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Abstract: With the development of computer vision, attention mechanisms have been widely stud-
ied. Although the introduction of an attention module into a network model can help to improve
classification performance on remote sensing scene images, the direct introduction of an attention
module can increase the number of model parameters and amount of calculation, resulting in slower
model operations. To solve this problem, we carried out the following work. First, a channel attention
module and spatial attention module were constructed. The input features were enhanced through
channel attention and spatial attention separately, and the features recalibrated by the attention
modules were fused to obtain the features with hybrid attention. Then, to reduce the increase in
parameters caused by the attention module, a group-wise hybrid attention module was constructed.
The group-wise hybrid attention module divided the input features into four groups along the
channel dimension, then used the hybrid attention mechanism to enhance the features in the channel
and spatial dimensions for each group, then fused the features of the four groups along the channel
dimension. Through the use of the group-wise hybrid attention module, the number of parameters
and computational burden of the network were greatly reduced, and the running time of the network
was shortened. Finally, a lightweight convolutional neural network was constructed based on the
group-wise hybrid attention (LCNN-GWHA) for remote sensing scene image classification. Experi-
ments on four open and challenging remote sensing scene datasets demonstrated that the proposed
method has great advantages, in terms of classification accuracy, even with a very low number of
parameters.

Keywords: remote sensing scene image classification; convolutional neural network (CNN); lightweight;
hybrid attention; channel attention; spatial attention

1. Introduction

In recent years, convolutional neural networks (CNNs) have achieved excellent per-
formance in many fields [1–7]. In particular, in the field of image classification [8–11],
convolutional neural networks have become the most commonly used method. The core
construction element of a convolutional neural network is the convolutional layer. For each
convolutional layer, a group of filters is learned along the input channel to represent the
local spatial mode, and feature information is extracted by fusing the spatial and channel
information of the local receptive field. Improving the quality of spatial coding of the
whole feature level of a convolutional neural network to enhance the representation ability
of the network is an effective way to improve the performance of the network. It has
been shown, with VGGNet [12], that increasing the depth of the network can significantly
improve the performance of the network. ResNet [13] addressed the problem of perfor-
mance degradation caused by network deepening: it expanded the network depth to 150
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or even 1000 layers, based on VGGNet, and achieved good performance. InceptionNet [14]
divided the input features into four channels, in which different convolution filters were
used to adapt to different scales of features. Finally, the extracted features were fused
along the channel dimension to improve network performance by increasing the width of
the network. Subsequently, a series of lightweight convolutional neural networks were
proposed. These networks reduce the complexity of the model while also having good
feature extraction ability. Xception [15] and MoblenetV1 [16] introduced depth-wise separa-
ble convolution, instead of traditional convolution, for lightweight networks. Depth-wise
separable convolution divides traditional convolution into depth-wise convolution and
pointwise convolution to reduce the number of parameters of the model. MobilenetV2 [17]
proved the validity of depthwise separable convolution. Grouping convolution also pro-
vides a way to improve network representation by increasing the width of the network
while reducing the computational cost of the network. Assuming that g is used to represent
the number of groups, both the number of parameters and the calculation cost of grouping
convolution are 1/g that of traditional convolution. Grouped convolution was first used in
AlexNet due to hardware constraints and served to reduce the associated computational
costs. By using grouped convolution in ResNeXts [18] and increasing the depth and width
of the model, the classification accuracy was greatly improved. ShuffleNet [19,20] proposed
channel shuffling, which can alleviate the loss of information due to a lack of information
exchange between channels caused by grouping after grouping convolution.

The improvement of network performance by use of an attention mechanism has
been demonstrated in many tasks. SENet [21] improved the network performance by
explicitly modeling the dependences between channels. SENet consists of two operations:
squeeze and excitation. The squeeze operation extrudes the features spatially through
a global average pooling operation to obtain a value with a global receptive field. The
resulting values from the excitation are obtained through two consecutive fully connected
layers, and the channel attention map is derived from the correlation between the channels,
which is used to recalibrate the features. SKNet [22] added two operations, split and
fuse, on the basis of SENet. Split operations employ convolution kernels with different
receptive field sizes to capture multiscale semantic information. Fusion operations fuse
multiscale semantic information, enhance feature diversity, and aggregate feature maps
from different size convolution kernels, according to their weights, by use of an SE module.
It is also an effective method to improve the performance of the network, by explicitly
modeling the dependence between channels and spatial information. CBAM [23] extracts
channel attention and spatial attention through a combination of global average pooling
and maximum pooling. The input features are enhanced in space and channel by using
spatial attention and channel attention, respectively. Finally, the enhanced features are
fused to improve the performance of the model. Wang et al. [24] designed a circular
attention structure to reduce advanced semantic and spatial features to reduce the number
of learning parameters. Tong et al. [25] introduced an attention mechanism into DenseNet
to adaptively enhance the weights of important feature channels. Yu et al. [26] improved
channel attention and proposed a hierarchical attention mechanism by combining the
improved channel attention with a ResNet network. Alhichri et al. [27] proposed a deep
attention convolution neural network to learn feature maps from large scene regions. We
note that although the introduction of an attention module to a network can help to improve
the network performance, adding an attention mechanism directly to the network increases
the amount of network parameters and required calculations, thus reducing the running
speed of the model. To solve this problem, we first constructed a new channel attention and
spatial attention module to recalibrate the features. The channel attention sets the channel
compression ratio of the SE module to 1/4 and replaces the fully connected layer with
1 × 1 convolution. We compressed the input features using a 5 × 5 × 1 convolution kernel
and achieved spatial attention by using the Sigmoid activation function for the compressed
features. Next, we propose a group-wise hybrid attention method, which groups input
features and introduces hybrid attention to each group. Each group is re-calibrated using
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the spatial attention and channel attention, respectively, and the recalibrated features
are fused.

