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Abstract: Infrared (IR) target detection is an important technology in the field of remote sensing
image application. The methods for IR image target detection are affected by many characteristics,
such as poor texture information and low contrast. These characteristics bring great challenges to
infrared target detection. To address the above problem, we propose a novel target detection method
for IR images target detection in this paper. Our method is improved from two aspects: Firstly,
we propose a novel residual thermal infrared network (ResTNet) as the backbone in our method,
which is designed to improve the feature extraction ability for low contrast targets by Transformer
structure. Secondly, we propose a contrast enhancement loss function (CTEL) that optimizes the
weights about the loss value of the low contrast targets” prediction results to improve the effect of
learning low contrast targets and compensate for the gradient of the low-contrast targets in training
back propagation. Experiments on FLIR-ADAS dataset and our remote sensing dataset show that our
method is far superior to the state-of-the-art ones in detecting low-contrast targets of IR images. The
mAP of the proposed method reaches 84% on the FLIR public dataset. This is the best precision in
published papers. Compared with the baseline, the performance on low-contrast targets is improved
by about 20%. In addition, the proposed method is state-of-the-art on the FLIR dataset and our
dataset. The comparative experiments demonstrate that our method has strong robustness and
competitiveness.

Keywords: residual thermal infrared network; contrast enhancement loss function; low contrast
target detection; infrared (IR) target detection

1. Introduction

Infrared image shows an outstanding advantage in the bad illuminance environment
compared to optical images (the RGB images). Infrared target detection plays a very
important role in many applications, such as early warning system and marine monitoring
system [1,2]. At present, most methods rely on the information about the inherent feature
of the image to complete the target detection task. Inherent features refer to the features
that can distinguish the target from the background in the image. For example, if the color
information in the optical image is used to detect the red football on green grass, the task
is simple, while this color information is lacking in the infrared image. Inherent features
also include texture features, contour features, and so on. However, compared with optical
images, infrared images obviously lack information of inherent features. In addition, the
infrared image often suffers from strong background clutter, noise and low contrast. The
above problems make infrared target detection an arduous task.
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Target detection methods for infrared can generally be divided into three categories [3]:
methods based on local prior, methods based on nonlocal prior and methods based on
learning. In local prior methods [4-6], scholars rely on local information to search targets
from images. In addition, to optimize the algorithm performance, various improved filters
are used to enhance the target information before detection. However, these methods are
sensitive to complex backgrounds and perform poorly on low-contrast targets. Excellent
detection performance can only be obtained in a simple background but often fail in real
scenes. The detection method based on nonlocal prior has shown competitive detection
performance in recent years [7]. By using the nonlocal similarity of background and the
sparsity of target, a matrix-level pre-background separation method is proposed. However,
this method still cannot have good performance in low contrast targets.

Recently, deep-learning based methods have also been used for infrared target de-
tection. In the deep-learning based method, the overall model can be mainly divided
into feature extraction part and result prediction parts. RISTDnet [8] improves the fea-
ture extraction ability of infrared image targets by integrating multi-scale convolution
results. A backbone network using multi-residual structure is proposed in [3], and the
loss of target information in deep networks is suppressed by establishing each layer of
the information path. These methods are focused on the information loss of IR images
in the process of feature extraction, without considering the loss of inherent feature in IR
images. ThermalDet [9] was used for infrared target detection and achieved competitive
performance. This structure can adaptively reweight each channel of the feature after
fusing different levels of features. Deep-IRTarget [10] establishes the information path
between each feature channel through the self-attention networks to further extract the
spatial information of the image. However, these methods do not take into account the
context information between the target area and the surrounding background area in the
image. MMTOD [11] uses optical image information to compensate IR image information
and improves the detection performance of the algorithm. However, when the infrared
image view information is more reliable, such as low illumination, smoke, and so on,
optical image information is an interference to the target detection network. In [12], a target
detection method based on infrared image feature contrast is proposed. In other words, by
optimizing the calculation method of local contrast, the target position is more accurately
searched by contrast in the feature map. This method can only achieve good performance
in a simple background and cannot be applied to scenes with complex ones.

