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Abstract: Applications in which researchers aim to extract a single land type from remotely sensed
data are quite common in practical scenarios: extract the urban footprint to make connections with
socio-economic factors; map the forest extent to subsequently retrieve biophysical variables and
detect a particular crop type to successively calibrate and deploy yield prediction models. In this
scenario, the (positive) targeted class is well defined, while the negative class is difficult to describe.
This one-class classification setting is also referred to as positive unlabelled learning (PUL) in the
general field of machine learning. To deal with this challenging setting, when satellite image time
series data are available, we propose a new framework named positive and unlabelled learning of
satellite image time series (PUL-SITS). PUL-SITS involves two different stages: In the first one, a
recurrent neural network autoencoder is trained to reconstruct only positive samples with the aim to
higight reliable negative ones. In the second stage, both labelled and unlabelled samples are exploited
in a semi-supervised manner to build the final binary classification model. To assess the quality
of our approach, experiments were carried out on a real-world benchmark, namely Haute-Garonne,
located in the southwest area of France. From this study site, we considered two different scenarios:
a first one in which the process has the objective to map Cereals/Oilseeds cover versus the rest of
the land cover classes and a second one in which the class of interest is the Forest land cover. The
evaluation was carried out by comparing the proposed approach with recent competitors to deal
with the considered positive and unlabelled learning scenarios.

Keywords: land cover mapping; positive unlabelled learning; satellite image time series; deep
learning

1. Introduction

Currently, modern remote sensing systems provide image acquisitions describing the
Earth’s surface at a high spatial resolution and revisit time period. A notable example is
the Copernicus programme, which, through the Sentinel-2 mission, provides optical multi-
spectral images within the visible and near-infrared regions (electromagnetic spectrum)
with a spatial resolution between 10 m and 60 m and a revisit time period of approximately
5 days [1]. Such a stream of information can be profitably organised as satellite image time
series (SITS) and can support a wide range of application domains, such as ecology [2],
agriculture [3], mobility, health, risk assessment [4], land management planning [5], and
forest [6], and natural habitat monitoring [7]. Due to the large panel of applications that
can be supported by such data, it constitutes a valuable source of information to monitor
the dynamics of the Earth’s surface.

One of the main tasks related to SITS data analysis is associated with land cover
mapping, where a classification model is learned to make the connection between satellite
data (i.e., SITS) and the associated land cover classes [5]. SITS data capture the temporal
dynamics exhibited by land cover classes, thus resulting in a more effective discrimination
among them [8].
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Land cover maps can be the final outcome of the analysis or it can constitutes an
intermediate step of a more general pipeline [9]. Examples of the latter case are the mapping
of a specific culture versus the rest of the land cover classes to successively calibrate and
deploy a yield prediction model [9], distinguish between forest areas and the rest of the
land cover classes to subsequently retrieve biophysical variables such as canopy height
or biomass volume [10], or extract the settlement footprint detecting urban vs. non-urban
land covers to make a connection with socio-economic factors [11]. In these particular
applications, the objective is to obtain binary land cover maps where one category (the
positive one) is well defined since it is associated with the land cover of interest, while
the other category (the negative one) is difficult to describe since it gathers together the
rest of the possible land cover classes present in a particular study area. This one-class
classification setting is also referred to as positive unlabelled learning (PUL) [12] in the
general field of machine learning. Different from the standard supervised classification
context, in the positive unlabelled learning setting, training data are composed of a set of
positive samples and a set of unlabelled ones with the latter involving both positive and
negative samples. The objective of a PUL framework is to build a binary classification
model that can make predictions on unseen data distinguishing between positive and
negative samples.

With the aim to focus on the analysis of SITS data, in this work, we propose a new
framework, named PUL-SITS, to deal with positive and unlabelled learning for land cover
mapping from satellite image time series. PUL-SITS involves two different stages: In the
first one, a recurrent neural network autoencoder is trained only on positive samples. Suc-
cessively, the same autoencoder model is employed to filter out reliable negative samples
from the unlabelled ones. In the second stage, both labelled (positive and reliable negative)
and unlabelled samples are exploited in a semi-supervised manner to build the final binary
classification model. In this stage, the unlabelled samples are employed to force consistency
between the prediction of the classification model and a variant of the same network trained
on the SITS data reconstructed by the recurrent neural network autoencoder model.

To assess the effectiveness of PUL-SITS, we considered two different scenarios involv-
ing data coming from a particular study area (Haute-Garonne) located in the southwest area
of France. More precisely, the Haute-Garonne study area is heavily characterized by the
Cereals/Oilseeds and Forest land cover classes. For this reason, we designed a first scenario
in which the Cereals/Oilseeds land cover class has the role of the positive class, while the
rest of the land cover classes play the role of the negative class. In the second scenario, the
Forest land cover class is targeted as the positive class. Experiments were carried out com-
paring the proposed approach w.r.t. well-suited competitors to deal with the considered
positive and unlabelled learning scenarios. The remainder of this paper is structured as
follows: First, Section 2 reviews related work in literature at the intersection of positive and
unlabelled learning and remote sensing. The proposed framework is described in Section 3.
The study site and the associated data are presented in Section 4. The experimental settings,
as well as the evaluation are reported and discussed in Section 5. Finally, Section 6 draws
the conclusion.

2. Related Work

Regarding the remote sensing domain, Reference [13] investigated the use of positive
and unlabelled learning to cope with urban footprint mapping considering high-spatial-
resolution aerial photographs. The PUL algorithm trains a classifier on positive and
unlabelled data, estimating the probability that a positive training sample has been labelled,
and finally, it generates binary predictions for test samples using an adjusted threshold.
Reference [14] proposed an ensemble approach to deal with one-class classification under a
PUL setting. Here, the class of interest was still the urban land cover, and the approach was
evaluated considering different sensors (Landsat 8, WorldView-3, and Gaofen-1). Similar
to [13], also in this case, the classification method was deployed on single-date images.
In [15], the authors proposed to employ positive and unlabelled learning to characterize
landslide susceptibility from several features extracted from multi-source data (elevation,
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slope angle, curvature, slope aspect, normalized difference vegetation index, soil type,
loess erosion intensity, and topographic wetness index). Recently, Reference [16] evaluated
PUL-based classifiers on different land cover classes (i.e., trees, bare soil), highlighting that
the proposed strategy is well adapted for a plethora of different application contexts.