The main contributions of this study are as follows:

(1) Based on the SE module, we propose a channel attention module which is more
suitable for remote sensing scene image classification. In the proposed method, the
channel compression ratio is set to 1/4, and a 1 × 1 convolution kernel is adopted
instead of a fully connected layer. The 1 × 1 convolution does not destroy the spatial
structure of the features, and the size of the input features can be arbitrary.

(2) We propose a spatial attention module with a simpler implementation process. Chan-
nels are compressed using a 5× 5× 1 convolution kernel directly, and spatial attention
features are obtained using the Sigmoid activation function. The convolution ker-
nel of 5 × 5 is helpful in providing a large receptive field, which can extract more
spatial features.

(3) A hybrid attention model is constructed by combining channel attention and spatial
attention in parallel, which has higher activation and can learn more meaningful features.

(4) To alleviate the problem that the introduction of attention leads to an increased
number of parameters, we further propose a group-wise hybrid attention module.
This module first divides input features into four groups in the channel dimension,
then introduces hybrid attention to each group. Each group is recalibrated separately
with spatial attention and channel attention and, finally, the rescaled features are fused
in the channel dimension. Moreover, a lightweight convolutional neural network is
constructed based on group-wise hybrid attention (LCNN-GWHA), which is shown
to be an effective method for remote sensing scene image classification.

The remainder of this paper is structured as follows. In Section 2, the channel attention,
spatial attention, hybrid attention, group-wise hybrid attention, and the proposed LCNN-
GWHA method are described in detail. In Section 3, experiments and analyses are carried
out, including a comparison with some state-of-the-art methods, in order to demonstrate
the superior performance of the proposed method. In Section 4, the feature extraction ability
of the proposed LCNN-GWHA method is evaluated by visualization. The conclusion of
this paper is given in Section 5.

2. Methods
2.1. Traditional Convolution Process

Assuming that the input feature is X ∈ RH×W×C′ , the output feature Y ∈ RH×W×C is
obtained by the convolution operation F(·), as shown in Figure 1. The set of convolution
kernels is represented by U = [u1, u2, . . . , uC], where uC represents the cth convolution
kernel. Then, the features of the cth channel of the output, Y = [y1, y2, . . . , yC], can be
represented as:

yC = uC ∗ X =
C′

∑
i=1

ui
C ∗ xi (1)

where ∗ represents the convolution operation, uC = [u1
C, u2

C, . . . , uC′
C ], X = [x1, x2, . . . , xC′ ],

ui
C represents the ith channel of the cth convolution kernel, xi represents the ith channel of

the input feature, and ui
C ∗ xi represents the spatial features learned from the ith channel.

C′

∑
i=1

ui
C ∗ xi means summing the spatial features learned by all channels through convolution,

such that the final output feature yC includes both channel features and spatial features.
Channel attention and spatial attention can be obtained by modeling the correlations
between different channels and different spatial correlations, respectively.
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Figure 1. Features obtained by traditional convolution.

2.2. Channel Attention

Channel attention first obtains the feature M ∈ R1×1×C by spatially compressing
the input features, then convolutes the compressed feature M ∈ R1×1×C to model the
correlation among the different channels. Channel attention assigns different weight
coefficients to each channel to enhance important features and suppress unimportant
features. The process of channel attention is shown in Figure 2.
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Suppose the input feature is X = [x1, x2, . . . , xC], where xi ∈ RH×W×C represents the
feature of the ith channel. The input feature X = [x1, x2, . . . , xC] is spatially compressed
by global average pooling to obtain the feature M ∈ R1×1×C, and the result Mi for the ith
channel feature can be represented as

Mi =
1

H ×W

H

∑
m=1

W

∑
n=1

xi(m, n) (2)

where, H and W represent the height and width of feature xi, respectively. The feature
M ∈ R1×1×C compressed by global average pooling, can reflect global spatial information.
Then, the feature M ∈ R1×1×C, with the global receptive field, is subjected to two continu-
ous 1 × 1 convolution operations to obtain

>
MC = W2(R(W1MC)), where W1 ∈ RC× C

4 and
W2 ∈ R C

4 ×C are the weights of the first and second 1 × 1 convolutions, respectively, and
R(·) represents the activation function Relu. The first 1 × 1 convolution has the function
of dimension reduction, which reduces the number of feature channels to one quarter of
the original number of channels, and then the nonlinear relationship between channels is
increased by Relu. The second convolution restores the number of channels, normalizes
the learned activation values of each channel into the range [0, 1] through the Sigmoid acti-
vation function and obtains the channel attention feature ζ(

>
M), where ζ(·) represents the
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Sigmoid activation function. Finally, the input feature X = [x1, x2, . . . , xC] is recalibrated
through the channel attention feature, ζ(

>
M), to obtain

>
X:

>
X = [ζ(

>
M1)x1, ζ(

>
M2)x2, . . . , ζ(

>
MC)xC] (3)

where, ζ(
>
Mi) represents the importance of the ith channel. These activation values can be

adaptively adjusted by the convolutional neural network. The channel attention module
can enhance important features and suppress unimportant features.