In the past few years, due to the wide application scenarios of optical images, target
detection algorithms have developed faster in the field of optical images than in the field
of infrared images. The performance of Cascade RCNN [13] with multi-level connection
structure on optical images public dataset is amazing. It optimizes the performance of
the method by multistage screening of the back propagation samples. However, the low-
contrast difficult samples do not occupy the majority of the data set, and the learning effect
of the algorithm on the low-contrast samples may be interfered with by other samples. The
widely applied YOLO [14,15] series and the most advanced YOLOX [16] algorithm in the
field of optical images had designed a large number of residuals and branch structures
in the backbone network, which enhances the feature extraction ability of the network.
However, the loss of inherent feature for the target under infrared imaging conditions is
not taken into account.

The low contrast targets in infrared images are seriously submerged by background,
which is the difficult target for target detection tasks. These difficult targets have a great
influence on the performance of the detection method. The above current detection methods
focus on how to obtain more feature information, without using context information to
enhance the key features in the image. In addition, there is a lack of network training
objectives, namely loss function targeted optimization. There is a loss of inherent features in
infrared images, so it is necessary to extract the feature information fully. In addition, due
to the imbalance between low contrast samples and other samples in dataset, the training
effect of low contrast targets is not ideal. To solve the problems above, we propose a novel
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infrared target detection method. The method improves a deep learning network with
physical characteristics of infrared images for target detection. Specifically, a backbone
network is proposed to enhance the target feature by integrating the context information to
improve the feature extraction ability of low-contrast targets. In addition, we propose a
new loss function to improve the learning effect of low-contrast targets.

In summary, the main contributions of this article are listed as follows:

1.  Wepropose a novel residual thermal infrared network (ResTNet) based on an attention
mechanism to alleviate the inherent feature loss problem of infrared image targets.
A novel multi-spatial attention network (MSAN) is designed in ResTNet, which
uses a Transformer structure for attention operation. The network can establish the
information path between local regions of different scales in each position of the image
in the feature extraction process, so as to enhance the extraction of target feature in
the image by integrating the context information;

2. A contrast enhancement loss function (CTEL) is proposed related to target contrast to
suppressing the imbalance between low contrast targets and other targets. Specifically,
the weight of low contrast targets loss values is optimized by CTEL, which effectively
improved the detection effect of low-contrast difficult targets and compensate for the
gradient of the low-contrast targets in training back propagation;

3. We produce a new infrared dataset about remote sensing and verify our method on it.
The experimental results on the FLIR dataset and our dataset show that our method is
far superior to the current most advanced algorithm.

The rest of this article is structured as follows: in Section 2, we describe the network
structure and methods in detail. Section 3 gives the details of our work and experimental
results and related comparison to verify the effectiveness of our method. Discussions of
proposed improvements are presented in Section 4. Finally, we summarize the research
content in the fifth part.

2. Method
2.1. Overall Network Architecture

This article presents a two-stage method for IR images’ target detection as shown in
Figure 1. The overall structure is divided into three parts: backbone, neck, and detection
head network. In our method, the proposed ResTNet is used as the backbone network, and
the feature pyramid network (FPN) is used as the neck in our method. The detection head
is composed of a regional proposal network (RPN) [17] and result prediction network.

Firstly, the IR images as the input of backbone network to extract global features, and
enhance target features by the designed MSAN. Secondly, the FPN fuses the feature infor-
mation extracted from the image and enters it into the RPN to get region of interest (ROI).
Finally, the detection head combines the ROI and image features to predict the position
and category of targets. In particular, the proposed CTEL is used in the result prediction
network to enhance the detection performance of usually difficult low-contrast targets by
optimizing the weights of low contrast targets and other target loss function values.
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Figure 1. The overall scheme of the proposed method. The part marked with 1 by 1 (3 by 3) denotes
convolution as the same size before and after input using kernel size 1 (3). The intersection part of
the arrow represents the element addition operation between tensors.

2.2. ResTNet

Compared with optical images, infrared images have inherent defects such as loss
of features and low contrast. Many popular target detections methods in optical images
based on deep learning cannot be well applied to IR images. To solve the above problems,
a more powerful backbone network, ResTNet, is designed. That backbone network can
further extract the spatial feature response from the infrared image, and search the internal
relations to each local area of the feature in a higher dimension. Meanwhile, the context
feature information is integrated to highlight the target features in the image.