Unfortunately, despite the fact that the positive unlabelled learning setting naturally
fits a wide range of remote sensing applications in which researchers aim to extract a binary
land cover map with a focus on a particular class of interest, all the proposed strategies were
developed considering mono-date images [13,14,16], while, today, SITS data are ubiquitous
in the remote sensing community. According to our literature survey, no research study
has yet proposed dealing with SITS data, explicitly with the temporal dynamics carried out
by such a rich source of information, under the positive and unlabelled learning setting.

3. Method

In this section, we briefly introduce the positive and unlabelled learning setting, and
successively, we describe PUL-SITS, a new framework to deal with land cover mapping
from satellite image time series under the PUL setting.

We remind the reader that we considered satellite image time series at the pixel level as
the unit of analysis. We refer to a generic SITS (at the pixel level) as TS = (x1, . . . , xt, . . . , xT)
where T is the length of the time series and a generic element xt is a multi-variate (or
multidimensional) vector with the subscript t, the corresponding timestamp. The PU
learning setting considers a scenario in which we dispose of D = P ∪U a set of samples
{TSi}

|D|
i=1 composed by a set P of positive samples and a set U of unlabelled ones. The set

U contains both positive and negative samples, but their label information is not accessible.
The task of learning from both positive and unlabelled data consists of exploiting both
labelled P and unlabelled U samples to learn a binary classification model, allowing the
assignment of a binary label (positive or negative) to new, previously unseen, satellite
image time series.

Regarding PUL-SITS, our framework is constituted of two different stages. The first
stage is devoted to selecting a set of reliable negative samples that highly differ from the
positive set. This step is addressed via a variational recurrent neural network autoencoder
(VAERNN), which is used to model the set of positive samples.

In the second stage, PUL-SITS learns a satellite image time series classifier, based on
the recurrent neural network (RNN) model proposed in [17], to cope with the underlying
binary classification task. In this stage, a semi-supervised training procedure is designed in
order to take advantage of both labelled (positive and reliable negative) and unlabelled
samples when the binary classification model is trained.

3.1. Selection of Reliable Negative Samples

The first stage of our framework addresses the identification of a set of reliable negative
(RN) samples. A sketch of this procedure is depicted in Figure 1. To this end, we first
modelled the positive set of satellite image time series (at the pixel level) via a variational
RNN autoencoder (VAERNN), then we used the trained neural network to select reliable
negative RN samples from the set of unlabelled satellite image time series data. To this
end, the reconstruction error was used as the evaluation metric. Samples with a small
reconstruction error are likely to belong to the positive class, while samples on which the
reconstruction error is high are probably those representing the negative class. The use of
recurrent neural networks (RNNs) to model the data distribution naturally arises due to the
fact that such a model is especially tailored to managing multi-variate sequential data [18]
and, in particular, compressing sequential information to extract useful multi-variate time
series representations [19,20].
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Figure 1. The VAERNN is trained on the set of positively labelled samples P. Then, the model is
applied on the set of unlabelled samples U. Successively, the reconstruction error for each TS ∈ U
is derived, and the set of reliable negative samples RN is identified based on the reconstruction
error. The vertical red line indicates the average reconstruction error (µrec) on the set of unlabelled
samples U. Samples with a reconstruction error bigger than µrec are possible candidates for the
reliable negative set RN.

In our case, we used a variational autoencoder [21] based on a two-level gated recur-
rent unit [22]. Gated recurrent units are preferred to long-short term memory [23] since the
former model has demonstrated better performance than the latter one in several remote-
sensing-related applications [24,25]. The gated recurrent units have fewer parameters than
the LSTM cells, and this makes the learned cell more robust and easy to train; finally, GRU
cells have also exhibited good performance for reconstruction tasks and, more generally,
for unsupervised analysis [20,21].

The gated recurrent unit (GRU) is formally defined as follows:

zt = σ(Wzxxt + Wzhht−1 + bz) (1)

rt = σ(Wrxxt + Wrhht−1 + br) (2)

ht = zt � ht−1+ (3)

(1− zt)� tanh(Whxxt + Whr(rt � ht−1) + bh)

The � symbol indicates an elementwise multiplication, while σ and tanh represent the
sigmoid and hyperbolic tangent functions, respectively. xt is the timestamp input vector,
and ht−1 is the hidden state of the recurrent unit at time t− 1. The different weight matrices
W∗∗ and bias vectors b∗ are parameters learned during the training of the model.

This unit follows the general philosophy of modern recurrent neural network models
implementing gates and cell states. The GRU cell has two gates, update (zt) and reset
(rt), and one cell state, the hidden state (ht). Moreover, the two gates combine the current
input (xt) with the information coming from the previous timestamps (ht−1). The update
gate effectively controls the tradeoff between how much information from the previous
hidden state will carry over to the current hidden state and how much information of
the current timestamp needs to be kept. On the other hand, the reset gate monitors how
much information of the previous timestamps needs to be integrated with the current
information. As each hidden cell has separate reset and update gates, they are able to
capture dependencies over different time scales. Cells more prone to capturing short-term
dependencies will tend to have a frequently activated reset gate, but those that capture
longer-term dependencies will have update gates that remain mostly active [22]. Figure 2
visually depicts the GRU cell.
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The encoder involves two GRU cells, while the decoder is symmetric to the encoder.
Variational autoencoders, as opposed to standard ones, model the latent space to match
a Gaussian distribution [26] (mean and variance). Such a way of compressing the input
information can be more appropriate to manage complex data distributions such as in the
case of satellite image time series, as recently highlighted in [27].

