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Abstract: The support tensor machine (STM) extended from support vector machine (SVM) can
maintain the inherent information of remote sensing image (RSI) represented as tensor and obtain
effective recognition results using a few training samples. However, the conventional STM is binary
and fails to handle multiclass classification directly. In addition, the existing STMs cannot process
objects with different sizes represented as multiscale tensors and have to resize object slices to a
fixed size, causing excessive background interferences or loss of object’s scale information. Therefore,
the multiclass multiscale support tensor machine (MCMS-STM) is proposed to recognize effectively
multiclass objects with different sizes in RSIs. To achieve multiclass classification, by embedding one-
versus-rest and one-versus-one mechanisms, multiple hyperplanes described by rank-R tensors are
built simultaneously instead of single hyperplane described by rank-1 tensor in STM to separate input
with different classes. To handle multiscale objects, multiple slices of different sizes are extracted to
cover the object with an unknown class and expressed as multiscale tensors. Then, M-dimensional
hyperplanes are established to project the input of multiscale tensors into class space. To ensure an
efficient training of MCMS-STM, a decomposition algorithm is presented to break the complex dual
problem of MCMS-STM into a series of analytic sub-optimizations. Using publicly available RSIs,
the experimental results demonstrate that the MCMS-STM achieves 89.5% and 91.4% accuracy for
classifying airplanes and ships with different classes and sizes, which outperforms typical SVM and
STM methods.

Keywords: multiclass multiscale support tensor machine; multiclass classification; multiscale object
recognition; decomposition algorithm; tensor space

1. Introduction

The diverse types and sizes of objects bring a challenge to object recognition in remote
sensing images (RSIs). Recently, mainly owing to its powerful feature abstraction ability,
various deep learning technologies have achieved impressive success in different object
recognition tasks, such as Fast R-CNN [1], Faster R-CNN [2], local attention based CNN [3],
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2 CNN [4], SSD [5] and YOLO [6]. In addition to object recognition, deep learning-based
methods are widely used for a wide variety of classification tasks based on remote sensing
data acquired by different sensors, such as graph convolution neural networks [7] based
hyperspectral image classification [8], and multimodal deep learning-based multisource
image classification [9]. Despite the recent advances, deep learning-based methods rely
heavily on massive available labeled samples. In comparison, the machine learning-based
object recognition method can obtain effective results using a small number of samples.

For the object recognition in RSIs, the general procedure consists of two steps, i.e.,
extracting an object slice using object detection method and recognizing the type of object
contained in the slice using a trained classifier. By virtue of the object detection methods,
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e.g., region proposal-based methods [10–12] and saliency-based methods [13–16], the po-
sitions of objects in RSIs can be obtained. Then, the slice of the object can be extracted
for subsequent classification. It is worth noting that most existing classifiers, including
deep learning methods [1–5] and machine learning methods [17–20], can only deal with
the input of the fixed size. Thereby, two image resizing operations are always used to
extract slices containing objects with the fixed size, as shown in Figure 1, one of which
extracts the slices by the appropriate size to ensure that the object can be exactly covered,
and then resizes the slice to the same size using the image interpolation method [10–12].
Another way is to extract slices according to the maximum size of objects to cover each
size of object [13–16]. After obtaining the slices with the fixed size, a proper classifier
should be designed to predict the corresponding class label. Among the various machine
learning based classifiers, the support vector machine (SVM) as well as its tensor exten-
sion, i.e., support tensor machine (STM), are the most worth considering due to a sound
theoretical foundation and excellent generality capability. Besides the standard SVM (i.e.,
C− SVM) [17], various variants of SVM were established to improve the performance of
SVM from different perspectives, including ν− SVM [18], least-square SVM [19], etc. Since
the standard SVM can be considered as a bi-category classifier and thus cannot be used to
address multiclass classifications directly, the One-Versus-One (OVO) [20], Error Correcting
Output Codes (ECOC) [21], and One-Versus-Rest (OVR) [22] strategies were employed in
order to use various binary SVMs to achieve multiclass classifications indirectly. Different
from the classic SVM that relies on auxiliary strategies to achieve multiclass classification,
the multiclass SVM was developed to classify multiclass objects by solving parameters of
multiple classification hyperplanes simultaneously [22]. Besides, based on the multiclass
classification mechanism of [22], some other multiclass-oriented SVM variants were devel-
oped, e.g., the graph embedded multiclass SVM [23] and the least-squares twin multiclass
SVM [24].

Since the object slice can be represented naturally as a tensor in RSI, the tensor-based
classifier, i.e., STM, was developed to exploit the structural information embedded in
RSI better. According to the supervised tensor learning framework [25] established in
2005, the C − SVM and ν− SVM were extended to C − STM and ν− STM by applying
multilinear operator of tensor space, respectively. Besides, a large number of variants of
STMs were established to deal with different classification tasks, such as linear support
higher-order tensor machine (SHTM) [26], multi-kernel STM [27], higher rank support
tensor machine [28], and support tucker machine [29]. Moreover, the support multimode
tensor machine (SMTM) [30] was built to exploit the multimode product of tensor to obtain
the results of the multiclass classification for different perspectives, while its multiclass
classification strategy is similar to conventional ECOC strategy.

For classifying objects with multiple classes and different sizes, most existing STM
methods need to exploit OVO or OVR strategies to train a series of binary classifiers
to perform multiclass classification indirectly. The OVO and OVR strategies inherently
assume that multiclass classifications can be solved by multiple independent bi-category
classifications, ignoring the correlation between multiple classes [23]. Although there
exist a few SVM methods that can handle multiclass classification directly, e.g., multiclass
SVM [22] and its variants [23,24], their multiclass classification mechanism that is similar
to OVR may generate excessive constraints to limit the classification hyperplane, leading to
the increase of complexity for training classifier [31]. On the other hand, since the existing
STMs only accept tensors with a fixed size as input, it needs to resize the object slices of
different classes in RSIs into a fixed size. Considering that objects with different classes
usually present different sizes, the typical two resizing operations will bring adverse effect
on object recognition, of which the first type of resizing operation will lead to the loss of
objects’ scale information, and the second type of resizing operation is easy to cause the slice
to contain more background interferences. The examples of two types of resizing operations
are given in Figure 1. It is seen that using the second type of resizing operation will lose the
scale information of the ships and thus cannot identify ships according to their size feature,
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and using the first type of resizing operation will generate slices with a large size so that
the slice containing ship with class 1 covers excessive background interferences. To deal
with the slices to be classified present different sizes, the deep learning method, i.e., the
scale free convolution neural network, is built to utilize the global average pooling to map
feature maps to unify size [32]. However, for representative machine learning methods,
e.g., STM, there is no related work that can process the input slices with different sizes. In
comparison to image resizing, the objects with different sizes should be contained by slices
with proper sizes to reduce the impact of background interferences and maintain inherent
scale information of the contained object, and these slices can be naturally represented as
tensors with different dimensions, denoted as multiscale tensors in this paper, while the
existing STMs can only process tensor with the same size and cannot process the slices with
different sizes represented as multiscale tensors.