2.3. Spatial Attention

Spatial attention first squeezes the channel to obtain the feature
^
M ∈ RH×W×1. Then,

different weight coefficients are assigned to different locations of the compressed fea-

ture
^
M ∈ RH×W×1, through an activation function which enhances the target areas of

interest and suppresses the unimportant areas. The process of spatial attention is de-
picted in Figure 3. Assuming that the input feature is X = [x1,1, x1,2, . . . , xm,n, . . . , xH,W ],
xm,n ∈ R1×1×C represents the feature at the corresponding spatial location (m, n), where
m ∈ {1, 2, . . . , H} and n ∈ {1, 2, . . . , W}, and the convolution kernel is fsq ∈ R5×5×C×1.

The calculation process of feature
^
M ∈ RH×W×1 after channel compression is:

^
M = fsq ∗ X (4)

where
^
M ∈ [

^
M

1,1,
,
^
M

1,2
, . . . ,

^
M

m,n
, . . . ,

^
M

H,W
] and

^
M

m,n
∈ R1×1×1 represents the linear

combination of all channels at spatial position (m, n). Then, the Sigmoid activation func-
tion ζ(·) is used to normalize it into the range [0, 1] to obtain the spatial attention fea-

ture ζ(
^
M

m,n
). Finally, the input feature X = [x1,1, x1,2, . . . , xm,n, . . . , xH,W ] is recalibrated

through the spatial attention feature ζ(
^
M

m,n
) to obtain

^
X; that is:

^
X = [ζ(

^
M

1,1
)x1,1, ζ(

^
M

1,2
)x1,2, . . . , ζ(

^
M

m,n
)xm,n, . . . , ζ(

^
M

H,W
)xH,W ] (5)

where ζ(
^
M

m,n
) represents the importance at the spatial position (m, n) of the feature. This

enhances the importance of regions of interest and suppresses unimportant spatial locations.
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2.4. Group-Wise Hybrid Attention

Spatial attention ignores the information interaction between channels, while channel
attention ignores the information interaction in the spatial dimension. To solve this problem,
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hybrid attention is proposed. The output feature
^
X of the spatial attention module and the

output feature
>
X of the channel attention module are fused to obtain the feature X̃, which

is calibrated in space and channel respectively. φ(pm,n
i ) is used to represent the importance

of the ith channel at the spatial position (m, n).
The addition of hybrid attention to the network can improve the network perfor-

mance, but inevitably increases the computational cost of the network and reduces the
running speed of the model. Therefore, grouping convolution was designed to extract
features more efficiently based on an attention mechanism, as shown in Figure 4. Assum-
ing that the input features are X = [x1,1

1 , x1,2
1 , . . . , xm,n

i , . . . , xH,W
C ], first, the input features

are grouped along the channel dimension to obtain X1 = [x1,1
1 , x1,2

1 , . . . , xm,n
i , . . . , xH,W

C
4

],

X2 = [x1,1
C
4

, x1,2
C
4

, . . . , xm,n
i , . . . , xH,W

C
2

], X3 = [x1,1
C
2

, x1,2
C
2

, . . . , xm,n
i , . . . , xH,W

3C
4

] and X4 = [x1,1
3C
4

, x1,2
3C
4

,

. . . , xm,n
i , . . . , xH,W

C ]. Then, for the four grouped features X1, X2, X3 and X4, channel at-
tention and spatial attention are utilized to calibrate the features, respectively, and the
enhanced results X̃1, X̃2, X̃3 and X̃4 are obtained. The specific process is as follow. When
the grouped feature is X1 = [x1,1

1 , x1,2
1 , . . . , xm,n

i , . . . , xH,W
C
4

], where xm,n
i represents the feature

with spatial position (m, n) in the ith channel, the result for X̃1 after applying the hybrid
attention is shown in formula (6). In formula (6), φ(pm,n

i )xm,n
i represents the result of feature

enhancement of each feature xm,n
i in X1 in the spatial and channel dimensions, respectively.

X̃1 = [φ(p1,1
1 )x1,1

1 , φ(p1,2
1 )x1,2

1 , . . . , φ(pm,n
i )xm,n

i , . . . , φ(pH,W
C
4

)xH,W
C
4

] (6)

When the grouped feature is X2 = [x1,1
C
4

, x1,2
C
4

, . . . , xm,n
i , . . . , xH,W

C
2

], the result of X̃2

after hybrid attention is shown in formula (7). In formula (7), φ(pm,n
i )xm,n

i represents
the enhanced result of each feature xm,n

i in X2 in the spatial and channel dimensions,
respectively.

X̃2 = [φ(p1,1
C
4
)x1,1

C
4

, φ(p1,2
C
4
)x1,2

C
4

, . . . , φ(pm,n
i )xm,n

i , . . . , φ(pH,W
C
2

)xH,W
C
2

] (7)

When the grouped feature is X3 = [x1,1
C
2

, x1,2
C
2

, . . . , xm,n
i , . . . , xH,W

3C
4

], the result of X̃3 after

hybrid attention is shown in formula (8). In formula (8), φ(pm,n
i )xm,n

i represents the result
of feature enhancement of each feature xm,n

i in X3 in the spatial and channel dimensions,
respectively.