Furthermore, for an element at timestamps t output by the autoencoder, we performed
an additional linear transformation to obtain the reconstructed element x̂t, since, consider-
ing regression tasks, the softmax layer is commonly replaced by a fully connected layer
with no activation (linear transformation) [28]. Finally, the variational autoencoder model
was trained end-to-end by means of a reconstruction loss function on the set of positively
labelled satellite image time series P:

LOSSVAERNN =
∑TS∈P HLoss(TS, Linear(VAERNN(TS)))

|P| (4)

where (Linear(VAERNN(TS))) is the variational recurrent neural network autoencoder
followed by a linear transformation and HLoss is the Huber loss [28], defined as follows:

HLoss(y, ŷ) =

{
1
2 (y− ŷ)2 if |y− ŷ| < δ

δ|y− ŷ| − 1
2 δ2 otherwise

(5)

Basically, the Huber loss behaves as the mean squared error (MSE) loss when the error
is lower than a threshold δ, while it mimics the mean absolute error (MAE) loss otherwise.
In addition, it is also differentiable at 0. The Huber loss combines the good properties
from both the MAE and MSE, and it avoids their limitations. As opposed to the MAE, it
bypasses large gradient back propagation when the estimated quantity becomes closer to
the real value, and different from the MSE loss, it is more robust to outliers. To manage the
balance between the two components of the Huber loss function, we relied on the default
parameter setting [29] in which the σ value is set to 1.

Once the VAERNN is trained on the set of positive SITS data, it is successively de-
ployed on the set of unlabelled time series U. For each time series TS ∈ U, a reconstruction
error is computed via the Huber loss by comparing the original multi-variate time series
with the reconstructed one.

Then, we computed the average reconstruction error µrec (the mean reconstruction
error value on the set of unlabelled time series). After that, we considered multi-variate
time series (belonging to the unlabelled set) with a reconstruction error greater than µrec,
and we named such a set Uµrec . Finally, we randomly selected elements from Uµrec to build
the set of reliable negative samples RN with a size equal to the size of the positive set P
such that |P| == |RN|.

3.2. Semi-Supervised Training Procedure

Once both P and RN sets were available, we trained a classification model to deal
with the underlying binary classification task. As a classification backbone for our PUL
framework, we considered the RNN architecture recently proposed in [17] and referred to
as the fully connected gated recurrent unit (FCGRU). We chose such a model due to the
interesting performance it has exhibited w.r.t. other state-of-the-art approaches for land
cover mapping from SITS data. The FCGRU cell extends the standard GRU cell with two
additional fully connected layers that are applied to the input multi-variate time series,
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with the aim to enrich the initial representation before deploying the GRU cell, as illustrated
in Figure 2. More formally, the FCGRU cell is defined as follows:

xt′ = tanh(W2 tanh(W1xt + b1) + b2) (6)

zt = σ(Wzxxt′ + Wzhht−1 + bz) (7)

rt = σ(Wrxxt′ + Wrhht−1 + br) (8)

ht = zt � ht−1+ (9)

(1− zt)� tanh(Whxxt′ + Whr(rt � ht−1) + bh)

where the � symbol indicates an elementwise multiplication, while σ and tanh represent
the sigmoid and hyperbolic tangent function, respectively. xt is the timestamp input vector,
and ht−1 is the hidden state of the recurrent unit at time t− 1. The different weight matrices
W∗∗ and bias vectors b∗ are the parameters learned during the training of the model.

Figure 2. Visual representation of the GRU and FCGRU cells [17].

The classification model is trained via a semi-supervised procedure with the aim
to leverage as much as possible the information available considering both labelled and
unlabelled samples [30,31]. The procedure is depicted in Figure 3. More precisely, we
considered a consistency-regularization-based strategy where the binary classification
model is forced to behave similarly to an auxiliary model trained on the perturbed data.
Such a consistency regularization strategy was deployed considering a reduced set of
unlabelled samples Ũ = U \Uµrec .

We denote by fθ the binary classification model. When only labelled data P and RN
are considered, the model is trained via the standard binary cross-entropy (BCE) loss,
defined as:

LossBCE(Y, P ∪ RN, fθ) = −
1

|P ∪ RN|

|P∪RN|

∑
i=1

yi log ( fθ(TSi)) + (1− yi) log ( fθ(1− TSi)) (10)

where TSi ∈ P ∪ RN is a generic satellite image time series sample with an associated label
yi ∈ Y and Y is the set of labels.

With the aim to exploit available unlabelled data Ũ in the learning process, we added
an extra term to the main loss function as follows:

Loss = LossBCE(Y, P ∪ RN, fθ) + λ
1
|Ũ|

|Ũ|

∑
j=1

KL( fθ̂(
ˆTSj)|| fθ(TSj)) (11)

where TSj ∈ Ũ and fθ̂ is an auxiliary classification model that has the same network
structure as fθ , but trained on P̂ and ˆRN, which are the reconstructed (via the VAERNN
autoencoder) positive and reliable negative samples, respectively. KL(X||Z) is the standard
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Kullback–Leibler divergence, which quantifies how much the distribution Z differs from
the distribution X. The second term of the semi-supervised loss function has the goal of
leveraging the unlabelled set of SITS data, Ũ, regularizing the classification behaviour via
consistency assessment [31]. This is achieved by imposing that the output distribution of
the fθ model should behave similarly to the output distribution of a perturbed version of
itself, named fθ̂ , trained on the set of reconstructed positive and reliable negative samples.
Such a strategy implicitly enforces the classifier fθ to produce similar output distributions
considering a specific sample and its perturbed version, thus stressing smoothness on the
manifold on which the data are projected by the neural network model [31]. The trade-off
hyper-parameter λ is equal to 2.