Motived by the abovementioned issues, the multiclass multiscale support tensor ma-
chine (MCMS-STM) is proposed in this paper. To deal with mutliclass classification, by
integrating OVR and OVO strategies to optimization problems, a new multiclass classifi-
cation mechanism is constructed to use multiple hyperplanes defined by rank-R tensors
instead of a single hyperplane defined by rank-1 tensor of STM, where each hyperplane
is needed to separate samples with specific classes. Furthermore, to classify objects with
different sizes, according to positions of objects obtained from detection results, it is neces-
sary to extract the objects slices with proper sizes rather than the fixed size to reduce the
impact of background interferences and maintain inherent scale information of the con-
tained object. These slices with different sizes can be naturally represented as tensors with
different dimensions, denoted as multiscale tensors in this paper. Note that the existing
STM methods can only process tensor with the same size and cannot process the slices with
different sizes represented as multiscale tensors. To deal with input of multiscale tensors,
instead of the fixed-dimensional hyperplane used in STM, the M-dimensional hyperplanes
are built to separate input of multiscale tensors, and the resulting projecting value is used
to predict the class label of input to achieve cross-scale object recognition. In addition, to
train the OVO version of MCMS-STM efficiently, a decomposition algorithm is proposed to
split the dual problem of the MCMS-STM into a series of sub-optimizations to accelerate
the training.
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The remainder of this paper is organized as follows. Section 2 consists of some
preliminaries, such as the basic definitions and notions, the classical SVM and STM methods.
In Section 3, the OVR version and OVO version of MCMS-STM and the corresponding
solving methods are presented. Then, the decomposition algorithm is constructed to
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accelerate the training of the OVO version of MCMS-STM, and the relationship between
the multiclass classification mechanism used in MCMS-STM and the existing methods is
discussed. In Section 4, the experiments are conducted on publicly RSIs to analyze the
parameter setting and the impact of image resizing operation and evaluate the performance
of the MCMS-STM. Our conclusion is given in Section 5.

2. Preliminaries and Related Work

Before presenting the MCMS-STM, the notations, abbreviations, the basic tensor
algebra used throughout this paper, and the traditional SVM and STM are introduced
briefly as follows.

2.1. Notations, Abbreviations, and Tensor Operation

Tensor is the expansion of vector and matrix to the higher dimension, and tensor
algebra, also known as multilinear algebra, is the extension of linear algebra to multiway
data. To distinguish between tensors, matrices, and vectors, according to the convention
in [33], the used symbols throughout this paper are summarized in Table 1.

Table 1. The symbols and their corresponding description used in this paper.

Symbol Description

lowercase letters (e.g., x,y) scalar
lowercase boldface letters (e.g., x,y) vector
uppercase boldface letter (e.g., M) matrix

calligraphy letter (e.g., X ) tensor

Then, we summarize all the notations and abbreviations used throughout this paper
in Table 2.

Table 2. The description of notations and abbreviations for the proposed MCMS-STM.

Notations and Abbreviations Description

M the number of classes, as well as the number of scales.
R the CP rank of projection tensor.
L the number of orders for projection tensor.

w(r,l)
m,m′

the projection vector of mode−
l used to separate class m from class m′

w(r,l)
m

the projection vector of mode-l used to separate class m
from others

ξm
i slacking variable
C regularization parameter

byi ,m the bias used to separate class yi from class m
byi the bias used to separate class yi from others
am

i dual variable
SVM support vector machine
STM support tensor machine
OVO one-versus-one
OVR one-versus-rest
CP CANDECOMP/PARAFAC

The used basic tensor operations throughout this paper are given as follows.

Definition 1. Frobenius norm and inner product of tensors: The Frobenius norm ‖ · ‖F of a tensor
A ∈ RI1,...,IM is calculated as

‖A‖F =

√√√√i1=I1,...,iM=IM

∑
i1=1,...,iM=1

A(i1, . . . , iM)×A(i1, . . . , iM) (1)
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The inner product between tensors A ∈ RI1,...,IM , B ∈ RI1,...,IM is defined as the sum of
the products of their corresponding entries, i.e.,

〈A,B〉 =
i1=I1,...,iM=IM

∑
i1=1,...,iM=1

A(i1, . . . , iM)×B(i1, . . . , iM) (2)

Definition 2. Mode-k product of tensor: Given tensor A ∈ RI1,...,IM and matrix B ∈ RIk ,I′k , the

mode-k product betweenA and B is denoted asA×k B, whose results are tensor C ∈ RI1×...×I′k×...×IM ,
as calculated by Equation (3).

C(I1, . . . , Ik−1, q, Ik+1, . . . , IM) = A×k B =
Ik

∑
p=1
A(I1, . . . , Ik−1, p, Ik+1, . . . , IM)× B(p, q) (3)

Definition 3. Outer product: The outer product of M vectors (i.e.,
{

am ∈ RIm
}M

m=1) is denoted
as A = a1 ◦ . . . ◦ aM, and the corresponding results are represented as an M-order tensor
A ∈ RI1,...,IM , whose entry with coordinate (i1, . . . , iM) is calculated by

A(i1, . . . , iM) = a1(i1)×, . . . ,×aM(iM) (4)

2.2. Classical Binary and Multiclass Support Vector Machine

Consider bi-category classification task, given training set containing N samples, i.e.,

{xi, yi}
∣∣∣∣ N

i = 1
, where xi ∈ RI1 and yi ∈ {1,−1} denote the input vector of ith sample and

the corresponding label, respectively. SVM aims at learning the parameters of classification
hyperplane with the largest classification margin from the training set, which can be drawn
using the following optimization problem.

min
w,b

1
2 wTw + C

N
∑

i=1
ξi

s.t.yi
(
xi

Tw + b
)
≥ 1− ξi 1 ≤ i ≤ N

ξi ≥ 01 ≤ i ≤ N

(5)

where w, b, ξi and C denote the normal vector for classification hyperplane, the bias, the
slacking variable, and the regularization parameter, respectively. To obtain the optimal w,
the dual problem can be drawn as follows. The detailed derivation can refer to [17].

min
w,b

1
2 aQa− aTe

s.t.∑
i

yiai = 0

0 ≤ ai ≤ C 1 ≤ i ≤ N,

(6)

where a denotes the Lagrangian multiplier. Q is a positive semidefinite matrix, where
Q(i, j) = yiyjxT

i xj. After solving the optimal α, the w can be calculated by Equation (7).

w = ∑
i

aiyixi. (7)

Then, the label of test sample x can be predicted by Equation (8).

y(x) = sign
(

xTw + b
)

, (8)

where sign(·) denotes the sign function.
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The standard SVM can only deal with the bi-category classification problem, while
most practical applications can be regarded as multiclass classification problems. Facing
this situation, the multiclass SVM, i.e., an extension of SVM in multiclass classification
problems, is established to identify samples with different classes.

Given the training set {xi, yi}|Ni=1, where xi and yi ∈ {1, . . . , M} denote the input
vector of the ith sample and the corresponding class label. The multiclass SVM aims at
learning M classification hyperplanes simultaneously by solving the following optimiza-
tion problem.

min
wm |Mm=1,b

1
2

M
∑

m=1
wm

Twm + C×
N
∑

i=1
∑

m 6=yi

ξm
i

s.t.xi
Twyi + byi ≥ xi

Twm + bm + 2− ξm
i 1 ≤ i ≤ N m 6= yi

ξm
i ≥ 0 1 ≤ i ≤ N m 6= yi,

(9)

where wm|Mm=1, bm and ξm
i denote the normal orientation of M classification hyperplanes,

the mth bias, the slacking variable, respectively. The exact solving method can refer to [22].
According to the resulting wm|Mm=1 and bm, the class label of test sample x can be

predicted using the following decision function.

y(x) = max
m

{
xTwm + bm

∣∣∣1 ≤ m ≤ M
}

(10)

2.3. Support Tensor Machine

To better use the structural information of input data represented as a tensor, the STM
is extended from SVM to directly separate input in tensor space.