X̃3 = [φ(p1,1
C
2
)x1,1

C
2

, φ(p1,2
C
2
)x1,2

C
2

, . . . , φ(pm,n
i )xm,n

i , . . . , φ(pH,W
3C
4

)xH,W
3C
4

] (8)

When the grouped feature is X4 = [x1,1
3C
4

, x1,2
3C
4

, . . . , xm,n
i , . . . , xH,W

C ], the result of X̃4 after

hybrid attention is shown in formula (9). In formula (9), φ(pm,n
i )xm,n

i represents the result
of feature enhancement for each feature xm,n

i in X4 in the spatial and channel dimensions,
respectively.

X̃4 = [φ(p1,1
3
4 C
)x1,1

3
4 C

, φ(p1,2
3C
4
)x1,2

3C
4

, . . . , φ(pm,n
i )xm,n

i , . . . , φ(pH,W
C )xH,W

C ] (9)

Finally, the enhanced features X̃1, X̃2, X̃3, and X̃4 are fused along the channel direction
to obtain the output feature Y, as shown in formula (10). In formula (10), ⊕ represents
feature fusion along the channel dimension.

Y = X̃1 ⊕ X̃2 ⊕ X̃3 ⊕ X̃4 (10)
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2.5. Lightweight Convolution Neural Network Based on Group-Wise Hybrid Attention
(LCNN-GWHA)

The structure of the proposed lightweight modular LCNN-GWHA method is shown
in Figure 5. The structure is mainly composed of convolution, the group-wise hybrid
attention module, a global average pooling layer, and the classifier. First, the shallow
feature information is extracted through two consecutive convolution operations and
then the deeper features are extracted through six group-wise hybrid attention modules
(GWHAM). The output features of the last convolution are mapped to each category using
global average pooling (GAP). The use of global average pooling does not increase the
weight parameters and can effectively avoid the over-fitting phenomenon in the training
process. Finally, the softmax function classifier is adopted to classify the features.
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If a fully connected layer (FC) with the classification number n is used to classify the av-
erage pooled output result gi ∈ G, and the classification result is Q ∈ [q1, q2, . . . , qi, . . . , qN ] ≡
FC(gi), the output result S = [s1, s2, . . . , si, . . . , sN ] from softmax can be represented as:

si =
eQ[i−1]

∑N−1
k=0 eQ[k]

(11)

where Qi represents the i-th element in Q (the index starts from 0). Cross-entropy is adopted
as the loss function. Assuming that T = [t1, t2, . . . , ti, . . . , tN ] represents the encoding result
of the input sample label. Then, the loss function can be represented as:

L = −
N

∑
i=1

ti log(si) (12)

where N represents the number of categories, si represents the output result of Softmax,
and the input sample label adopts the one-hot coding rule.

3. Experiments

In this section, some evaluation indicators are adopted to evaluate the proposed
LCNN-GWHA method. The proposed LCNN-GWHA method was compared with various
state-of-the-art methods on four challenging datasets. To make a fair comparison, both
the proposed method and those methods used for comparison were carried out under the
same experimental environment and super parameters. The experimental results indicate
that the proposed method can classify remote sensing scene images more accurately and
has obvious advantages in terms of parameter quantity and running speed.

3.1. Dataset Settings

Experiments were performed on four commonly used datasets: UCM21 [28], RSSCN7 [29],
AID [30], and NWPU45 [31]. In Table 1, the number of images per category, the number of
scene categories, the total number of images, the spatial resolution of images, and the size
of images in the four datasets are listed. To avoid memory overflow during the training
process, bilinear interpolation was used to resize the input images to 256 × 256.

Table 1. Description of four datasets.

Datasets
Number of
Images Per

Class

Number of
Classes

Total
Number of

Images

Spatial
Resolution

(m)
Image Size

UCM21 100 21 2100 0.3 256 × 256
RSSCN7 400 7 2800 - 400 × 400

AID 200–400 30 10,000 0.5–0.8 600 × 600
NWPU45 700 45 31,500 0.2–30 256 × 256

3.2. Setting of the Experiments

The stratified sampling method was adopted to divide the datasets to avoid the risk
of sampling bias. In addition, so that the proposed method and the compared method
used the same training samples, random seeds were set during the division of training and
test samples. For the UCM21 [28] dataset, the training proportion was set to 80%; For the
RSSCN7 [29] dataset, the training proportion was set to 50%; For the AID [30] dataset, the
training proportions were set to 20% and 50%, respectively. Finally, for the NWPU45 [31]
dataset, the training proportions were set to 10% and 20%, respectively. The parameters and
equipment configuration used in the experiments are listed in Table 2, while the training
parameters used for the proposed LCNN-GWHA method are given in Table 3.
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Table 2. Experimental environment and parameter settings.

Item Contents

Processor AMD Ryzen 7 4800 H with Radeon Graphics@2.90 GHz
Memory 16 GB

Operating system Windows10
Solid state hard disk 512 GB

Software PyCharm Community Edition 2020.3.2
GPU NVIDIA GeForce RTX2060 6 GB
Keras v2.2.5

Initial study rate 0.01
Momentum 0.9

Table 3. Training Parameters for Proposed LCNN-GWHA Methods.