To implement such a training strategy, at each iteration of an epoch, the classification
models fθ and fθ̂ were trained simultaneously. Firstly, fθ̂ was trained on a batch of samples
coming from the perturbed data, and successively, the weight parameters of the fθ model
were updated considering the binary cross-entropy loss on a batch of labelled samples from
P ∪ RN plus the consistency regularization loss on a batch of unlabelled samples from the
set Ũ.

Figure 3. The training strategy involves two models trained simultaneously. The first model fθ̂

is trained on the set of perturbed positive labelled P and reliable negative RN samples by the
autoencoder with the supervised BCE loss on true labels yi. The second fθ is the final classification
model trained on P and RN samples, with a semi-supervised process involving two losses: the binary
cross entropy loss on the true labels yi (LS) and the KL divergence between the generated soft labels
fθ(TSj) and fθ̂(T̂Sj) to enforce consistency (LU). The λ hyper-parameter weights the importance of
the unsupervised term.

At the end of the training procedure, the classifier fθ is the model that is employed to
perform inference on new unseen samples.

4. Data

The study area we considered in our research study, namely Haute-Garonne, is located
in the southwest area of France (Figure 4a), and it covers a surface area of 4146.2 km2. The
satellite data describing the study site consist of a Sentinel-2 (S2) time series involving 31
images acquired over the year 2019 from January to December. The temporal distribution
of the satellite image time series is depicted in Figure 5.
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(a) (b)

(c)

Figure 4. Haute-Garonne is located in the southwest of France (a). The spatial distribution of the land
covers (Cereals/Oilseeds and Forest) considered as positive classes (b). The Sentinel-2 RGB composite
obtained over the year 2019 (c).

Figure 5. Overview of the acquisition dates of Sentinel-2 (S2) images over Haute-Garonne. S2
acquisitions are sparsely distributed due to the ubiquitous cloudiness.

The Sentinel-2 images were downloaded from the THEIA pole platform (http://theia.
cnes.fr, accessed on 10 November 2020) at level-2A in top-of-canopy reflectance values and
provided with cloud masks. Only 10 m spatial resolution bands (blue, green, red, and near-
infrared spectrum) were considered in this analysis. Additionally, two common spectral
indices were then extracted: the NDVI [32] and the NDWI [33]. A preprocessing step was
performed over each band to replace cloudy pixel values as detected by the available cloud
masks through a linear multi-temporal interpolation (cf. temporal gap-filling [5]). The
entire study site is enclosed in the Sentinel-2 tile T31TCJ.

http://theia.cnes.fr
http://theia.cnes.fr
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Table 1. Haute-Garonne ground truth characteristics.

Class # of Objects # of Pixels

Cereals/Oilseeds 898 336,044

Forest 846 186,870

Other land cover classes 6460 323,925

Total 7358 846,838

Since we are addressing a positive and unlabelled learning setting, we considered two
different scenarios where each scenario involves a particular land cover class as the positive
class and all the other land cover classes as negative. As positive classes, we considered the
Cereals/Oilseeds and the Forest land covers.

The statistics about the Cereals/Oilseeds and Forest land cover classes, in the Haute-
Garonne study site, are reported in Table 1. We also report the statistics for the number of
labelled samples belonging to the other land cover classes present in the Haute-Garonne
study area (i.e., Water, Urban, Orchards, etc.) that are neither Cereals/Oilseeds nor Forest
samples.

The ground truth (GT) was obtained from various sources: (i) the Registre Parcellaire
Graphique (RPG) reference data for 2019 (https://www.data.gouv.fr/en/datasets, accessed
on 10 November 2020), which is part of the European Land Parcel Identification System
(LPIS) provided by the French Agency for services and payment ; (ii) the French Topo-
graphic Database (BD TOPO) (https://geoservices.ign.fr/blog/2020/10/26/Grand_angle_
diffusion_BDTOPO.html, accessed on 10 November 2020), which contains geographical
and administrative entities of the national territory; (iii) the French National Forest in-
ventory (BD FORET), which includes information about forest cover at the national scale.
The GT was assembled in a Geographic Information System (GIS) vector file, containing a
collection of polygons, each attributed to a land cover category (see Table 1). Finally, the
polygons were rasterized at the Sentinel-2 spatial resolution (10 m).

5. Experimental Evaluation

In this section, we describe the experimental evaluation we conducted with the aim to
assess the behaviour of our framework. To this end, we firstly compared PUL-SITS with
different competing approaches on the study site introduced in Section 4. Secondly, we
evaluated the different components on which PUL-SITS is based on through an ablation
study. Finally, we visually inspected the land cover maps produced by the different
competing approaches.

5.1. Competing Methods and Ablation

To assess the behaviour of PUL-SITS, we considered the following competitors:

• A random forest approach based on the positive unlabelled learning framework
introduced in [34]. Here, the authors proposed to exploit probability theory to weight
unlabelled samples with the aim to bias the learning stage of standard supervised
classification methods. We named such a competitor RFPUL;

• A one-class support vector machine approach [35]. In this case, the learning approach
discards unlabelled samples, and it only leverages positive samples to build the final
binary classification model. We named such a competing approach OCSVM;

• An ensemble-based approach for the positive unlabelled learning scenario recently in-
troduced in the field of remote sensing analysis [14]. The ensemble approach combines
the prediction of different base learners via a mean-squared-error-based aggregation
function. Our ensemble-based competitor involves the following base learners: logistic
ridge regression, logistic elastic-net regression, random forest, multilayer perceptron
and linear discriminant analysis. We named such competitors ENSEMBLEPUL.

https://www.data.gouv.fr/en/datasets
https://geoservices.ign.fr/blog/2020/10/26/Grand_angle_diffusion_BDTOPO.html
https://geoservices.ign.fr/blog/2020/10/26/Grand_angle_diffusion_BDTOPO.html
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In order to disentangle the contributions of the different stages on which PUL-SITS is
based, we considered the following ablations of our framework:

• The FCGRU [17] classification model only trained on the positive and reliable negative
samples obtained from the first stage of our framework. This ablation did not involve
the consistency loss. We named such an ablation PUL-SITSnoReg;

• The FCGRU classification model trained on the positive and reliable negative samples
obtained from the first stage of our framework. Here, the classifier was not trained on
the original data, but on the reconstructed data output by the autoencoder model. We
named such an ablation PUL-SITSreco.