The given training set containing N samples {Xi, yi}
∣∣∣∣ N

i = 1
, where Xi ∈ RI1,...,IM

denotes the input tensor and yi ∈ {1,−1} denotes the corresponding label. Compared
to SVM that separates input in vector space, the STM utilizes the mode-k product to
process input in tensor space. The corresponding optimization problem of STM is given in
Equation (11).

min

wi |
M
i = 1

1
2‖w1◦, . . . , ◦wm‖2

F + C
N
∑

i=1
xi

s.t.yi

(
Xi

M
∏
j=1
×jwj + b

)
≥ 1− ξi 1 ≤ i ≤ N

ξi ≥ 0 1 ≤ i ≤ N

(11)

where wj ∈ RIj denotes the projection vector along with the jth mode of the input tensor.
TheW = w1◦ . . . ◦ wm ∈ RI1,...,IM denotes the projection tensor used to indicate the orien-
tation of the normal orientation for the classification hyperplane. Since the parameters
of STM w1◦ . . . ◦ wm ∈ RI1×,...,×IM is the M-order tensor, it is difficult to be solved directly.
In this way, the alternating optimization scheme is introduced to solve the above opti-
mization, i.e., optimize each wik in turn by fixing the rest wi|i 6=ik

in the kth iteration, where
ik = mod(k, m) + 1 denotes the index of order to be optimized. The optimization problem
in kth iteration is equivalent to that in SVM (see Equation (5)) it can be solved by using SVM
solver. After the alternating optimization procedure is terminated, the optimal parameters
wj
∣∣

j and b can be utilized to predict the label of the test sample X , as shown below.

y(X ) = sign

(
X

l

∏
j=1
×jwj + b

)
(12)
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3. Multiclass Multiscale Support Tensor Machine

As discussed above, the standard STM fails to deal with multiclass classification, and
it requires resizing preprocessing to generate slices of the fixed size to comply with its input
requirements, causing loss of scale information or increase of background interferences. To
address multiclass multiscale object recognition in RSIs, the MCMS-STM is proposed by
solving simultaneously hyperplanes of multiple dimensions defined by multiscale rank-R
tensors to directly classify objects with different classes and sizes, as illustrated in Figure 2.
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3.1. Construction of Multiclass Multiscale Support Tensor Machine

Starting from the standard STM, the classifier is extended gradually from two aspects,
i.e., multiclass and multiscale, to form the proposed MCMS-STM.

3.1.1. Extend STM to Deal with Multiclass Classification

Consider the training set {Xi, yi}N
i=1 set with N samples of M classes, where Xi and

yi ∈ {1, 2, . . . , M} denote the L-order tensor representation of i-th image slice and the
corresponding class label, respectively. Note that the standard STM can process input
represented as a tensor, while it cannot process multiclass classifications directly. In con-
trast, the multiclass SVM can deal with multiclass classifications, while it cannot process
input represented as a tensor. To achieve multiclass classification in tensor space, a straight-
forward idea is to construct the following optimization problem to learn parameters of
multiple hyperplanes in tensor space simultaneously by integrating the merits of STM (see
Equation (11)) and multiclass SVM (see Equation (9)).

min
wl

m |
M,L
m=1,l=1,b

1
2

M
∑

m=1
‖w1

m ◦ . . . ◦ wL
m‖

2
F + C×

N
∑

i=1
∑

m 6=yi

ξm
i

s.t.Xi
L
∏
l=1
×lwl

yi
+ byi ≥ Xi

L
∏
l=1
×lwl

m + bm + 2− ξm
i

ξm
i ≥ 0 1 ≤ i ≤ N m 6= yi,

(13)

where w1
m ◦ . . . ◦ wL

m ∈ RI1,I2,...,IL denotes the mth projection tensor used to determine the
normal orientation of mth hyperplane. Compared with the optimization problem of multi-
class SVM (see Equation (9)), the optimization problem in Equation (13) allows the tensor
Xi as input by constructing projection tensorWm with the same dimensions as Xi, while
more detailed modifies are essential to improve the performance of multiclass classification.
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According to the definition of tensor rank, e.g., CANDECOMP/PARAFAC (CP)
rank [34], the tensorWm belongs to the rank-1 tensor. Referring to the study in [28,29] that
the single rank-1 tensor cannot be used to describe the classification hyperplane accurately,
it is considered to utilize multiple rank-1 tensors to improve the effect of classification, as
shown in Equation (14).

min
w(r,l)

m |m,g,l ,b

1
2

M
∑

m=1

R
∑

r=1
‖w(r,1)

m ◦ . . . ◦ w(r,L)
m ‖

2
F + C

N
∑

i=1

M
∑

m=1
ξm

i

s.t.∑
r
Xi

L
∏
l=1
×lw

(r,l)
yi + byi ≥ ∑

r
Xi

L
∏
l=1
×lw

(r,l)
m + bm + 2− ξm

i

ξm
i ≥ 0 m 6= yi 1 ≤ i ≤ N,

(14)

where R denotes the number of rank-1 projecting tensors. In Equation (14), the hyperplane
is defined by the sum of R rank-1 projection tensors (i.e., the rank-R projecting tensor
Wm). The illustration of hyperplanes defined by rank-1 projecting tensor and hyperplanes
defined by rank-R tensor is shown in Figure 3. It is seen that the linear combination of rank-
1 projecting tensors can be used to obtain the hyperplane with more orientations, which
indicates that the rank-R projection tensor is likely to obtain a more effective hyperplane.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 3. Illustration of classification hyperplane defined by rank-1 projection tensor and rank-R 
projection tensor. The bule solid line denotes the hyperplane defined by rank-1 or rank-R tensor, 
and the blue dotted line denotes the hyperplane defined by rank-R tensor. 

Note that the multiclass classification mechanism of Equation (14) is equivalent to 
that of multiclass SVM (see Equation (9)). In other words, the multiclass classification 
mechanism of Equation (14) can be described as an OVR strategy that solves M 

hyperplanes simultaneously, of which mth hyperplane defined by m  is used to 
separate class m from the other. Considering the related research that the OVO strategy 
based SVM always achieves better results than OVR strategy based SVM, it is taken into 
consideration to embed OVO strategy to tensor space, of which the hyperplane defined 

by projection tensor  'm ,m  is used to separate samples from class m and samples from 
class 'm . In this way, the optimization problem in Equation (14) can be changed to the 
optimization problem in Equation (15). 

( )
( ) ( )

( ) ( )

21

1 1 1

1 1

1
2

2 1

0 1

   

  

m

ξ

ξ

ξ

= = =≠

= =

+

× + ≥ × + + − ≠ ≤ ≤

≥ ≠ ≤ ≤

  

 ∏ ∏

 
b

' '
r ,l

'',m

i i i i

R N M
r , r ,L m

im,m m,m F, r i mm m

L L
r ,l r ,l m

i l y ,m y ,m i l m,y m,y i i
r rl l

m
i i

min ... C

s.t. b b m y i N

m y i N,

w
w w

w w
 (15)

where 
( ) ( )1

1


=

=  ' ' '

R
r , r ,L

m,m m,m m,m
r

...w w
 and 'm ,m

b  denote the normal orientation of the 
hyperplane used to separate class m from class 'm  and the corresponding bias. Since 
OVR and OVO strategies have their own advantages, these two classification mechanisms 
are used as different versions of MCMS-STM to cope with different classification tasks. 