The ResTNet and internal structure are shown in the blue boxes in Figure 1. The
proposed ResTNet is improved based on ResNet. The ResNet consists of five parts: the
shallowest convolution layer and four stages. The Stage part of the feature extraction
network is composed of many convolution blocks. In addition, the number of convolution
blocks at each stage is not necessarily the same. The m in the figure represents the number
of convolution blocks stacked in a certain stage, namely the depth of the network. In our
method, the convolution block is structured using the structure used in [18]. The feature
tensor obtained by 1 x 1 convolution operation of input features is divided into four groups
along the channel, and then the addition and convolution operations are carried out in turn.
To supplement the feature information of targets in IR images by integrating image context
features, MSAN is used at the end of the last three convolution blocks of ResTNet. The
MSAN is mainly composed of three parts. In the first part, the MSAN convolutes the results
of the maximum pooling and average pooling of the input feature tensor along the channel
direction, and takes the convolution result as the input of the Transformer structure. The
weight matrix is obtained by combining the input and output of the Transformer network.
In the third part, the element product of the input feature and the weight matrix are used as
the output. In general, the correlation of local regions in the image is inversely proportional
to the distance. In other words, the target’s feature information is context-related only to a
limited range of local areas.

Inspired by the Transformer [19] structure, we design a novel Transformer structure in
the ResTNet as shown in Figure 2, which computes the cross-attention of feature responses
at different scales for each local region in the feature space response map. At the same time,
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information paths are established between local regions of different scales at each location
of the image.
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Figure 2. Our transformer structure and its internal structure diagram.

As shown in Figure 2, the calculation formula of cross-attention module is as follows:

CrAi(s1,s2,...,5:) = Ca(si, ) Ci5(v;, C15(gi,kj))) 1
jENr

where g;, k;, and v; are the query, key, and value response of the ith input tensor, which are
further abstracted by the input tensor through convolution operation. In addition, Cy(x,y)
refers to the convolution operation with kernel size k X k, step size 1 and padding value
(k —1)/2 after splicing the two variables x and y. In other words, width and height of
input and output of convolution are the same. In order to notice the information in different
subspaces, the attention calculation for each input feature is the fusion of the calculation
results from multiple cross-attention modules with different parameters. The function
expression of the transformer structure is as follows:

f(X) = C1(CrAy(S),CrAy(S),CrAsz(S),...,CrA,(S)) 2)

To make the network focus on the spatial information of features, the joint expression
of two different pooling operations for input features is used as the input of the proposed
converter structure. Finally, the overall spatial response map is mapped between 0 and
1 as the spatial feature enhancement coefficient matrix of input features. The calculation
process of MSAN can be seen in the equation:

Y=C(f(11), Y1) X 3)

1 .
Y, = Cl(EZXijk,MAXk(Xijk)),X e Rixixk (4)
k
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where X is the input feature tensor, and MAX refers to the max pooling operation of input
features in the direction of the k dimension. In addition, the Y; is the joint expression
of the average pooling response map and the maximum pooling response map of the
input feature.

2.3. Contrast Enhancement Loss Function

There are usually difficult low-contrast targets in the infrared dataset that is difficult to
learn. Aiming at the imbalance between low contrast targets and other targets, a new loss
function is proposed. Our loss function includes two parts: classification and regression.
The ClIoU loss function [20] is used as the basic regression loss function for this article. At
the same time, the cross entropy loss function is used for classification training. Compared
with the traditional IoU [21] loss function, CloU more accurately reflects the regression
effect of the anchor box by taking into account the overlap area, relative distance, and
aspect ratio of the prediction box and the real box. On the basis of CloU, CTEL optimizes
the loss function weight value of the target according to the contrast to balance the learning
effect of low contrast samples and other samples.

To evaluate the difficulty of the sample, we design a measure to represent the difference
between the target area and the background area. Firstly, for the target with scale (h, w),
we obtain the region containing the target and the surrounding background with scale
((14+a)-h,(1+pB)-w) to calculate the contrast. In this paper, the values of « and f are
both 1.