Input Operator Repeated
Times Stride Output

Channels Output

256 × 256 × 3 Conv 2d 3 × 3 1 2 32 128 × 128 × 32
128 × 128 × 32 Conv 2d 3 × 3 1 2 64 64 × 64 × 64

64 × 64 × 64 GWHAM 1 2 128 32 × 32 × 128
32 × 32 × 128 GWHAM 2 2 256 16 × 16 × 256
16 × 16 × 256 GWHAM 2 2 512 8 × 8 × 512

8 × 8 × 512 GWHAM 1 2 512 4 × 4 × 512
4 × 4 × 512 Avgpool 1 - 512 1 × 1 × 512
1 × 1 × 512 Dense 1 - 7 1 × 1 × 7

3.3. Performance of the Proposed Model

Table 4 details the performance of the proposed method on the four data sets with
various training ratios. In order to verify the performance of the proposed method, the
overall accuracy (OA), average accuracy (AA), kappa coefficient (kappa), and F1 score (F1)
were adopted as evaluation indices for the experiments. The OA represents the percentage
of correct classification in the test set; AA represents the ratio of the number of correctly
predicted samples in each category to the total number of samples in the category; the
F1 score is the weighted average of accuracy and recall, which is used to measure the
robustness of the model, and the Kappa coefficient is used for consistency evaluation, in
terms of whether the predicted results are consistent with the actual classification results.
It can be seen from Table 4 that the OA and AA of the proposed method on the four data
sets reached more than 90%, and the difference between the OA and AA was less than
1%, indicating that the proposed method has strong generalization ability. The Kappa
coefficient was more than 90%, which demonstrates that the predicted value obtained by
the proposed method was almost consistent with the real value. The F1 value results also
proved that the proposed method has strong robustness.

Table 4. Performance Indices for the Proposed LCNN-GWHA Model on Four Datasets.

Datasets OA (%) Kappa (%) AA (%) F1 (%)

RSSCN7 97.78 97.42 97.70 97.71
UCM21 99.76 99.75 99.49 99.52

AID (50/50) 97.64 97.55 97.05 97.16
AID (20/80) 93.85 93.63 93.60 93.67

NWPU45 (20/80) 94.26 94.13 93.95 94.10
NWPU45 (10/90) 92.24 92.04 92.15 92.20

3.3.1. Experimental Results of the RSSCN7 Dataset

The comparison results for the RSSCN7 dataset are shown in Table 5. In this dataset,
the proportion of samples used for training was 50% of the total number of samples. The
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proposed method had 0.3 M parameters and 97.78% classification accuracy. It had the
highest accuracy and the least number of parameters compared with all of the methods
used for comparison. The OA of the proposed method was 2.57% higher than that of
ADFF [32], 2.24% higher than that of Coutourlet CNN [33], and 3.07% higher than that of
SE-MDPMNet [34]. The confusion matrix for the proposed method of the RSSCN7 dataset
is shown in Figure 6. It can be seen from Figure 6 that the proposed method achieved 99%
classification accuracy for ‘Forest’, ‘Parking’, and ‘RiverLake’ categories, indicating that
these scenarios had high interclass differences and intraclass similarities. ‘Grass’ was a
scenario with a minimum classification accuracy of 95%, some of which were incorrectly
classified into ‘Forest’ and ‘Field’ scenarios, as the three scenarios are similar and have
small intraclass differences, resulting in the incorrect classification of grasslands.

Table 5. Performance comparison of the proposed model with some advanced methods on the
RSSCN7 dataset.

Network Model OA (%) Number of Parameters

VGG16+SVM Method [30] 87.18 130 M
Variable-Weighted Multi-Fusion Method [35] 89.1 -

TSDFF Method [36] 92.37 ± 0.72 -
ResNet+SPM-CRC Method [37] 93.86 23 M

ResNet+WSPM-CRC Method [37] 93.9 23 M
LCNN-BFF Method [38] 94.64 ± 0.21 6.2 M

ADFF [32] 95.21 ± 0.50 23 M
Coutourlet CNN [33] 95.54 ± 0.17 12.6 M

SE-MDPMNet [34] 94.71 ± 0.15 5.17 M
Proposed Method 97.78 ± 0.12 0.3 M

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

narios are similar and have small intraclass differences, resulting in the incorrect classi-
fication of grasslands. 

Table 5. Performance comparison of the proposed model with some advanced methods on the 
RSSCN7 dataset. 

Network Model OA (%) Number of Parameters 
VGG16+SVM Method [30] 87.18 130 M 

Variable-Weighted Multi-Fusion 
Method [35] 89.1 - 

TSDFF Method [36] 92.37 ± 0.72 - 
ResNet+SPM-CRC Method [37] 93.86 23 M 
ResNet+WSPM-CRC Method 

[37] 
93.9 23 M 

LCNN-BFF Method [38] 94.64 ± 0.21 6.2 M 
ADFF [32] 95.21 ± 0.50 23 M 

Coutourlet CNN [33] 95.54 ± 0.17 12.6 M 
SE-MDPMNet [34] 94.71 ± 0.15 5.17 M 
Proposed Method 97.78 ± 0.12 0.3 M 

 
Figure 6. Confusion matrix of the proposed LCNN-GWHA method of the RSSCN7 Dataset (50/50). 

3.3.2. Experimental Results of the UCM21 Dataset 
The division proportion for the UCM21 dataset was set as training/test = 8:2, and 

the experimental results on the UCM21 dataset are shown in Table 6. It can be seen from 
Table 6 that the OAs of some methods on this dataset exceeded 99%. In this case, the 
number of parameters was an important evaluation index. The parameter amount of the 
proposed method was 0.31 M and, the classification accuracy was 99.76%, 5.89 M less 
than that of the LCNN-BFF method [38] parameters with 99.29% accuracy, and 21.69 M 
less than that of the Inceptionv3+CapsNet method [39] parameters with 99.05% accura-
cy. The proposed method achieves high classification accuracy while greatly reducing 
the number of parameters of the model. 