3.1.2. Classify the Multiscale Objects without Image Resizing Preprocessing 
For the objects to be classified presenting different sizes, the convention manner is to 

adjust slices of different sizes into the fixed size, whereas this operation is easy to lead to 
the loss of scale information or increase of background interferences.  

To maintain the scale information of objects and reduce the impact of background 
interferences, it is needed to extract slices with proper size to cover the object with a 
specific class, as shown in Figure 4. Assuming that each class of object presents a specific 
size, it is necessary to extract M sizes of slices of different sizes. Even for the same object, 
M slices of different sizes still need to be extracted because the category of the test sample 
is unknown (see Figure 4b). Therefore, different from the conventional manner that each 
object is described as a fixed-size slice, for each object, it is needed to extract M sizes of 

slices represented M-scale tensors ( )
1


=

Mm
i

m
. In this way, a multiscale sample set 

Figure 3. Illustration of classification hyperplane defined by rank-1 projection tensor and rank-R
projection tensor. The bule solid line denotes the hyperplane defined by rank-1 or rank-R tensor, and
the blue dotted line denotes the hyperplane defined by rank-R tensor.

Note that the multiclass classification mechanism of Equation (14) is equivalent to
that of multiclass SVM (see Equation (9)). In other words, the multiclass classification
mechanism of Equation (14) can be described as an OVR strategy that solves M hyperplanes
simultaneously, of which mth hyperplane defined byWm is used to separate class m from
the other. Considering the related research that the OVO strategy based SVM always
achieves better results than OVR strategy based SVM, it is taken into consideration to
embed OVO strategy to tensor space, of which the hyperplane defined by projection tensor
Wm,m′ is used to separate samples from class m and samples from class m′. In this way,
the optimization problem in Equation (14) can be changed to the optimization problem in
Equation (15).

min
w(r,l)

m,m′ ,b

1
2 ∑

m 6=m′

R
∑

r=1
‖w(r,1)

m,m′ ◦ . . . ◦ w(r,L)
m,m′ ‖

2

F
+ C

N
∑

i=1

M
∑

m=1
ξm

i

s.t.∑
r
Xi

L
∏
l=1
×lw

(r,l)
yi ,m + byi ,m ≥ ∑

r
Xi

L
∏
l=1
×lw

(r,l)
m,yi + bm,yi + 2− ξm

i m 6= yi 1 ≤ i ≤ N

ξm
i ≥ 0 m 6= yi 1 ≤ i ≤ N,

(15)



Remote Sens. 2022, 14, 196 9 of 28

where Wm,m′ =
R
∑

r=1
w(r,1)

m,m′ ◦ . . . ◦ w(r,L)
m,m′ and bm,m′ denote the normal orientation of the hy-

perplane used to separate class m from class m′ and the corresponding bias. Since OVR
and OVO strategies have their own advantages, these two classification mechanisms are
used as different versions of MCMS-STM to cope with different classification tasks.

3.1.2. Classify the Multiscale Objects without Image Resizing Preprocessing

For the objects to be classified presenting different sizes, the convention manner is to
adjust slices of different sizes into the fixed size, whereas this operation is easy to lead to
the loss of scale information or increase of background interferences.

To maintain the scale information of objects and reduce the impact of background
interferences, it is needed to extract slices with proper size to cover the object with a specific
class, as shown in Figure 4. Assuming that each class of object presents a specific size, it is
necessary to extract M sizes of slices of different sizes. Even for the same object, M slices of
different sizes still need to be extracted because the category of the test sample is unknown
(see Figure 4b). Therefore, different from the conventional manner that each object is
described as a fixed-size slice, for each object, it is needed to extract M sizes of slices repre-

sented M-scale tensors X (m)
i

∣∣∣M
m=1

. In this way, a multiscale sample set
{
X (m)

i

∣∣∣M
m=1

, yi

}N

i=1

is constructed, where X (m)
i ∈ RIm

1 ,...,Im
L denotes the slice of mth size containing ith object. To

separate input represented as M-scale tensors X (m)
i

∣∣∣M
m=1

in tensor space, it is also required

to construct projection tensors with M scales, i.e.,
{
Wm,m′ ∈ RIm

1 ,...,Im
L

∣∣∣1 ≤ m ≤ M, m 6= m′
}

,
where the projection tensor with specific dimension is used to separate input slice with
specific scale. In this way, the classification model in Equation (15) can be further extended
to identify the multiscale objects without image resizing operation, and the corresponding
optimization problem is shown in Equation (16).

min
w(r,l)

m,m′ ,b

1
2 ∑

m 6=m′

R
∑

r=1
‖w(r,1)

m,m′ ◦ . . . ◦ w(r,L)
m,m′‖

2

F
+ C

N
∑

i=1

M
∑

m=1
ξm

i

s.t.∑
r
X (yi)

i

L
∏

l=1
×lw

(r,l)
yi ,m + byi ,m ≥ ∑

r
X (m)

i

L
∏

l=1
×lw

(r,l)
m,yi + bm,yi + 2− ξm

i m 6= yi 1 ≤ i ≤ N

ξm
i ≥ 0 m 6= yi 1 ≤ i ≤ N,

(16)

Equation (16) is the final optimization problem of OVO version of MCMS-STM. For OVR version
of MCMS-STM, the final optimization problem is given directly as follows.

min
w(r,l)

m,m′ ,b

1
2

M
∑

m=1

R
∑

r=1
‖w(r,1)

m ◦ . . . ◦ w(r,L)
m ‖

2
F + C

N
∑

i=1

M
∑

m=1
ξm

i

s.t.∑
r
X (yi)

i

L
∏

l=1
×lw

(r,l)
yi + byi ≥ ∑

r
X (m)

i

L
∏

l=1
×lw

(r,l)
m + bm + 2− xm

i m 6= yi 1 ≤ i ≤ N

ξm
i ≥ 0 m 6= yi 1 ≤ i ≤ N,

(17)

Note that the OVR version of MCMS-STM only uses M hyperplanes defined by Wm =
R
∑

r=1
w(r,1)

m ◦ . . . ◦ w(r,L)
m to separate samples.

On the one hand, the proposed MCMS-STM can use multiscale tensors to capture the category
and scale information of objects and utilize grouped rank-R tensors to improve the effectiveness of
multiclass classification problems. On the other hand, it can be found that the optimization problem
of MCMS-STM is more complex than the binary STM, which needs to establish a specific solving
method to obtain the optimal parameters.
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3.2. Solving of the Optimization Problem for MCMS-STM
Since the procedures of training OVO and OVR versions of MCMS-STM are similar, we only

give the solving methods for the OVO version of the MCMS-STM in this section and put the solving
methods for the OVR version of the MCMS-STM in the Appendix A.

To solve the optimization problem in Equation (16) effectively, an alternating optimization

scheme [25] is adopted for model training, i.e., optimize
{
w(r,liter)

m,m′

∣∣∣1 ≤ r ≤ R, 1 ≤ m ≤ M, m 6= m′
}

by fixing the other normal vectors in the kth iteration, where liter = mod(k, L) + 1. First, all the

projection vectors
{

w(r,l)
m,m′

∣∣∣1 ≤ r ≤ R, 1 ≤ l ≤ L, 1 ≤ m ≤ M, m 6= m′
}

are initialized using uniformly
distributed random numbers within 0 to 1. Then, we can get the Lagrangian function for alternating
optimization in the kth iteration as follows.