Secondly, the selected region is divided into five parts shown in Figure 3: one Target
area on the left side of the figure and the four Background areas on the right side of the
figure. Finally, the gray value distribution difference between the target and the background
in each direction is calculated and the information entropy [22] as the mathematical model
of calculating the discrete degree of gray value distribution in a local area. At the same
time, the gray value of the region is multiplied by its corresponding information entropy,
so that our measurement can take into account the center of the distribution.

Target Background

Top

Figure 3. Target and surround background area division diagram. In the process of background
division, black squares represent the selected area.

If the background areas in all directions have different degrees of submergence to the
target, the difference between the target area and the background gray value distribution
in all directions will be small. Based on this theory, the maximum difference between the
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target area and the background distribution in each direction as the contrast value of the
target, which can evaluate its difficulty.
C(1), that is, the contrast of target ¢ is defined as the following equation:

255
C(y) = Maximum Z (141)P;tlog Piy — (14 i)P; 4log P; 4|, Dir = top, bottom, left,right} (5)
deDir i=0

where t and d are the target area and the corresponding background area, respectively. The
t is the target area, and Dir represents the different background areas in the area intercepted
on the original image centered on the center point of the target area. The P;; denotes the
probability that the i pixel value will appear in the ¢ region. In addition, our logarithmic
operation is based on ten.

The specific contrast calculation method is as Algorithm 1:

Algorithm 1. Contrast Calculation Method.

Require: ImgData: the matrix of the image; TargetRegion: location of the target; «: visual
field coefficient; 3: visual field coefficient;
Ensure: contrast x
get the matrix of the target region with scale (h,w) as t;
get the matrix of surrounding the target region with scale ((1+a)h,(1+8)w);
split four background regions as [by,b3,b3,b4]
fork=1;k <4; k++ do
my =0
fori=1;i<=255;i++ do
compute the number of pixel value i
compute the frequency of pixel value i in the target area and background
area as pt and py
mi += 1 1(i + Dplog(pr) — (i + N)pglog(ps) ! |
end for
end for
x = max(mq,mp,mz,my)

Gaussian function has the characteristic of being farther away from the center, the
smaller the weight. In addition, there is a o parameter that can easily adjust the interval. If
our mapping function shows a trend of Gaussian function in the main distribution range of
contrast probability density, it can achieve the purpose of enhancing difficult samples and
ensuring network stability.

Thus, the Gaussian function is applied as the basic math model of the contrast en-
hancement coefficient mapping function. In order to enhance the learning effect of difficult
samples and accelerate the convergence rate of simple samples, the sum of the mapping co-
efficient and the super parameter b are used for the final additional enhancement coefficient.
The mapping function is as follows:

ke’
e 27 +b ®)

A=1+
270

where both k, 7, and b are our preset hyper-parameters. The square of the target contrast is
utilized for the index of the natural base number e and multiply it with a mapping coeffi-
cient. Then, the results are added with a super parameter b as the additional enhancement
coefficient of the loss function.

The function of CTEL is as follows:

40 w8t w .’
Lerer = (1 — ToU + E(arctanﬁ — arctanﬁ) )-A (7)
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where w and w$! refer to the width of the prediction box and the width of the real box,
respectively, so does h.
The process of CTEL calculation is as Algorithm 2:

Algorithm 2. CTEL Calculation Method.

Require: PreResult: a prediction result; GT: a annotation box; F,,: calculation function of CloU;
0: hyper-parameter of mapping function; k: hyper-parameter of mapping function;
b: hyper-parameter of mapping function;
Ensure: regression loss [
compute CloU loss Ly, = Fip, (GT, PreResult)
compute the contrast of the target as x

X
Index = —
262

k

€= ——
V276

b=b+1

w = ce~Index 4 py

compute value of regression loss I = wLy,

In summary, the overall network loss function and classification loss is as follows:

1 M

Las = _NZ Y viclog(pic) ®)
i c=1

Loss = Lys + LeTEL )

where i means a sample, and ¢ denotes a class. y;. is a symbolic function. If the real category
of sample 7 is equal to ¢, it takes 1; otherwise, it takes 0. p;. is the probability that sample i
belongs to category c.