  

Figure 6. Confusion matrix of the proposed LCNN-GWHA method of the RSSCN7 Dataset (50/50).

3.3.2. Experimental Results of the UCM21 Dataset

The division proportion for the UCM21 dataset was set as training/test = 8:2, and
the experimental results on the UCM21 dataset are shown in Table 6. It can be seen from
Table 6 that the OAs of some methods on this dataset exceeded 99%. In this case, the
number of parameters was an important evaluation index. The parameter amount of the
proposed method was 0.31 M and, the classification accuracy was 99.76%, 5.89 M less than
that of the LCNN-BFF method [38] parameters with 99.29% accuracy, and 21.69 M less
than that of the Inceptionv3+CapsNet method [39] parameters with 99.05% accuracy. The
proposed method achieves high classification accuracy while greatly reducing the number
of parameters of the model.
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Table 6. Performance Comparison of the Proposed Model with Some Advanced Methods on the
UCM21 Dataset.

Network Model OA (%) Number of Parameters

Variable-Weighted Multi-Fusion [35] 97.79 -
ResNet+WSPM-CRC [37] 97.95 23 M

ADFF [32] 98.81 ± 0.51 23 M
LCNN-BFF [38] 99.29 ± 0.24 6.2 M

VGG16 with MSCP [40] 98.36 ± 0.58 -
Gated Bidirectional+global feature [41] 98.57 ± 0.48 138 M

Feature Aggregation CNN [42] 98.81 ± 0.24 130 M
Skip-Connected CNN [43] 98.04 ± 0.23 6 M
Discriminative CNN [44] 98.93 ± 0.10 130 M

VGG16-DF [45] 98.97 130 M
Scale-Free CNN [46] 99.05 ± 0.27 130 M

Inceptionv3+CapsNet [39] 99.05 ± 0.24 22 M
DDRL-AM [47] 99.05 ± 0.08 -

Semi-Supervised Representation Learning [48] 94.05 ± 1.2 210 M
Multiple Resolution BlockFeature [49] 94.19 ± 1.5 -

Siamese CNN [50] 94.29 -
Siamese ResNet50 with R.D [51] 94.76 -

Bidirectional Adaptive Feature Fusion [52] 95.48 130 M
Multiscale CNN [53] 96.66 ± 0.90 60 M

VGG_VD16 with SAFF [54] 97.02 ± 0.78 15 M
Proposed Method 99.76 ± 0.25 0.3 M

The confusion matrix of the proposed method on the UCM21 dataset with a train-
ing:test = 8:2 is shown in Figure 7. As can be seen from Figure 7, except for the ‘medium-
residential’ scene, all other scenes were fully recognized. This was because the two scenes
‘mediumresidential’ and ‘mobilehomepark’ were very similar in appearance, resulting in
confusion in classification.
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3.3.3. Experimental Results on the AID Dataset

For the AID dataset, experiments were performed with training test = 2:8 and training
test = 5:5, respectively. The experimental results are shown in Table 7. It can be seen that
when the training ratio was 20%, our method achieved the best performance with the least
parameters, and the classification accuracy reached 93.85%, which is 0.58% higher than
that of Inception V3 [55], and 1.46% higher than that of ResNet50 [55]. When the training
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proportion was 50%, compared with the Discriminative CNN [44] method, the Inception
V3 [55] method, and the Skip Connected CNN [43] method, the proposed method had
great advantages in classification accuracy, with the amount of model parameters being
only 0.2, 0.6, and 1.6% of the abovementioned methods, respectively.

Table 7. Performance Comparison of the Proposed Model with Some Advanced Methods on the AID
Dataset.

Network Model OA (20/80) (%) OA (50/50) (%) Number of
Parameters

VGG16+CapsNet [39] 91.63 ± 0.19 94.74 ± 0.17 130 M
VGG_VD16 with SAFF [54] 90.25 ± 0.29 93.83 ± 0.28 15 M

Discriminative CNN [44] 90.82 ± 0.16 96.89 ± 0.10 130 M
Fine-tuning [30] 86.59 ± 0.29 89.64 ± 0.36 130 M

Skip-Connected CNN [43] 91.10 ± 0.15 93.30 ± 0.13 6 M
LCNN-BFF [38] 91.66 ± 0.48 94.64 ± 0.16 6.2 M

Gated Bidirectional [41] 90.16 ± 0.24 93.72 ± 0.34 18 M
Gated Bidirectional+global feature [41] 92.20 ± 0.23 95.48 ± 0.12 138 M

TSDFF [36] - 91.8 -
AlexNet with MSCP [40] 88.99 ± 0.38 92.36 ± 0.21 -
VGG16 with MSCP [40] 91.52 ± 0.21 94.42 ± 0.17 -

ResNet50 [55] 92.39 ± 0.15 94.69 ± 0.19 25.61 M
InceptionV3 [55] 93.27 ± 0.17 95.07 ± 0.22 45.37 M