5.2. Experimental Settings

We designed two different positive unlabelled learning experiments according to the
data presented in Section 4. We remind the reader that in the first (resp. second) experiment,
we considered as the positive class the Cereals/Oilseeds (resp. Forest) land cover class, while
the negative class was constituted by all the samples not belonging to the land cover class
representing the positive class.

With the purpose of setting up a fair evaluation protocol to assess the quality of the
different competitors, for each experiment, we divided the data (both positive and negative
classes) into two sets: training and test. We considered 50% of the positive (resp. negative)
class as the test data. The remaining 50% of the data were considered as the training data.
Then, the training set was split again into two parts: the positive and the unlabelled set.
While the former contained only positive samples, the latter consisted of samples from both
the positive and negative classes. Whereas the amount of positive samples can influence
the model behaviour, we considered increasing the quantity of positive samples ranging in
the set {20, 40, 60, 80, 100} in terms of objects. Once the set of positive samples was fixed,
the rest of the training data were considered as unlabelled data. The number of objects and
pixels for the positive, unlabelled, and negative samples in the training and test sets for the
first (Cereals/Oilseeds land cover as the positive class) and second (Forest land cover as the
positive class) experiments is reported in Table 2 (resp. Table 3).

Table 2. Number of positive, unlabelled, and negative objects/pixels in the training and test set when
the positive samples belong to the Cereals/Oilseeds land cover class.

# of Objects Training
(P/U)

# of Pixels Training
(P/U)

# of Objects Test
(P/N) # of Pixels Test (P/N)

20/3659 7010/410,712

451/3228 168,404/260,711
40/3639 14,618/403,104
60/3619 21,001/403,822
80/3599 28,955/388,767
100/3579 36,442/381,280

Table 3. Number of positive, unlabelled, and negative objects/pixels in the training and test set when
the positive samples belong to the Forest land cover class.

# of Objects Train
(P/U)

# of Pixels Train
(P/U)

# of Objects Test
(P/N) # of Pixels Test (P/N)

20/3658 4206/413,517

428/3250 95,725/333,390
40/3638 9565/408,157
60/3618 13,900/403,822
80/3598 17,865/399,857
100/3578 22,143/395,579

We remind the reader that, despite having defined the size of the positive samples in
terms of objects, the classification procedure was performed at the pixel level (all the pixels
belonging to the object belong exclusively to the training or the test set). We organized the
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training/test data split procedures in terms of objects with the aim to avoid possible spatial
bias in the evaluation procedure [5], since, in this way, pixels belonging to the same ground
truth object were assigned exclusively to one of the data partitions. In addition, for time
series data, all values were normalized per band in the interval [0, 1] using 2% (resp. 98%),
rather than the minimum (resp. maximum) value to rescale the data [8].

Regarding our framework, PUL-SITS, the VAERNN involves an encoder with two
levels with 64 and 16 units, respectively, while the decoder is symmetric to the encoder.
The FCGRU [17] recurrent cell involved in the binary classification process has a number
of units equal to 32. Both models were trained for 50 epochs with a batch size equal to 32
and a learning rate of 10e−4 through the Adam optimizer. For the latter component, we
also employed a dropout rate equal to 0.2. The same learning procedure was employed for
the PUL-SITSnoReg and PUL-SITSreco ablations. Regarding the competing methods, RFPUL,
OCSVM, and ENSEMBLEPUL, they were employed with the default settings.

The assessment of the quantitative performances was performed considering the
Accuracy, F-Measure, Sensitivity, Specificity, and Kappa metrics [36]. To reduce the bias
induced by the training/test data split, all the results were averaged over ten different
random splits. Finally, both the average and standard deviation are reported for each
evaluation metric.

The experiments were carried out on a workstation with an AMD Ryzen 7 3700X
8-core processor CPU@3.60GHz with 64 GB of RAM and a GeForce RTX 2080 Ti GPU. All
the deep-learning methods were implemented using the Python Tensorflow library.

5.3. Quantitative Results

As described before, we compared PUL-SITS with respect to the competing methods
on two different experiments: the first one involved the Cereals/Oilseeds land cover as the
class of interest, while the second experiment considered the Forest land cover as the positive
class. In both cases, we firstly assessed the performances of the competing strategies in
terms of the standard evaluation metrics, then we discuss the associate confusion matrices;
finally, we provide a qualitative analysis, inspecting some extracts of the produced land
cover maps.

5.3.1. Experiments with the Cereals/Oilseeds Land Cover as the Positive Class

Tables 4–8 summarise the results in terms of the F-Measure, Accuracy, Sensitivity,
Specificity, and Kappa measure, respectively. Generally, we can observe that no matter the
size of the training data, our framework always outperformed all the competing approaches
considering almost all the evaluation metrics. We can also note that all the approaches
exhibited better behaviours as the amount of available positive labelled data increased.