3. Experiment and Analysis

This section introduces the experimental dataset, implementation details, and related
evaluation indexes. In addition, a large number of comparative experiments were designed
to verify the advancement and robustness of the proposed method.

3.1. Dataset Introduction

A series of experiments are designed on two datasets. The proposed method has been
compared with other SOTA methods on two datasets.

FLIR-ADAS dataset [23] takes a vehicle camera view from November to May on the
streets and roads of Santa Barbara, California, from sunny day (60%) and night (40%) to
cloudy weather. The dataset contains pedestrians, dogs, bicycles, small cars, and other cars.
Since the number of samples about dogs and other cars in the dataset are much smaller than
that of other categories, it will bring certain contingency in the experimental evaluation
stage. In order to be consistent with other researchers, the labeling information of dogs and
other vehicles is ignored in the experimental stage. In addition, basic data enhancement
methods such as offset and rotation are used for bicycle samples with less training samples.

Our infrared dataset for remote sensing was collected on the road by a drone equipped
with an infrared sensor camera. Due to the different imaging bands of infrared images and
the great influence of ambient temperature, in order to ensure the integrity of the dataset,
and the dataset spans the temperature difference of 25 degrees Celsius. During the period
from May to November, the day (50%) and night (50%) data were captured on the roads
and streets of Harbin.

Low contrast in infrared images has a great influence on the performance of the de-
tection method. We aim to optimize improving the detection performance of low-contrast
targets. To verify the improvement effect of the proposed method on low contrast samples,
the contrast distribution of samples in each dataset is calculated according to Formula (5).
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Specifically, it is the maximum value of the difference between the distribution measure-
ment of the target and the surrounding four backgrounds. The statistical distribution is
shown in Figure 4. Although the overall distribution of the two datasets is similar, our
dataset contains more low-contrast samples. That is, the proportion of difficult targets in
remote sensing dataset is larger, the number of simple targets is smaller, and the target
detection algorithm has more difficulty with achieving success. Experiments show that our
method has achieved the best detection effect in the two datasets.

0 100 200 300

0 50 100 150 200
Contrast ratio Contrast ratio

(a) (b)

Figure 4. (a) The distribution map of contrast and quantity of targets in FLIR dataset; (b) the

distribution map of contrast and quantity of targets in our dataset.

Some samples in the above dataset are shown in Figure 5.

Figure 5. Display of some images in the dataset mentioned in this article. (a) some images of FLIR
dataset; (b) some images of our dataset.

3.2. Implementation Details

In this article, all experiments were implemented in Pytorch on a PC with Intel(R) Xeon(R)
Silver 4210R CPU, NVIDIA RTX 3090 GPU. The PC operating system was Ubuntu 18.04.

The Stochastic Gradient Descent (SGD) algorithm is used for the optimizer. The
initial learning rate is 0.002, the attenuation weight is 0.0001, and the momentum is 0.9.
In addition, there are many other network parameters. In addition, other parameters and
contrast threshold in this experiment are shown in Table 1. The m parameter of ResTNet
refers to the number of convolution blocks in each stage, and the n parameter refers to the
number of cross-attention modules. The parameters of CTEL in the Table 1 are used in
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Formula 6, which are the calculation parameters of the mapping function of contrast and
loss weight.

Table 1. Other parameters.

Parameter Value
ResTNet.m;_4 3,4,23,3
ResTNet.n 3
CTEL.delta 100
CTEL kb 0.75,0.1

3.3. Evaluation Metrics

Precision, Recall, and Mean Average Precision (mAP) were used to evaluate the
detection performance of different methods. In addition, in order to further verify the
effectiveness of the improved method, the detection performance of samples in each
contrast range is evaluated. The precision and recall calculation methods are as follows:

TP
P, ecision — m (10)
TP
Re can = TP+ EN (11)

where TP (True Positive) refers to the positive sample of correct detection, and FP (False
Positive) refers to the positive sample of error detection. Similarly, TN and FN refer to
negative samples detected correctly and false samples detected incorrectly.

In the field of target detection, the IoU as a criterion to predict whether it is a positive
sample. The IoU formula is as follows:

IoU = —— (12)

where P and T refer to target area and real box area. All experiments in this paper use 0.5
as the IOU threshold in the evaluation process, that is, samples with IOU greater than 0.5
are considered positive samples.

