRCGAN-RFA-YOLO reported an F1 score of 0.86 for an IoU of
0.10 for the ISPRS Potsdam dataset. Compared to the detection F1 score of EDSR-RFA, our
method reported an increase in F1 score by a factor of 20.5.

4.2. Performance against Other Object Detectors

In this section, the performance of novel SRCGAN-RFA-YOLO is tested with other
state-of-the-art object detectors by replacing the detector network in the method with
RetinaNet [15], SSD (VGG16) [14], EfficientDet [54], and Faster R-CNN [10]. To avoid
method bias, we trained all the methods using the HR images, using an input image
size of 512 × 512 pixels on the ISPRS Potsdam datasets. The detection performance of
SRCGAN-RFA-YOLO is compared with state-of-the-art object detectors for scale factors of
8 and 16 as shown in Table 6. For HR images, the detection performance is almost similar
for all object detectors, but as the scale factor increases, the proposed achieves the highest
AP values, especially for a scale factor of 16 where the GSD is 80 cm/pixel. The single
image inference time shows that the proposed method, while providing the best AP for
higher scaling factors, has a relatively low inference time, i.e., 33.67 ms per image.

The super-resolved images generated by the proposed SRCGAN-RFA-YOLO were
used as inputs to the object detectors mentioned above, and the detection performance in
terms of AP for an IoU of 0.10 is shown in Table 7.
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Table 6. The impact of scale factor on the detection AP with an IoU of 0.10.

Method HR (AP) SF = 8 (AP) SF = 16 (AP) Time (ms)

YOLOv3 96.83 0.713 24.34 27.73
RetinaNet 92.41 0.687 14.78 91.64

SSD (VGG16) 97.05 0.761 41.31 32.45
EfficientDet 96.97 0.754 42.23 51.24

Faster R-CNN 96.93 0.727 39.72 94.19
SRCGAN-RFA-YOLO 96.57 0.897 78.67 33.67

SF is the scale factor. The best results are shown in bold font while the second-best results are underlined.

Table 7. The impact of changing the detection networks on AP with an IoU of 0.10 (for a scale factor
of 16).

Method HR Bicubic EDSR-RFA SRCGAN-RFA-
YOLO

YOLOv3 96.83 24.34 49.31 78.67
RetinaNet 92.41 14.78 29.84 64.72

SSD (VGG16) 97.05 41.31 69.98 87.54
EfficientDet 96.97 42.23 69.17 88.56

Faster R-CNN 96.93 39.72 70.26 88.81
The best results are shown in bold font while the second-best results are underlined.

As shown in Table 7, YOLOv3, SSD (VGG16), EfficientDet, and Faster R-CNN achieved
similar detection performance on HR, which shows that the HR image performance is not
dependent upon the choice of detector while for SR images (for a scale factor of 16), the
best results were achieved by Faster R-CNN with AP of 88.81%. Compared to the bicubic
interpolation, the most significant change in AP (~54%) was achieved by the YOLOv3
detector because SSD (VGG16), EfficientDet, and Faster R-CNN achieved comparatively
high AP values for bicubic interpolated images.

Higher AP values were achieved by SSD (VGG16) and EfficientDet on bicubic in-
terpolated images mainly because of the built-in image augmentation scheme within the
training process. The input images and the boundary boxes are resampled for different
scale values and aspect ratios [14,54]. Similarly, Faster R-CNN also achieved improved AP
because of the introduction of the region proposal network (RPM), which uses attention
mechanisms to improve detection accuracy. The proposed framework allows integrating
different object detectors; thus, using object detectors such as SSD (VGG16), EfficientDet,
and Faster R-CNN will improve the overall AP by 10% as shown in Table 7.

4.3. Applying Transfer Learning on Different Remote Sensing Datasets

This section discusses the concept of transfer learning by performing object detection
on different remote sensing datasets, using the parameters learned by the novel SRCGAN-
RGA-YOLO on the ISPRS Potsdam dataset. The two datasets considered for this task are
Draper Satellite Image Chronology [41] and VAID [42]. Figure 11 shows the results of image
super-resolution on the datasets. To compare the performance, we downscaled the images
to match the GSD of 80 cm/pixel: the VAID dataset has a GSD of 12.5 cm/pixel, thus, a
scale factor of 6 was used to generate LR images; for Draper Satellite Image Chronology,
the GSD was 10 cm/pixel, thus, a scale factor of 8 was used to generate LR images.

The results in Figure 11 depict the significance of the proposed method to perform
small object detection on low-resolution satellite images, using a pre-trained network in an
end-to-end manner.



Remote Sens. 2021, 13, 1854 16 of 21

Figure 11. Object reconstruction using SRCGAN-RFA-YOLO having a scale factor of 8 from Draper
Satellite Image Chronology (top) and VAID dataset (bottom) using the parameters learned from the
Potsdam dataset.

5. Discussion

Analyzing other image tiles from the same dataset, we measured the detection per-
formance for various methods, including SRCGAN-RFA-YOLO. We further investigated
the impact of IoU on the detection performance, and Table 8 shows the variation in AP for
three different values of IoU, i.e., 0.10, 0.25, 0.50. The best results are highlighted in bold
while the second-best results are underlined.

Table 8. Comparison of AP corresponding to different IoU for methods explored in this study (Bold
= best results; Underline-second-best results).