L
(

w(r,liter)
m,m′

∣∣∣
m,m′ ,r

, bm,m′ |m,m′ , am
i
∣∣
i,m, bm

i
∣∣
i,m

)
= 1

2 ∑
m 6=m′

R
∑

r=1
‖w(r,1)

m,m′ ◦ . . . ◦ w(r,L)
m,m′‖

2

F
+

C× ∑
i,m

ξm
i −∑

i
∑
m

am
i (∑r
X (yi)

i

L
∏

l=1
×lw

(r,l)
yi ,m + byi ,m −∑

r
X (m)

i

L
∏

l=1
×lw

(r,l)
m,yi − bm,yi − 2 + ξm

i )− ∑
i,m

βm
i ξm

i

s.t.αm
i ≥ 0 1 ≤ i ≤ N m 6= yi

βm
i ≥ 0 1 ≤ i ≤ N m 6= yi

α
yi
i = 0 1 ≤ i ≤ N

β
yi
i = 0 1 ≤ i ≤ N,

(18)

where αm
i and βm

i denote the dual variables, and α
yi
i and β

yi
i denote the dummy dual variables. Let

the partial derivatives of L
(

w(r,liter)
m,m′

∣∣∣
m,m′ ,r

, bm,m′ |m,m′ , αm
i
∣∣
i,m, βm

i
∣∣
i,m

)
with respect to the original

variables be zeros. We have

∂L
∂w(r,liter )

m,m′
= 0⇒

w(r,liter)
m,m′ = 1

L
∏

l 6=liter

w(r,l)
m,m′

T w(r,l)
m,m′

× ( ∑
{i|yi=m}

αm′
i X

(m)
i

L
∏

l 6=liter

×lw
(r,l)
m,m′ − ∑

{i|yi=m′}
am

i X(m)
i

L
∏

l 6=liter

×lw
(r,l)
m,m′ )

(19)

∂
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0 0

0 0

 

 


 


   




    



 
'

'
i i

'

m m

i i
i|y m i|ym,m m

m m

i im

i

C

b

.

 (20) 

Substituting Equation (19) and Equation (20) into Equation (18) yields the following 

Lagrangian dual problem. 
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where 

∂bm,m′
= 0⇒ ∑

{i|yi=m}
αm′

i − ∑
{i|yi=m′}

αm
i = 0

∂
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   

 
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where m

i
 and  m

i
 denote the dual variables, and  iy

i
 and  iy

i
 denote the dummy 

dual variables. Let the partial derivatives of 
 l

  
 
 

iter

' ' ''

r , m m

i im,m m,m i ,m i ,mm,mm,m ,r
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respect to the original variables be zeros. We have 

 

 
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      


w

w w w

w w

l

l l l

l l

 (19) 
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C

b
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 (20) 

Substituting Equation (19) and Equation (20) into Equation (18) yields the following 

Lagrangian dual problem. 
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y y m m m

j ir ,m r ,m r ,
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i ,r ,m j ,r ,m i ,r ,m j ,r i ,r j ,ri j i j m

m m '

i i
i|y m i|y m

m

i

j i ,mm m

i

y

i

min (c

s.t.

i N m y

, c c , c c , )

C

i

)

N,

 (21) 

where 

∂ξm
i
= 0⇒ C− βm

i − αm
i = 0.

(20)

Substituting Equation (19) and Equation (20) into Equation (18) yields the following Lagrangian
dual problem.
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min
αm

i |i,m

1
2 ( ∑

m 6=m′

R
∑

r=1

N
∑

i=1

N
∑

j=1
(cyi

j µ
yi
(r,m)

〈
ai,r,m, aj,r,m

〉
− 2cm

i cm′
j µm

(r,m′)

〈
ai,r,m′ , am

j,r

〉
+ cm′

i cm′
j µm

(r,m′)

〈
am

i,r, am
j,r

〉
))− 2 ∑

i,m
αm

i

s.t. ∑
{i|yi=m}

αm′
i − ∑

{i|yi=m′}
αm

i = 0 m 6= m′

0 ≤ αm
i ≤ C 1 ≤ i ≤ N m 6= yi

α
yi
i = 0 1 ≤ i ≤ N,

(21)

where

cm
j =

{
1 i f yj = m
0 otherwise

µm
(r,m′) =

1
L

∏
l 6=liter

w(r,l)
m,m′

T w(r,l)
m,m′

ai,r,m = am
i X

(yi)
i

L
∏

l 6=liter

×lw
(r,l)
yi ,m

am
i,r = am

i X
(m)
i

L
∏

l 6=liter

×lw
(r,l)
m,yi .

(22)

For convenience, rewrite the dual problem in the matrix form as follows.

min
a

1
2 aTQa− 2aTeN×M

s.t. ∑
{i|yi=m}

αm′
i − ∑

{i|yi=m′}
αm

i = 0 m 6= m′

0 ≤ αm
i ≤ C 1 ≤ i ≤ N m 6= yi

α
yi
i = 0 1 ≤ i ≤ N,

(23)

where Q =
M
∑

m=1

R
∑

r=1

[
K(r)

1 −K(r,m)
2 −K(r,m)T

2 + K(r,m)
3

]
, and

eN×M =

1, 1, . . . , 1︸ ︷︷ ︸
N×M


K(r)

1 ((i− 1)×M + m1, (j− 1)×M + m2) =

cyi
j × µ

yi
(r,m1)

× δ̃(yi, m2)δ(m1, m2)×〈
X (yi)

i

L
∏

l 6=liter

×lw
(r,l)
yi ,m1 ,X (yj)

j

L
∏

l 6=liter

×lw
(r,l)
yj ,m2

〉
(24)

K(r,m)
2 ((i− 1)×M + m1, (j− 1)×M + m2) =

cm2
i cm

j δ̃(m, m2)µ
yi
(r,m)
×〈

X (yi)
i

L
∏

l 6=liter

×lw
(r,l)
yi ,m,X (m2)

j

L
∏

l 6=liter

×lw
(r,l)
m2,m

〉
K(r,m)

3 ((i− 1)×M + m1, (j− 1)×M + m2) =

cm
i cm

j δ(m1, m2)× δ̃(m, m2)µ
m1
(r,m)
×〈

X (m1)
i

L
∏

l 6=liter

×lw
(r,l)
m1,m,X (m2)

j

L
∏

l 6=liter

×lw
(r,l)
m2,m

〉
a =

[
a1

1, . . . , aM
1 , a1

2, . . . , aM
N
]
,

(25)

where

δ(m1, m2) =

{
1 i f m1 = m2
0 otherwise.

(26)

δ̃(m1, m2) =

{
0 i f m1 = m2
1 otherwise.

(27)
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It is found from Equation (23) that the dual problem of MCMS-STM in kth iteration is the
quadratic optimization in terms of a, which can be solved by classical quadratic programing method

(e.g., interior-point method [35]). According to the resulting a, the w(r,liter)
m,m′ can be updated using

Equation (19).
Note that the values of the objective function (see Equation (16)) in each iteration form a bounded

and nonincreasing sequence. Therefore, there is a finite limit for that sequence. To stop iterating at
the proper time, the termination criteria are constructed in Equation (28).