AP refers to the area value of P — R curve and the area surrounded by the coordinate
axis. The closer the AP value is to 1, the better the detection of the algorithm. The calculation
process can be summarized as follows:

AP — /P(R)dR (13)

The mAP represents the average value of various APs, which is used to fairly measure
the detection performance of multi-class target detection tasks.

3.4. Analysis of Results

Firstly, ablation and contrast experiments are set on the FLIR datasets. Secondly, in
order to verify the competitive of the proposed method, the performance comparison
experiments of each method in different contrast intervals are designed. In addition,
experimental results on our dataset show that our algorithm is also still competitive and
robust for remote sensing datasets.

3.4.1. Experiments on the FLIR-ADAS Dataset

(1) Comparison with other state-of-the-art methods

On the FLIR-ADAS dataset, a series of comparative experiments and ablation ex-
periments are designed to verify the advantage. Comparative methods include popular
ones, the latest ones, and ones designed for detection task in infrared images. Popular
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methods such as SSD, YOLOv5s, and Faster R-CNN are widely used in various target
detection tasks because of their excellent performance. YOLOX and YOLOF are the most
advanced methods in the field of target detection. In addition, MMTOD and ThermalDet
have been designed by researchers for target detection in infrared images in recent years.
The performance of the target detection methods above on the FLIR dataset is shown in
Table 2.

Table 2. This is the performance of various advanced methods on FLIR dataset. Top2 is highlighted
using red and green, respectively.

Method Person Car Bicycle mAP

SSD [24] 40.9 61.6 43.6 48.7
Faster R-CNN [17] 39.6 67.5 54.6 53.9
Retinanet [25] 52.3 71.5 61.3 61.7
FCOS [26] 69.7 79.7 67.4 72.3
MMTOD-UNIT [11] 494 70.7 64.4 61.5
MMTOD-CG [11] 50.2 70.6 63.3 61.4
RefineDet [27] 77.1 84.5 57.2 729
ThermalDet [9] 78.2 85.5 60.0 74.6
Cascade R-CNN [13] 77.3 79.8 84.3 80.5
YOLOV5s [14] 68.3 80.0 67.1 71.8
YOLOF [15] 67.8 79.4 68.1 71.8
YOLOX [16] 78.2 80.2 85.4 81.2
baseline 69.7 79.9 61.5 70.4
baseline + CTEL 74.9 84.0 75.7 79.2
baseline +ResTNet 77.8 87.5 83.6 82.9
ResTNet+ CTEL 78.0 87.4 87.4 84.3

The results above the dotted line in Table 2 are the comparative experiment of other
methods, and the results below the dotted line are the ablation experiment of the proposed
method. The two-stage structure in Figure 1 is utilized as the prediction framework. In
addition, the baseline in the experimental part of this paper takes the ResNet50 network as
the backbone and CloU as regression loss function.

The ResTNet improves the ability of feature extraction for low contrast targets by
integrating the context information and enhancing the target features. Compared with
the baseline, ResTNet increased the mAP in the dataset by 13%. Because the ResTNet
can not only act on low-contrast targets, but also enhances all targets, this has brought
more obvious improvement effects. The CTEL improves the learning effect of low-contrast
targets by balancing the reverse propagation of samples on the dataset, thus increasing its
mAP by 9%. The proposed method contains ResTNet and CTEL, and the mAP reaches the
best 84% on the FLIR dataset. The ThermalDet is the best detection method on the FLIR
dataset for infrared design that can be found in public papers, but the mAP of our method
is about 10% higher than it. The YOLOX is the most advanced method in the field of target
detection, and the mAP of our method is about 3% higher than it.

For better visibility, drawing the yellow box is placed after drawing the green box
to highlight the difference between the two. As shown in Figure 6, the subjective results
of ablation experiments were given. The targets in the circle are that our method detects
correctly and the basic method misses. Figure 6 shows that our method is much more
capable of detecting infrared targets than the baseline.
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Figure 6. Our method detects results on some typical images in the FLIR dataset. The prediction
box of the baseline is marked as green, and the prediction box of the proposed method is marked as
orange-red.