Method IoU = 0.10 IoU = 0.25 IoU = 0.50

HR 96.83 95.71 85.64
Bicubic 24.34 19.52 12.24
EDSR 46.81 42.68 31.12

EDSR-RFA 49.31 45.13 36.84
SR-GAN 65.53 61.18 48.82

SR-CGAN 67.19 63.97 48.63
SRCGAN-RFA-YOLO 78.67 72.28 58.76

It is worth noticing that SRCGAN-RFA-YOLO achieved the best AP for all three IoU
values, SRCGAN achieved the second-best AP for an IoU of 0.10 and 0.25, while SR-GAN
achieved second best AP for an IoU of 0.50. For small object detection, a low threshold
value of 0.10 is selected as the IoU, and the proposed method achieved an AP value of
78.67% that is approximately 32% more than the AP achieved by the EDSR method when
used with the YOLO detector. Furthermore, using the YOLO network’s loss function to
train our SRCGAN-RFA increased the AP by 11.5%, highlighting the superior performance
of the proposed method.

Compared to bicubic interpolation-based detection, the proposed method achieved
an increase of 54.3% AP for an IoU of 0.10 while, compared to the EDSR approach, AP
value increased by 31.8%. These increases in AP are very significant because the spatial
resolution of the LR image is 80 cm/pixel at a scale factor of 16, and for such low-resolution
images, the proposed method achieved state-of-the-art performance.

In Figure 12, for the LR image, the YOLO network did not detect any vehicles, while
residual feature aggregation-based methods successfully detected all five vehicles while the
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SRCGAN-RFA-YOLO achieved the best performance in terms of image quality confidence
score and AP.

Figure 12. Detection examples using YOLOv3 as detector network.

The proposed framework allows integrating different object detectors; thus, using
object detectors like SSD (VGG16), EfficientDet, and Faster R-CNN will improve the overall
AP by 10% as shown in Table 7.

The results of transfer learning on both datasets are shown in Figure 11. Although our
method improved the images, especially the vehicles within the LR images, the complex
textures were not generated by our approach because of the lack of features; however, the
super-resolved images achieved improved object detection.

The novelty of the method is threefold: first, a framework is proposed, independent
of the final object detector used in the research, i.e., YOLOv3 could be replaced with
Faster R-CNN or any object detector to perform object detection; second, a residual feature
aggregation network was used in the generator, which significantly improved the detection
performance as the RFA network detected complex features; and third, the whole network
was transformed into a cyclic GAN, which improved the training, test, and validation
accuracy, also evident from Figure 10a.

The detection performance of the proposed method was measured on an independent
dataset created from selected images from the Draper Satellite Image Chronology and
VAID dataset (images downscaled to match a GSD of 80 cm/pixel, i.e., low-resolution).
The detection performance was measured in terms of precision, recall, and F1 score as
shown in Table 9.

Table 9. Detection performance on an independent dataset with a GSD of 80 cm/pixel (IoU of 0.10).
(Bold = best results).

Method Precision Recall F1 Score

HR 0.96 0.95 0.96
Bicubic 0.27 0.05 0.09
EDSR 0.24 0.07 0.11

EDSR-RFA 0.25 0.10 0.14
SR-GAN 0.70 0.44 0.54

SR-CGAN 0.82 0.59 0.69
SRCGAN-RFA-YOLO 0.88 0.80 0.84

As shown in Table 9, SRCGAN-RFA-YOLO reported an F1 score of 0.84 for an IoU of
0.10 for an independent dataset, using the network parameters learned from the LR–HR
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image pairs from the ISPRS Potsdam dataset. Figure 13 shows the examples of detection
by SRCGAN-RFA-YOLO.

Figure 13. Detection on an independent dataset for an IoU of 0.10. Green—True Positive, red—False
Positive, and blue—False Negative.

The performance on the independent dataset shows the effectiveness of the proposed
method. As evident in Figure 13, misclassified examples include vehicles under shadow or
vehicles embedded in a similar color background. However, using the pre-trained network,
SRCGAN-RFA-YOLO achieved an F1 score of 0.84.

6. Conclusions and Future Directions

Object detection for low-resolution images is challenging, and generic detectors per-
form poorly when used directly on low-resolution images. In the case of satellite images,
when dealing with low-resolution images, the object of interest (vehicles in our case) occu-
pies few pixels, and we have shown that using super-resolution before the detection task
significantly increases the detection accuracy. Our method targets the challenging condition
where the spatial resolution of the remote sensing images is low, and in the case of most
remote sensing satellite images, the image resolution is not very high due to the limitation
of the imaging payload. The proposed improvements in the object detection network in-
clude using a residual feature aggregation-based super-resolution method (EDSR-RFA) to
gather capture complex features and improve the model by employing a cyclic GAN-based
(SRCGAN) approach and using an object detection network (YOLOv3) for the training of
the network and detection tasks. The results show that compared to object detection on
bicubic interpolated images, our methods improved the AP by 54.3%, and compared to the
state-of-the-art EDSR-RFA method, the proposed SRCGAN-RFA-YOLO achieved a 29.4%
increase in AP. Furthermore, transfer learning showed that our method increases the image
quality significantly when applied to other datasets, using the parameters learned from the
dataset used in this study.

Compared to other object detectors (YOLOv3 and SSD), the inference time of the
proposed method is relatively high (33.67 ms) since the residual feature aggregation ensures
the collection of complex features, thereby increasing the network parameters. The next
step is to combine all the proposed improvements into a single framework and deploy it
as a generic object detector for low-resolution images. Furthermore, we plan to train the
network on big datasets, such as BigEarth [55], and release the pre-trained networks for
object detection tasks in aerial and remote sensing images.
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