∑
m 6=m′

R

∑
r=1

L

∑
l=1
‖
(

w(r,l)
m,m′ − w(r,l)′

m,m′

)
‖

2

F
≤ δ||k ≥ Titer, (28)

where w(r,l)
m,m′ , δ and Titer denote the updated w(r,l)

m,m′ in last iteration, a pre-established positive number
and the threshold for the number of iterations. When the termination criteria are met, output current

projection vectors w(r,l)
m,m′ . To calculate bias b, according to the K.K.T. conditions [36], including

complementary slackness, dual feasibility, and the equivalent constraints in Equation (19) and
Equation (20), we obtain

am
i (∑r
X (yi)

i

L
∏

l=1
×lw

(r,l)
yi ,m + byi ,m −∑

r
X (m)

i

L
∏

l=1
×lw

(r,l)
m,yi − bm,yi − 2 + ξm

i ) = 0

βm
i ξm

i = 0

βm
i ≥ 0

αm
i ≥ 0

C− bm
i − am

i = 0.

(29)

Combined with Equation (29), the equations and inequalities in terms of b can be drawn
in following:

0 < αm
i < C ⇒ pm

i = 0
αm

i = C ⇒ pm
i ≤ 0

αm
i = 0, yi 6= m⇒ pm

i ≥ 0,
(30)

where pm
i = ∑

r
X (yi)

i

L
∏

l=1
×lw

(r,l)
yi ,m + byi ,m −∑

r
X (m)

i

L
∏

l=1
×lw

(r,l)
m,yi − bm,yi − 2.

When the optimal solution is reached, the above equations and inequalities hold. Therefore, b
can be calculated by following linear programming.

min
b,u

∑
m′ ,m,j

∣∣∣u(m′ ,m)
j

∣∣∣
∑

yi=m′
pm

i + u(m′ ,m)
1 = 0

∑
yi=m′

pm
i + u(m′ ,m)

2 ≤ 0

∑
yi=m′

pm
i + u(m′ ,m)

3 ≥ 0

1 ≤ m′ ≤ M m 6= m′ αm
i = 0,

(31)

where u(m′ ,m)
1 , u(m′ ,m)

2 and u(m′ ,m)
3 denote the slacking variables used to maintain the feasibility of

linear programming. Using the classical simplex method [37], the Equation (31) can be solved to
obtain the optimal b. At present, the training procedure of MCMS-STM has been finished.

After training MCMS-STM, for any test sample Xm|Mm=1, the following decision function is used
to predict the corresponding label.

arg max
m

#

{
∑
r
X (m)

i

L

∏
l=1
×lw

(r,l)
m,m′ + bm,m′ > ∑

r
X (m′)

i

L

∏
l=1
×lw

(r,l)
m′ ,m + bm′ ,m

∣∣∣∣∣m′ 6= m

}
, (32)

where operator #{·} denotes the number of elements in the set. Note that there may be multiple
candidate classes that maximize the Equation (32). For this situation, just like the operation in [20],
we simply select the candidate class with the smallest label as the predicted class.
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3.3. Acceleration of Training of OVO Version of MCMS-STM
In this section, combining the existing decomposition algorithm [38], a MCMS-STM-oriented

decomposition algorithm is presented to break the complex quadratic programming (QP) for dual
problem of MCMS-STM (see Equation (23)) into a series of simple analytic QP problems to train the
OVO version of MCMS-STM efficiently.

To solve the QP in Equation (23) efficiently, based on the idea of a general decomposition
algorithm, the dual variables a are split into working set and non-working set, where variables in
the working set are updated, and those in the non-working set are fixed in each iteration. To select
the proper variables as the working set, a graph-based constraints model is illustrated in Figure 5 to
demonstrate the constraints in Equation (23) clearly.
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As shown in Figure 5, there are M×M vertices in the graph, where each vertex indicates a set

of dual variables, i.e., a1
1 =

{
αm′

i

∣∣∣1 ≤ i ≤ N, yi = 1, m′ = 1
}

. The constraints in Equation (23) can
be described visually via the graph-based constraints model, where the value of dual variables in
each vertex should be between 0 and C, and the sum of the values for dual variables contained in the
vertices (i,j) is equal to that in vertex (i,j), i.e., the vertex with the same color in Figure 5 should have
the same sum. Since updating the variables contained in the vertices of the same color does not affect
the feasibility of other variables, it is taken into consideration to select variables from the vertices of
the same color as the working set.

First, the zeros values are assigned to all the dual variables as the initial feasible solution of the
dual problem in Equation (23). Subsequently, select a working set from the vertices with the same
color aj

i and aj
i . For variables in aj

i and aj
i , the constraints can be described as follows.

s.t. ∑
{k|yk=i}

α
j
k − ∑

{k|yk=j}
αi

k = 0⇒ ∑
{yk=i|k}

y(i,j)k α
j
k + ∑

{yk=j|k}
y(j,i)

k αi
k = 0, (33)

where y(j,i)
k = 1 and y(j,i)

k = −1. It is noticed that the equivalent constraints in Equation (33) are
equal to those in C-SVM (see Equation (6)). Therefore, similar to the variables selection strategy
in C-SVM [38], the two variables that maximize the following objective function are selected as a
working set.

min
α

j1
i1

,αj2
i2

d1
∂ f (a)
∂α

j1
i1

+ d2
∂ f (a)
∂α

j2
i2

s.t.
{

d1, d2, α
j1
i1

, α
j2
i2

}
∈ S1

∣∣∣∣∣∣S2

∣∣∣∣∣∣S3

∣∣∣∣∣∣S4

S1 =
{

d1 = 1, d2 = −1, α
j1
i1

, α
j2
i2

∣∣∣αj1
i1
∈ aj

i , α
j2
i2
∈ aj

i , α
j1
i1
< C, α

j2
i2
> 0

}
S2 =

{
d1 = −1, d2 = 1, α

j1
i1

, α
j2
i2

∣∣∣αj1
i1
∈ ai

j, α
j2
i2
∈ ai

j, α
j1
i1
> 0, α

j2
i2
< C

}
S3 =

{
d1 = 1, d2 = 1, α

j1
i1

, α
j2
i2

∣∣∣αj1
i1
∈ aj

i , α
j2
i2
∈ ai

j, α
j1
i1
< C, α

j2
i2
< C

}
S4 =

{
d1 = −1, d2 = −1, α

j1
i1

, α
j2
i2

∣∣∣αj1
i1
∈ aj

i , α
j2
i2
∈ ai

j, α
j1
i1
> 0, α

j2
i2
> 0

}
,

(34)
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where f (a) = 1
2 aTQa− 2aTeN×M, and d1, d1 denote the updating direction of variables in working

set. The objective function in Equation (34) means selecting variables with the steepest descent
direction as the working set. The constraints in Equation (34) ensure the feasibility of variables α

j1
i1

, α
j2
i2

in the working set after updating. If min
α

j1
i1

,αj2
i2

d1
∂ f (a)
∂α

j1
i1

+ d2
∂ f (a)
∂α

j2
i2

≥ 0, it indicates that there are no proper

working variables in ai
j and ai

j to decrease the f (a), otherwise, select the
{

α
j1
i1

, α
j2
i2

}
and [d1, d2] as the

working set and the updating direction, respectively. Then, solve the following optimization problem
to determine the optimal step size for updating.