The difference target in the images in the first row and the second column is the
car. The difference targets in the images of the first and second columns of the third
line contain cars and bicycles. The different targets in other images are pedestrians. The
circled targets of the image in the middle of Figure 5 are low-contrast targets severely
overlapped by the background, which is the difficult target to detect in the target detection
task. Figure 5 shows that our method improves the feature extraction ability of usually
difficult low-contrast targets by establishing the information path of image context.

To intuitively compare the detection performances of the proposed method and pop-
ular ones, we visualize the detection results of some methods in Figure 7. The Figure 7
shows some of the detection results from FCOS and YOLOv5s, as well as the methods
proposed in this paper. The detection results of different categories were annotated with
different colors. The person is labeled as red boxes, bicycles are labeled as green boxes, and
cars are labeled as orange boxes.
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YOLOvVS5s

Figure 7. Detection effects diagram of each popular method. From top to bottom is the real label, the
proposed method results, FCOS results, and YOLOvb5s results.

The targets in the blue circle are low contrast samples, which are severely cluttered
by the background and difficult to recognize even for humans. Figure 5 shows that the
detection performance of our method on low-contrast targets is amazing. The proposed
CTEL improves the detection performance of low-contrast samples by balancing the learn-
ing of difficult samples and simple ones. In addition, our ResTNet extracts target feature
information better from a complex background.

(2) Comparison of different contrast intervals

To clearly compare the performance of each method on different contrast samples,
three contrast intervals are divided. The target contrast less than 20 is defined as low con-
trast, between 20 and 120 is medium contrast, and more than 120 is high. The performance
of some methods in different contrast ranges is compared, aiming to verify the advantage
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of the proposed method on low-contrast samples. The mAP of samples with different
contrast intervals is shown in Table 3.

Table 3. The mAP of different comparative samples in some methods are shown in the table. The
Top2 in different contrast intervals in the table are highlighted with red and green.

Method Low Mid High

SSD [24] 32.5 479 63.4
Retinanet [25] 448 64.4 79.5
FCOS [26] 57.4 75.1 86.6
Cascade R-CNN [13] 64.3 79.8 90.3
YOLOV5s [14] 61.2 77.8 86.1
YOLOF [15] 61.2 77.7 86.2
YOLOX [16] 68.2 79.0 86.3
baseline 61.3 76.7 87.2
baseline + CTEL 63.9 81.5 88.9
baseline + ResTNet 71.1 84.1 91.7
ResTNet + CTEL 73.3 84.2 91.6

The experimental results show that our method performs best on samples in all
intervals compared with other comparison methods. Our method can effectively improve
the detection rate of low-contrast targets.

Almost all methods can get ideal performance in a high contrast range, but poor
performance in a low contrast range. Our method obviously performs better in low
contrast targets, which indicates that the two proposed ResTNet and CTEL are effective.

The CTEL mainly improves the detection performance of low-contrast targets. Mean-
while, ResTNet comprehensively improves the detection performance of the contrast of
each interval. At present, the most advanced target detection algorithm YOLOX has
achieved great success in the field of optical images, and the overall performance exceeds
other popular detection algorithms in almost all datasets. Table 3 shows that, compared
with YOLOX, our method has stronger performance on low-contrast targets. In the low
contrast range, the mAP of our method is about 5% higher than that of the YOLOX method,
and has achieved grand achievements. In addition, compared with the base, the mAP in
the low contrast range has achieved huge improvement of more than 10%.

The comparison results between the baseline and the proposed detection architecture
are shown in Figure 8. The first line is the example with lower contrast targets, then the
second and third lines are the examples with more moderate contrast targets and more high
contrast targets, respectively. The green boxes in the graph are the true value. In addition,
low-contrast targets are labeled by L, medium-contrast targets by M, and high-contrast
targets by H. The blue box in Figure 8 is the detection result of the basic network, and the
red box is the detection result of the architecture proposed in this paper.

For ease of observation, the differences between the proposed method and the baseline
are labeled using a blue circle. As shown in Figure 8, most of the error targets in the baseline
have small entropy difference with the background, which is difficult to distinguish and fall
into the range of low contrast and medium contrast. After our improvement, the missing
targets by the baseline are re-detected. This result is consistent with the data in Table 3.
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Figure 8. Schema checking results’ comparison diagram between basic network and architecture
proposed in this paper.