Regarding the competing methods, we can observe that OCSVM achieved the best
performance. Such a method, as opposed to RFPUL and ENSEMBLEPUL, only exploited
the positive samples to build its classification model. This fact underlines that RFPUL and
ENSEMBLEPUL are probably impacted by the fact that the negative class (all the land
cover classes except Cereals/Oilseeds) is characterised by a high intra-heterogeneity, thus
influencing the ability of the algorithm to model such a wide range of sample as one
class in the original feature space. This fact is illustrated by high Sensitivity (Table 6) and
low Specificity (Table 7) values, which highlight that RFPUL and ENSEMBLEPUL simply
label the majority of the data points with the negative class. Concerning the ablations
associated with our framework, PUL-SITSnoReg and PUL-SITSreco, we can see that both
strategies achieved better performances than the competing methods, with PUL-SITSnoReg
as a clear winner between them, but the PUL-SITSreco component played an important
role in supporting the performance of PUL-SITS, underlying the quality of our two-stage
methodology. Figure 6 shows the confusion matrices associated with the three direct
competing approaches, as well as PUL-SITS. A closer look at these statistics confirms that
PUL-SITS was more precise than the competitors. This consideration emerges from the
fact that the corresponding heat map (Figure 6d) has a more visible diagonal structure (the
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dark green blocks concentrated on the diagonal). This is not the case for the other methods,
where the majority of the samples are associated with the negative (zero) class.

(a) (b) (c) (d)

Figure 6. Confusion matrices of (a) RFPUL, (b) ENSEMBLEPUL, (c) OCSVM, and (d) PUL-SITS
considering the case in which the land cover class of interest (the positive class) is Cereals/Oilseeds
with the number of positive training data objects (n) equal to 80.

Table 4. Performances in terms of the F-Measure of the different competing strategies when the land
cover class of interest (the positive class) is Cereals/Oilseeds.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 46.2 ± 1.7 47.3 ± 1.5 61.6 ± 4.0 80.3 ± 2.3 75.5 ± 3.5 78.9 ± 4.0
40 46.7 ± 1.7 49.3 ± 1.7 63.8 ± 2.7 84.9 ± 1.9 82.0 ± 2.3 85.3 ± 2.8
60 47.2 ± 1.8 52.4 ± 1.6 64.7 ± 2.0 86.6 ± 2.8 84.2 ± 2.0 87.3 ± 2.2
80 48.3 ± 2.0 55.7 ± 2.1 64.7 ± 2.3 86.5 ± 2.3 85.0 ± 2.5 88.0 ± 2.6

100 50.2 ± 1.6 60.1 ± 1.8 64.3 ± 2.0 86.2 ± 3.0 85.5 ± 1.8 88.6 ± 1.3

Table 5. Performances in terms of the Accuracy of the different competing strategies when the land
cover class of interest (the positive class) is Cereals/Oilseeds.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 60.9 ± 1.4 61.3 ± 1.3 63.9 ± 2.1 80.9 ± 2.0 76.3 ± 3.1 79.5 ± 3.6
40 61.1 ± 1.4 62.1 ± 1.2 65.1 ± 2.2 85.0 ± 1.9 82.3 ± 2.2 85.4 ± 2.8
60 61.3 ± 1.4 63.5 ± 1.2 66.0 ± 1.6 86.6 ± 2.8 84.2 ± 2.0 87.3 ± 2.1
80 61.8 ± 1.5 65.1 ± 1.3 65.4 ± 1.9 86.5 ± 2.3 85.1 ± 2.4 87.9 ± 2.5

100 62.6 ± 1.3 67.5 ± 1.2 65.2 ± 1.7 86.1 ± 2.9 85.5 ± 1.8 88.6 ± 1.3

Table 6. Performances in terms of the Sensitivity of the different competing strategies when the land
cover class of interest (the positive class) is Cereals/Oilseeds.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 100 ± 0.0 99.8 ± 0.1 81.5 ± 5.0 91.7 ± 4.1 88.1 ± 3.5 88.6 ± 8.9
40 100 ± 0.0 99.6 ± 0.2 79.6 ± 3.9 88.4 ± 2.8 89.0 ± 1.8 90.3 ± 2.0
60 100 ± 0.0 99.3 ± 0.3 77.3 ± 3.8 86.7 ± 5.8 87.3 ± 3.6 88.3 ± 2.5
80 100 ± 0.0 99.1 ± 0.2 77.0 ± 3.6 86.6 ± 5.3 88.9 ± 2.5 88.7 ± 2.0

100 99.9 ± 0.1 98.9 ± 0.2 77.7 ± 3.2 85.1 ± 5.9 87.4 ± 2.8 89.4 ± 2.0
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Table 7. Performances in term of the Specificity of the different competing strategies when the land
cover class of interest (the positive class) is Cereals/Oilseeds.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 0.3 ± 0.3 1.6 ± 0.8 36.9 ± 11.2 65.3 ± 9.8 59.3 ± 10.0 66.6 ± 13.6
40 0.9 ± 0.6 4.0 ± 2.2 42.7 ± 7.7 80.0 ± 4.7 72.4 ± 5.2 78.2 ± 5.3
60 1.4 ± 0.7 8.1 ± 2.1 47.4 ± 6.8 85.9 ± 2.9 79.6 ± 5.0 85.9 ± 5.0
80 2.7 ± 0.9 12.4 ± 3.0 47.7 ± 6.9 86.1 ± 4.2 79.4 ± 5.5 86.8 ± 4.5

100 5.0 ± 1.2 18.8 ± 2.8 45.9 ± 6.0 87.6 ± 3.1 82.7 ± 3.7 87.3 ± 4.3

Table 8. Performances in term of the Kappa measure of the different competing strategies when the
land cover class of interest (the positive class) is Cereals/Oilseeds.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 0.00 ± 0.00 0.02 ± 0.01 0.19 ± 0.07 0.59 ± 0.05 0.49 ± 0.07 0.56 ± 0.07
40 0.01 ± 0.01 0.04 ± 0.02 0.23 ± 0.05 0.68 ± 0.04 0.62 ± 0.05 0.69 ± 0.06
60 0.02 ± 0.01 0.09 ± 0.02 0.25 ± 0.04 0.72 ± 0.05 0.67 ± 0.04 0.74 ± 0.04
80 0.03 ± 0.01 0.14 ± 0.03 0.25 ± 0.04 0.72 ± 0.04 0.69 ± 0.05 0.75 ± 0.05