min
dstep

1
2
(
aB + dstep × [d1, d2]

)TQBB
(
aB + dstep × [d1, d2]

)
+(

aB + dstep × [d1, d2]
)
QBNaN + 1

2 aNQNNaN − 2
(
aB + dstep × [d1, d2]

)Te2 − 2aN
TeN×M−2

s.t. 0 ≤ aB + dstep × [d1, d2] ≤ C,

(35)

where dstep, aB and aN denote the step-size used for updating variables, the variables in working set,

and the variables in non-working set, respectively. The
[

QBB, QBN
QNB, QNN

]
is the permutation of the Q

according to the selected working set. To obtain the optimal dstep, let the derivative of the objective
function be zero. We have

d∗step =
(
[d1, d2]

TQBB[d1, d2]
)−1
× [d1, d2]

T(2e2 − [QBB, QBN ]a), (36)

where d∗step denotes the optimal step size. To avoid the updated aB lie outside the range from 0 to C,
the final step size is determined by

dstep = d∗step −max
{

d1
temp, d2

temp

}
d1

temp =

{ (
α

j1
i1
+ d∗step × d1

)
− C i f

(
α

j1
i1
+ d∗step × d1

)
> C

0 otherwise

d2
temp =

{
−
(

α
j2
i2
+ d∗step × d2

)
i f
(

α
j2
i2
+ d∗step × d2

)
< 0

0 otherwise,

(37)

where dstep denotes the final step size. Use aB = aB + dstep × [d1, d2] to update the variables in
working set. Then, use Equation (34) to re-select the working set for updating in the next iteration.
This process is performed alternatively until the following terminal criteria are met, i.e., min

α
j1
i1

,αj2
i2

d1
∂ f (a)
∂α

j1
i1

+

d2
∂ f (a)
∂α

j2
i2

≥ 0 for any vertex (i, j), i 6= j.

After the terminal criteria are satisfied, the current a is optimal. The decomposition algorithm
for solving the dual problem of the OVO version of the MCMS-STM is summarized in Algorithm 1.

Algorithm 1. Decomposition algorithm of solving the dual problem of OVO version of the
MCMS-STM.

Input: the Q of the dual problem of MCMS-STM and the labels yi 1 ≤ i ≤ N.
Output: optimal a
for vertex in ∀(i, j), i 6= j
Step 1: Select working set using Equation (34).
If min

α
j1
i1

,αj2
i2

d1
∂ f (a)
∂α

j1
i1

+ d2
∂ f (a)
∂α

j2
i2

≥ 0, continue; otherwise, perform Step 2.

Step 2: Calculate the step size using Equations (36) and (37), and update the variables in working
set.
Step 3: If the terminal criteria are met, output the a as optimal solution, and return.
end

4. Discussion of the Multiclass Classification Mechanism Used in MCMS-STM
To analyze the multiclass classification mechanism used in MCMS-STM compared with the

existing OVO and OVR strategy, a detailed discussion is carried out as follows.
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4.1. Discussion of OVR Version of MCMS-STM Compared with OVR Strategy Based STM
Considering the hard margin (i.e., the C = ∞) based C − STM [25] with OVR strategy, it is

required to construct M classifiers, where the mth classifier is used to separate the class m from the
other M-1 classes, as shown in the following optimization problem.

min
w(l)

m |l ,b

1
2‖w

(1)
m ◦ . . . ◦ w(L)

m ‖
2
F

s.t.Xi
L
∏

l=1
×lw

(l)
m + bm ≥ 1 yi = m

Xi
L
∏

l=1
×lw

(l)
m + bm ≤ −1 yi 6= m

, (38)

where w(1)
m ◦ . . . ◦ w(L)

m denotes the normal orientation for the mth hyperplane.
Then, let R = 1 and C = ∞ for OVR version of MCMS-STM (see Equation (17)), the correspond-

ing optimization problem can be converted to Equation (39).

min
w(l)

m |m,l ,b

1
2

M
∑

m=1
‖w(1)

m ◦ . . . ◦ w(L)
m ‖

2
F

s.t.Xi
L
∏

l=1
×lw

(l)
yi + byi ≥ Xi

L
∏

l=1
×lw

(l)
m + bm + 2

m 6= yi 1 ≤ i ≤ N

(39)

By adding the two inequalities in Equation (38), it is easy to find that the feasible solution of
Equation (38) is also the feasible solution of Equation (39). Thus, the solution of Equation (38) is the
feasible solution of Equation (39), but not necessarily the optimal one. That means the MCMS-STM
may obtain the optimal solution with a larger classification margin compared with C− STM using
OVR strategy, i.e., the better generalization ability.

4.2. Discussion of OVO Version of MCMS-STM Compared with OVO Strategy Based STM
When using OVO strategy [20] based C − STM to process M class classification problems,

M(M−1)
2 classifiers are constructed, where each one is used to separate specific two classes. For

separating classes m and m
′
, the corresponding optimization problem of C− STM is shown below.

min
w(l)

m′m |l ,b

1
2‖w

(1)
m′ ,m ◦ . . . ◦ w(L)

m′ ,m‖
2

F

s.t.Xi
L
∏

l=1
×lw

(l)
m′ ,m + bm′ ,m ≥ 1 yi = m′

Xj
L
∏

l=1
×lw

(l)
m′ ,m + bm′ ,m ≤ −1 yj = m

, (40)

where w(1)
m ◦ . . . ◦ w(L)

m bmm′ denote the normal orientation of the hyperplane and bias of the hyper-
plane, respectively. For OVO version of MCMS-STM (see Equation (16)), let the R = 1 and C = ∞.
The corresponding optimization problem is shown below.

min
w(l)

m,m′ |m,m′ ,l
,b

1
2

M
∑

m=1
∑

m′m
‖w(1)

m,m′ ◦ . . . ◦ w(L)
m,m′‖

2

F

s.t.Xi
L
∏

l=1
×lw

(l)
m′ ,m + bm′ ,m ≥ Xi

L
∏

l=1
×lw

(l)
m,m′ + bm,m′ + 2

yi = m′ m′ 6= m 1 ≤ i ≤ N

(41)
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For any feasible solution of w(1)
m′m′ and bm′ ,m in Equation (40), let w(1)

m′m′ = −w(1)
m′ ,m and

bm,m′ = −bm′ ,m, we can obtain w(1)
m′m′ , bm′ ,m, w(1)

m′m′ and bm′ ,m as the feasible solution of Equation
(41). On the contrary, for the constraints in Equation (41), we obtain:

Xi
L
∏

l=1
×lw

(l)
m′ ,m + bm′ ,m ≥ Xi

L
∏

l=1
×lw

(l)
m,m′ + bm,m′ + 2 yi = m′

Xj
L
∏

l=1
×lw

(l)
m,m′ + bm,m′ ≥ Xj

L
∏

l=1
×lw

(l)
m′ ,m + bm′ ,m + 2 yj = m

⇒

Xi
L
∏

l=1
×l

(
w(l)

m′ ,m − w(l)
m,m′

)
+ bm′ ,m − bm,m′ − 1 ≥ 1 yi = m

Xj
L
∏

l=1
×l

(
w(l)

m′ ,m − w(l)
m,m′

)
+ bm′ ,m − bm,m′ − 1 ≤ −1 yj = m′

(42)

According to Equation (42), the constraints in Equation (41) can be converted to the same
form as the constraints in Equation (40). Note that the feasible solutions of different methods
can be transformed into each other using simple operations. Therefore, the MCMS-STM has the
OVO interpretation.