Proposed Method 93.85 ± 0.16 97.64 ± 0.28 0.3 M

The confusion matrix for the proposed method on the AID dataset with training test =
5:5 is shown in Figure 8. The three scenarios of ‘Meadow, ‘Viaduct’ and ‘Sparse Residential’
achieved 100% correct classification. The lowest classification accuracy, for the ‘industrial’
category, was 94%, as the ‘Industrial’ and ‘Commercial’ areas have similar architectural
styles, resulting in some ‘Industrial’ scenes being incorrectly classified as ‘Commercial’.
Moreover, ‘Desert’ and ‘BareLand’ were also easily confused, as they have similar surface
appearance, resulting in low classification accuracy for desert areas. Nevertheless, com-
pared with other state-of-the-art classification methods, the proposed method still achieved
higher classification accuracy.
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3.3.4. Experimental Results on the NWPU45 Dataset

For the NWPU45 dataset, experiments were carried out with training test = 2:8 and
training test = 1:9, respectively. The experimental results are shown in Table 8. We can
see that when the training proportion was 10%, the proposed method achieved 92.24%
classification accuracy with 0.3 M parameters, which is 2.01% higher than that of LiG
with RBF kernel [56] with 2.07 M parameters, 7.91% higher than that of Skip-Connected
CNN [43] with 6 M parameters, and 5.71% higher than that of the LCNN-BFF method [38]
with 6.2 M parameters. When the training proportion was 20%, the OA of the proposed
method was 94.26%, which is 1.01% higher than that of LiG with RBF kernel [56], 2.37%
higher than that of Discriminative with VGG16 [44], and 2.53% higher than that of the
LCNN-BFF Method [38]. The experimental results demonstrate that the proposed method
could extract more significant features with fewer parameters in datasets with rich image
changes, as well as high similarity between classes and intra-class differences.

Table 8. Performance Comparison of the Proposed Model with Some Advanced Methods on the
NWPU45 Dataset.

Network Model OA (10/90) (%) OA (20/80) (%) Number of
Parameters

R.D [51] - 91.03 -
AlexNet with MSCP [40] 81.70 ± 0.23 85.58 ± 0.16 -
VGG16 with MSCP [40] 85.33 ± 0.17 88.93 ± 0.14 -

VGG_VD16 with SAFF [54] 84.38 ± 0.19 87.86 ± 0.14 15 M
Fine-tuning [30] 87.15 ± 0.45 90.36 ± 0.18 130 M

Skip-Connected CNN [43] 84.33 ± 0.19 87.30 ± 0.23 6 M
LCNN-BFF [38] 86.53 ± 0.15 91.73 ± 0.17 6.2 M

VGG16+CapsNet [39] 85.05 ± 0.13 89.18 ± 0.14 130 M
Discriminative with AlexNet [44] 85.56 ± 0.20 87.24 ± 0.12 130 M
Discriminative with VGG16 [44] 89.22 ± 0.50 91.89 ± 0.22 130 M

ResNet50 [55] 86.23 ± 0.41 88.93 ± 0.12 25.61 M
InceptionV3 [55] 85.46 ± 0.33 87.75 ± 0.43 45.37 M

Contourlet CNN [33] 85.93 ± 0.51 89.57 ± 0.45 12.6 M
LiG with RBF kernel [56] 90.23 ± 0.13 93.25 ± 0.12 2.07 M

Proposed Method 92.24 ± 0.12 94.26 ± 0.25 0.31 M

The confusion matrix for the proposed method on the training test = 2:8 NWPU45
dataset is shown in Figure 9. As the NWPU45 dataset has high intraclass dissimilarity
and interclass similarity, none of the classes were completely correctly classified. However,
there were 44 scenarios that achieved a classification accuracy of over 90%, and thus
achieved good classification results. As shown in Figure 9, the worst accuracy scenarios
were ‘church’ and ‘palace’ with accuracies of 90% and 89%, respectively, as they had very
similar buildings, which caused confusion when classifying. In addition, the classification
accuracy of ‘roundabout’ scenes was lower than 91%, as irregular intersections can easily
be identified as ‘intersection’ scenes, resulting in incorrect classification. Nevertheless, the
proposed method still gave good classification results for each scenario.
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3.4. Speed Comparison of Models

To verify the advantage of our method in terms of speed, experiments were performed
on the UCM21 dataset using the ATT evaluation index. The ATT refers to the average
training time required by a model to process an image. Because the results of ATT have a
great relationship with the performance of the computer, other algorithms for comparison
are rerun on the same computer. In order to reduce random effects, the average value of
ten experiments is taken as the final result for each method. The experimental results of
our method were compared with those of advanced methods, as detailed in Table 9.

Table 9. ATT Comparison of the Proposed Model with Advanced Methods on UCM21 Datasets.

Network Model Time Required to Process Each Image(s)

Siamese ResNet_50 [51] 0.053
Siamese AlexNet [51] 0.028
Siamese VGG-16 [51] 0.039

GBNet+global feature [41] 0.052
GBNet [41] 0.048

LCNN-BFF [38] 0.029
Proposed Method 0.010

It can be seen that under the same experimental equipment, the proposed method
took 0.010 s to process a remote sensing image, which was the shortest time compared with
the other methods. It was 0.018 s faster than that the Siamese ALexNet [51] method and
0.019 s faster than that the LCNN-BFF [38] method.