100 0.06 ± 0.01 0.21 ± 0.03 0.24 ± 0.04 0.72 ± 0.05 0.70 ± 0.03 0.76 ± 0.03

5.3.2. Experiments with the Forest Land Cover as the Positive Class

Tables 9–13 resume respectively the results in terms of the F-Measure, Accuracy,
Sensitivity, Specificity, and Kappa of the different competing methods when the Forest land
cover was considered as the positive class. In this case also, PUL-SITS outperformed all
the other approaches, while RFPUL and ENSEMBLEPUL simply labelled all of the data
points as the negative class (as highlighted by the high values of the Sensitivity and the
low values of the Sensibility they achieved). OCSVM exhibited the best performance
among the state-of-the-art competitors. Concerning the ablations, PUL-SITSnoReg did not
always achieve better performance over OCSVM, while PUL-SITSreco did. This phenomena
clearly underlines the importance of exploiting the available unlabelled data and the
appropriateness of the consistency-based procedure in order to regularize the training stage
of the final classification model. Figure 7 shows the confusion matrices, which confirm that
PUL-SITS achieved a better predictive performance w.r.t. the other approaches, i.e., it has a
more visible diagonal structure.

(a) (b) (c) (d)

Figure 7. Confusion matrices of (a) RFPUL, (b) ENSEMBLEPUL, (c) OCSVM, and (d) PUL-SITS
considering the case in which the land cover class of interest (the positive class) is Forest with the
number of positive training objects (n) equal to 80.
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Table 9. Performances in terms of the F-Measure of the different competing strategies when the land
cover class of interest (the positive class) is Forest.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 68.4 ± 2.7 69.8 ± 2.4 82.7 ± 3.0 86.1 ± 1.8 89.7 ± 2.0 91.4 ± 1.9
40 69.7 ± 2.7 72.8 ± 3.1 83.1 ± 2.6 85.1 ± 3.4 89.8 ± 3.7 92.9 ± 2.3
60 71.6 ± 2.9 76.4 ± 3.1 84.4 ± 2.5 86.5 ± 2.5 90.1 ± 2.2 92.6 ± 2.5
80 73.9 ± 3 79.5 ± 3.1 84.7 ± 2.4 86.6 ± 2.9 88.8 ± 2.9 91.4 ± 3.5

100 76.8 ± 2.7 83.1 ± 2.8 85.2 ± 2.4 85.0 ± 1.7 88.7 ± 2.8 91.9 ± 1.8

Table 10. Performances in terms of the Accuracy of the different competing strategies when the land
cover class of interest (the positive class) is Forest.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 77.9 ± 1.9 78.4 ± 1.8 85.0 ± 2.1 83.2 ± 2.3 87.9 ± 2.6 90.1 ± 2.7
40 78.4 ± 1.9 79.8 ± 2.1 85.8 ± 1.9 81.9 ± 4.6 88.0 ± 4.8 92.1 ± 2.8
60 79.3 ± 2.0 81.7 ± 2.1 86.7 ± 1.8 83.8 ± 3.8 88.4 ± 2.9 91.5 ± 3.1
80 80.4 ± 2.0 83.5 ± 2.2 86.9 ± 1.8 83.7 ± 3.9 86.7 ± 3.7 90.1 ± 4.3

100 81.9 ± 1.9 85.8 ± 2.1 87.2 ± 1.8 81.8 ± 2.3 86.7 ± 3.7 90.8 ± 2.2

Table 11. Performances in terms of the Sensitivity of the different competing strategies when the land
cover class of interest (the positive class) is Forest.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 100 ± 0.0 99.9 ± 0.1 99.7 ± 0.2 81.6 ± 2.5 87.2 ± 3.0 89.7 ± 2.9
40 100 ± 0.0 99.8 ± 0.1 99.7 ± 0.3 80.1 ± 5.1 87.1 ± 5.5 91.9 ± 3.3
60 99.9 ± 0.0 99.8 ± 0.2 99.7 ± 0.2 82.0 ± 3.7 87.6 ± 3.4 91.2 ± 3.6
80 99.9 ± 0.1 99.8 ± 0.1 99.7 ± 0.2 82.2 ± 4.3 85.7 ± 4.3 89.5 ± 5.0

100 99.8 ± 0.1 99.7 ± 0.1 99.7 ± 0.1 79.9 ± 2.6 85.6 ± 4.3 90.2 ± 2.6

Table 12. Performances in terms of the Specificity of the different competing strategies when the land
cover class of interest (the positive class) is Forest.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 0.8 ± 0.4 3.7 ± 1.3 36.0 ± 7.8 97.3 ± 1.01 94.1 ± 1.5 94.0 ± 1.6
40 3.4 ± 2.4 10.1 ± 3.7 37.2 ± 7.2 97.6 ± 1.26 95.2 ± 1.8 93.6 ± 2.5
60 7.5 ± 3.2 18.7 ± 5.2 41.1 ± 6.9 97.9 ± 1.0 95.5 ± 1.7 94.3 ± 2.9
80 12.5 ± 4.2 26.8 ± 6.3 42.0 ± 6.5 97.9 ± 1.0 96.2 ± 1.5 95.2 ± 2.2

100 19.6 ± 4.7 37.3 ± 6.8 43.6 ± 6.5 98.3 ± 0.7 96.3 ± 1.4 94.9 ± 2.0

Table 13. Performances in terms of the Kappa measure of the different competing strategies when
the land cover class of interest (the positive class) is Forest.