3.4.2. Experiments on the Remote Sensing Infrared Dataset

The loss of inherent features from some targets in remote sensing infrared images is
more serious than that of general infrared image data. Our dataset has more challenges
such as dense targets and wide-scale distribution. In this more difficult infrared dataset for
remote sensing, our ResTNet and CTEL can still effective.

A series of comparative experiments on our infrared dataset for remote sensing is
designed to demonstrate the robustness and advantage of the proposed method. The
comparative experimental results are shown in Table 4. The results above the dotted line in
Table 2 are the comparative experiment of other methods, and the results below the dotted
line are the ablation experiment of the proposed method.
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Table 4. The experimental results of various popular methods on our datasets are shown in tables.
Top2’s mAP metrics is highlighted in red and green.

Method mAP

SSD [24] 13.9
Retinanet [25] 41.1
FCOS [26] 51.0
Cascade R-CNN [13] 58.4
YOLOV5s [14] 62.4
YOLOF [15] 52.5
YOLOX [16] 60.5
baseline 49.7
baseline + CTEL 59.8
baseline + ResTNet 66.6
ResTNet + CTEL 67.2

As shown in Table 4, our improvement brings great performance improvement for
the baseline on the remote sensing dataset. By improving the ability of feature extraction
and learning low-contrast targets, the mAP of this architecture on our remote sensing
infrared data set is increased by about 18%, which is better than the most advanced method
at present.

The detection results of our method and the baseline are shown in Figure 7.

In Figure 9, the blue circles are the difficult samples, such as the samples in the first
row. These samples lack inherent characteristic information, which has a great impact on
the performance of the detection method. Using our method, the context information path
of the image is established, and the feature information of the target is better utilized. The
proposed method detects many usually difficult low-contrast targets.

Experiments show that the proposed method improves the performance of detection
on low contrast targets. Our method obtains the best performance on the two datasets after
combining ResTNet and CTEL. The proposed target detection method for infrared images
task is competitive and robust.
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Figure 9. Our method detects results on some typical images in remote sensing datasets. The
prediction box of the baseline is marked as green, and the prediction box of the proposed method is
marked as yellow.

4. Discussion

As shown in Section 2, a novel target detection method is proposed, which improves
the feature extraction ability of infrared image targets through attention modules about
integration of context information. The feature thermal diagram of the backbone network
is shown in Figure 10. The high temperature region is red, and the low is blue. The color in
the heat map corresponds to the dependence of the prediction results on the characteristics
of each region. The color red has the highest dependence, followed by yellow, and the
lowest blue. It can be seen from Figure 10 that our method focuses its attention on the area
of the target.

It can be seen from Figure 10 that, compared with the baseline, the hotspot distribution
in the feature map constructed by the proposed method is more concentrated on the target.
This proves that the feature extraction ability of this method for infrared images task is
much stronger than that of the baseline.
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Figure 10. These are some images and feature maps extracted from them. The first of each line is the
labeled infrared image. The second and third are the feature thermal images output by baseline and
our method, respectively.

5. Conclusions

In this paper, aiming at the problems of low contrast and loss of inherent characteristics
in IR images, we propose a novel detection method for IR images.

Firstly, to improve the feature extraction ability in IR images, a novel backbone network
ResTNet is proposed. The ResTNet integrates context information by the Transformer
structure in MSAN to improve the feature extraction ability of low-contrast targets in
IR images.

Secondly, we design a contrast enhancement loss function based on the physical
properties of IR images. The proposed loss function weights the loss values of low-contrast
targets and other targets respectively, aiming to balance the backward propagation gradient
of low-contrast samples and other samples in the network.

Extensive experiments on the FLIR dataset and our remote sensing dataset show that
the proposed improvements can obtain encouraging results, especially for low contrast
targets. The proposed method is SOTA, competitive, and robust. The proposed method
can optimize the performance of different difficulty targets as a whole, but we have more
optimization on the performance of low contrast targets. Compared with the baseline,
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our method improves the performance of low contrast targets by about 20% on the FLIR
dataset, but not so much on the simple targets.
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