3.5. Comparison of Computational Complexity of Models

The floating-point operations (FLOPs) evaluation index is used to measure the com-
plexity of models. Experiments were performed on the AID dataset with a training propor-
tion of 50%. The experimental results are shown in Table 10. It can be seen that both the
OA and FLOPs of the proposed method were the best compared with those of the methods
used for comparison. Compared with the lightweight network models, MobileNetv2 [34]
and SE-MDPMNet [34], on the premise that the FLOPs value has great advantages, the
classification accuracy of the proposed method was 1.68% and 0.5% higher than these
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methods, respectively, thus verifying that the proposed LCNN-GWHA method can achieve
a good trade-off between classification accuracy and running speed.

Table 10. Complexity Evaluation of some Models.

Network Model OA (%) Number of Parameters FLOPs

CaffeNet [30] 89.53 60.97 M 715 M
VGG-VD-16 [30] 89.64 138.36 M 15.5 G
GoogLeNet [30] 86.39 7 M 1.5 G

MobileNetV2 [34] 95.96 3.5 M 334 M
SE-MDPMNet [34] 97.14 5.17 M 3.27 G
Proposed Method 97.64 0.31 M 12.6 M

4. Discussion

To the performance of the proposed LCNN-GWHA method more intuitively, three
visualization methods were explored. The UCM21 dataset was selected for these exper-
iments. First, the channel attention, spatial attention, and mixed attention used in the
LCNN-GWHA method were visualized, as shown in Figure 10. In Figure 10, different
colors represent the degree of attention to the region, and where the yellow color represents
a high degree of attention to the region.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

Spatial 
Attention

Channel 
Attention

Hybrid 
AttentionOriginal Original Channel 

attention
Spatial 

attention
Hybrid 

Attention

 
Figure 10. Attention Visualization Results. 

From the visualization results in Figure 10, it can be seen that the points of interest 
under the different attention mechanisms were different, as well as the areas of en-
hancement. Channel attention enhanced the feature points of interest, while spatial at-
tention enhanced the background area of interest. For hybrid attention, this added spa-
tial attention on the basis of channel attention, which made it more active and allowed 
learning more meaningful features. Therefore, both the background area and feature 
points were enhanced at the same time. 

Next, class activation map (CAM) visualization was used to visualize the entire 
network feature extraction ability of the proposed LCNN-GWHA method. This method 
uses the gradient of any target and then generates a rough attention map from the last 
layer of the convolution network to show important areas in the image predicted by the 
model. Some images were randomly selected from the UCM21 dataset for visual analysis. 
The VGG_VD16 with SAFF method is adopted for CAM visual comparison with the 
proposed LCNN-GWHA method. The visual comparison results are shown in Figure 11. 
The LCNN-GWHA method can better cover important objects with a wide range of 
highlights. Especially for the ‘Tenniscourt’ scenario, the proposed LCNN-GWHA 
method perfectly covers the main target, while the coverage area of VGG_VD16 with 
SAFF method deviates severely, resulting in classification errors. This is because the 
LCNN-GWHA method proposed has strong target positioning and recognition ability 
due to the enhancement of features by hybrid attention. 

Figure 10. Attention Visualization Results.

From the visualization results in Figure 10, it can be seen that the points of interest un-
der the different attention mechanisms were different, as well as the areas of enhancement.
Channel attention enhanced the feature points of interest, while spatial attention enhanced
the background area of interest. For hybrid attention, this added spatial attention on the
basis of channel attention, which made it more active and allowed learning more meaning-
ful features. Therefore, both the background area and feature points were enhanced at the
same time.
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Next, class activation map (CAM) visualization was used to visualize the entire
network feature extraction ability of the proposed LCNN-GWHA method. This method
uses the gradient of any target and then generates a rough attention map from the last layer
of the convolution network to show important areas in the image predicted by the model.
Some images were randomly selected from the UCM21 dataset for visual analysis. The
VGG_VD16 with SAFF method is adopted for CAM visual comparison with the proposed
LCNN-GWHA method. The visual comparison results are shown in Figure 11. The
LCNN-GWHA method can better cover important objects with a wide range of highlights.
Especially for the ‘Tenniscourt’ scenario, the proposed LCNN-GWHA method perfectly
covers the main target, while the coverage area of VGG_VD16 with SAFF method deviates
severely, resulting in classification errors. This is because the LCNN-GWHA method
proposed has strong target positioning and recognition ability due to the enhancement of
features by hybrid attention.
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In addition, some random classification experiments were conducted on the UCM21
data set to further prove the effectiveness of the proposed LCNN-GWHA method. The
experimental results are shown in Figure 12. We can see that the predictive confidence of
the model exceeded 99%, and some of the individual cases reached 100%. This proves that
the proposed LCNN-GWHA method could extract image features more effectively.
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5. Conclusions

In this paper, we present a lightweight end-to-end convolutional neural network
for remote sensing scene image classification that combines the advantages of channel
attention, spatial attention, and channel grouping. Channel attention is introduced to
enhance important features, spatial attention is introduced to enhance the regions of
interest, and the two kinds of attention are fused to generate a hybrid attention module
with higher activation, which can extract more meaningful features. In order to make
the proposed model lightweight, group-wise hybrid attention is proposed, and hybrid
attention is introduced into each group, which not only ensures high classification accuracy
but also greatly reduces the computational complexity. Experiments were carried out on
four data sets with various training ratios. The experimental results demonstrate that
the proposed method is robust and has higher classification accuracy than state-of-the-art
methods. In addition to spatial attention and channel attention, self -attention is another
effective method to improve network performance. In future work, we will propose a more
efficient lightweight convolutional neural network for remote sensing scene classification,
based on the use of a self-attention mechanism.
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