# of Obj
Samples RFPUL ENSEMBLEPUL OCSVM PUL-SITSnoReg PUL-SITSreco PUL-SITS

20 0.01 ± 0.01 0.05 ± 0.02 0.46 ± 0.09 0.46 ± 0.05 0.55 ± 0.07 0.61 ± 0.08
40 0.05 ± 0.04 0.14 ± 0.05 0.47 ± 0.07 0.44 ± 0.08 0.57 ± 0.13 0.67 ± 0.09
60 0.11 ± 0.05 0.26 ± 0.07 0.51 ± 0.07 0.47 ± 0.08 0.57 ± 0.08 0.66 ± 0.1
80 0.18 ± 0.06 0.36 ± 0.08 0.52 ± 0.07 0.48 ± 0.08 0.54 ± 0.08 0.62 ± 0.1

100 0.27 ± 0.06 0.47 ± 0.08 0.54 ± 0.07 0.44 ± 0.05 0.53 ± 0.07 0.63 ± 0.05
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5.4. Visual Inspection of the Binary Classification Maps

Here, we performed a visual inspection of the binary classification maps generated via
the different competing approaches regarding the two scenarios we previously described.

Figures 8 and 9 report the results of the mapping process on two different extracts
of the study site when the Cereals/Oilseeds land cover class was considered as the positive
class. The first extract (Figure 8) depicts an agricultural area mainly characterized by
cereal and oilseed parcels. We can observe that PUL-SITS clearly recovered the parcel
structure, while the other approaches had serious issues in detecting pixels belonging to
the Cereals/Oilseeds class. While RFPUL and ENSEMBLEPUL exhibited high false-negative
rates, the OCSVM method showed reasonable performance on the considered extract, but
still (visually) inferior w.r.t. our framework. A similar behaviour was exhibited by all the
competing methods on the second extract depicted in Figure 9. In this case also, PUL-SITS
provided a more coherent land cover map that clearly discriminated between positive
(Cereals/Oilseeds) and negative pixels.

Figures 10 and 11 depict the results of the mapping process on two different extracts of
the study site when the Forest land cover class was considered as the positive class. The first
extract (Figure 8) shows a portion of the study site where clear forest cover is present. Here,
we can note that PUL-SITS well identified the large forest area in the bottom left part of
the extract. All the other methods were not capable of recovering all the forest extent with,
also in this case, issues related to false-negative detection. The second extract (Figure 11)
describes a zone on which the forest cover is not concentrated, but, conversely, spread over
all the area. Similar to what happened in the previous case, PUL-SITS produced a binary
land cover map that was consistent with what we can observe in the RGB composite on
the left side of the figure. To sum up, we can state that the visual inspection of the binary
land cover maps, considering both scenarios, is coherent with the quantitative results we
obtained in the previous stage of the evaluation analysis.

Figure 8. A first visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM, and (e) PUL-SITS for the positive
class Cereals/Oilseeds with the number of positive training data objects (n) equal to 80.
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Figure 9. A second visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM and (e) PUL-SITS for the positive
class Cereals/Oilseeds with a number of positive training data objects (n) equals to 80.
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Figure 10. A first visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM and (e) PUL-SITS for the positive
class Forest with a number of positive training data objects (n) equals to 80.

Figure 9. A second visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM, and (e) PUL-SITS for the positive
class Cereals/Oilseeds with the number of positive training data objects (n) equal to 80.
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Figure 9. A second visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM and (e) PUL-SITS for the positive
class Cereals/Oilseeds with a number of positive training data objects (n) equals to 80.
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Figure 10. A first visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM and (e) PUL-SITS for the positive
class Forest with a number of positive training data objects (n) equals to 80.

Figure 10. A first visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM, and (e) PUL-SITS for the positive
class Forest with the number of positive training data objects (n) equal to 80.
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Figure 11. A second visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM and (e) PUL-SITS for the positive
class Forest with a number of positive training data objects (n) equals to 80.

6. Conclusions 391

In this research work, we have introduced a novel framework, namely PUL-SITS, to 392

deal with the positive unlabelled learning analysis of satellite image time series data for the 393

task of land cover mapping. Our approach is based on a two steps strategy: in the first one 394

a recurrent neural network autoencoder is trained only on positive samples. Successively, 395

the same autoencoder model is employed to filter out reliable negative samples. In the 396
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exploited in a semi-supervised manner to build the final binary classification model. To 398
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for positive unlabelled learning considering two different scenarios: a first one in which 400

the Cereal/Oilseeds land cover class has the role of positive class while the rest of the land 401

cover classes plays the role of the negative class and, a second scenario where the Forest 402

land cover class is targeted as positive class. Both scenarios have underlined the quality of 403

our approach. As a future work, we plan to extend our framework towards multi-source 404

analysis and introduce, for instance, satellite image time series of radar sensors (i.e. Sentinel- 405

1) in order to exploit the complementarity between different available sources/modalities. 406
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Figure 11. A second visual evaluation zone with (a) its RGB composite and the corresponding binary
classification maps for (b) RFPUL, (c) ENSEMBLEPUL, (d) OCSVM, and (e) PUL-SITS for the positive
class Forest with the number of positive training data objects (n) equal to 80.

6. Conclusions

In this research work, we introduced a novel framework, namely PUL-SITS, to deal
with the positive unlabelled learning analysis of satellite image time series data for the task
of land cover mapping. Our approach was based on a two-step strategy: in the first one, a
recurrent neural network autoencoder was trained only on positive samples. Successively,
the same autoencoder model was employed to filter out reliable negative samples. In the
second stage, both labelled (positive and reliable negative) and unlabelled samples were
exploited in a semi-supervised manner to build the final binary classification model. To
assess the performances of PUL-SITS, we compared it with state-of-the-art methods for
positive unlabelled learning considering two different scenarios: a first one in which the
Cereal/Oilseeds land cover class has the role of the positive class while the rest of the land
cover classes play the role of the negative class and a second scenario where the Forest land
cover class was targeted as the positive class. Both scenarios underlined the quality of our
approach. As future work, we plan to extend our framework towards multi-source analysis
and introduce, for instance, satellite image time series of radar sensors (i.e., Sentinel-1) in
order to exploit the complementarity between different available sources/modalities.
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