Through the above analysis, the MCMS-STM present both the OVR and OVO interpretations
under the specific parameter setting. More importantly, compared with the OVR and OVO strategies
that need to learn multiple classification hyperplanes separately, a remarkable advantage is that the
MCMS-STM can learn the multiple classification hyperplanes simultaneously to mine the correlation
between multiple classes.

5. Experiments and Analysis
To demonstrate the superiority of the MCMS-STM for multiclass multiscale object recogni-

tion, two datasets containing image slices of multiclass multiscale objects are used to evaluate the
performance of the proposed MCMS-STM, and the detailed information of datasets is introduced
as follows.

(1) Dataset 1: To verify the performance of MCMS-STM for multiclass multiscale airplane clas-
sification, the RSIs containing 218 airplanes with five types are collected from Google Earth
service with a spatial resolution of 0.5 m and R, G, and B spectral bands. Then, using two image
resizing operations, these 218 airplanes are cut separately from RSIs to build two slice sets. For
slices set 1 generated from image resizing operation 1, the slices are cut according to the type of
contained objects and then resized to a fixed size using a bilinear interpolation method. For
slices set 2 generated from image resizing operation 2, these slices are cut at a size large enough
(i.e., 120× 120) so that all the types of objects are contained completely in the corresponding
slice. These slices contain various backgrounds, and the contained multiclass airplanes present
different orientations and sizes. Some representative slices from two slices sets of dataset 1 are
displayed in Figure 6.

(2) Dataset 2: The HRSC-2016 [39] dataset contains 1070 harbor RSIs with R, G, and B spectral
bands collected from Google Earth service. To evaluate the performance of MCMS-STM for
multiscale object recognition, 342 ships with five types are sliced from HRSC-2016 whose spatial
resolution is equal to 1.07 m. Similar to dataset 1, these slices are cut by two image resizing
operations to form two slices set. For slices set 1 generated from image resizing operation 1, the
slices are cut according to the type of contained objects and then resized to a fixed size using
a bilinear interpolation method. For slices set 2 generated from image resizing operation 2,
these slices are cut at a size large enough (i.e., 770× 170) to contain airplanes with different
types. Some image slices with different types of ships in two slices sets of dataset 2 are shown
in Figure 7.
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The experiments are composed of four parts. In Section 5.1, the impact of parameter setting is
analyzed. In Section 5.2, the affection of image resizing preprocessing for the recognition results is
examined. In Section 5.3, the efficiency of the proposed decomposition algorithm is verified compared
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with the typical interior-point method and active-set method. In Section 5.4, the recognization
accuracy of MCMS-STM is evaluated compared with typical SVM and STM methods using dataset 1
and dataset 2. In Section 5.5, the performance of MCMS-STM is further evaluated compared with
typical deep learning methods. All the simulations are running on the computer with Windows 10
operating system and Intel i7-7700CPU at 3.6 G Hz.

The code of MCMS-STM can be found at https://github.com/supergt3/MCMS-STM (accessed
on 23 November 2021).

5.1. Analysis of the Impact of Parameter Setting on Classification Performance
The main parameters in MCMS-STM include the R and C, which denote the CP rank of the

projection tensor and the regularization parameter, respectively. To demonstrate the impact of
parameter setting, the N-fold cross-validation method is adopted to partition the slices set 1 of dataset
1 into N subsets, and test the recognization accuracy using the one subset according to the trained
classifier using the remaining N-1 subsets. This process is then repeated N times, with each of the N
subsets used exactly once as the test samples. Through adjusting the values of R from {1, 2, 3, . . . , 10}
and C from

{
100, 101, 102}, the obtained classification accuracies of different versions of MCMS-STM

are shown in Figure 8.
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From Figure 8, it is observed that the recognization accuracy of MCMS-STM is affected by
different parameter settings. In detail, it is seen that the increase of C may have a positive or negative
effect on recognization accuracy for different values of R. Therefore, it is difficult to set an effective C
in advance. In addition, for the case of using the same C, MCMS-STM with R < 3 obtains smaller
recognization accuracy than that with R ≥ 3, because the projection tensor with a small R is difficult
to define an accurate classification hyperplane. Through observing Figure 8, it is found that the
best recognization accuracy is obtained by OVO version of the MCMS-STM. The reason is probably
that OVO version of the MCMS-STM may obtain a larger classification margin compared with OVR
version of the MCMS-STM.

5.2. Analysis of the Impact of Image Resizing on Classification Performance
One of the significant advantages of the MCMS-STM method is that it can use multiscale

projection tensors to effectively classify objects with different sizes, avoiding the loss of objects’ scale
information caused by image resizing. To highlight the superiority of MCMS-STM, two slices sets
obtained by different image resizing methods are utilized to examine the recognization accuracy of the
MCMS-STM with multiscale projection tensors and single-scale projection tensors. The experiments
are implemented in three control groups. In detail, for control group 1, the MCMS-STM with single-
scale projection tensors and slices set 1 are utilized to obtain the classification results. For control
group 2, the MCMS-STM with single-scale projection tensors and slices set 2 are utilized to obtain the
classification results. For control group 3, the MCMS-STM with multiscale projection tensors and the
slices set 1 are utilized to obtain the classification results. To use multiscale projection tensors, it is
needed to decide the sizes of multiscale tensors. In the experiments, the sizes of slices for five types
of ships are set to 770× 170, 360× 50, 400× 70, 550× 140 and 290× 70, respectively, according to the
average sizes of objects for the different types. The obtained classification results for MCMS-STM
under different conditions are plotted in Figure 9.
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Figure 9. The classification accuracies of MCMS-STM with or without different image resizing
operations.

The accuracy in Figure 9 denotes the largest accuracy with parameters C and R selected from
C =

{
100, 101, 102} and R = {2, 4, 6, 8, 10} under different versions of MCMS-STM. For MCMS-STM,

the OVO version indicates the larger classification margin, but at the same time, it will also cause
misclassification because the decision function (see Equation (32)) may generate multiple results.
Therefore, for dataset 2, it is observed that the recognization accuracy of OVR version of MCMS-STM
is higher than that of OVO version of MCMS-STM. In addition, note that the resizing operation used
to generate slices set 1 will lead to the loss of object’s scale information, and the resizing operation
used to generate slices set 2 will bring excessive background interferences, i.e., the two resizing
operations have their own disadvantages. In comparison, the multiscale projection tensors used
in MCMS-STM can maintain the scale information of objects while avoiding excessive background
interferences. Therefore, it is observed that the recognization accuracy of MCMS-STM without
resizing operations is better than using MCMS-STM with resizing operations. The above analysis
concludes that the MCMS-STM with multiscale projection tensors is effective for multiscale object
recognition tasks.
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5.3. Evaluation of the Performance of the Decomposition Algorithm for Training MCMS-STM
To verify the efficiency of the proposed decomposition algorithm for training OVO version of

MCMS-STM, the experiments are conducted on dataset 1 to evaluate the time consumption of training
MCMS-STM and classical multiclass SVM using different optimization solving algorithms, including
the proposed decomposition algorithm, interior-point method [35] and active-set method [40], under
different numbers of training samples, as shown in Figure 10.
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The time consumption in Figure 10 represents the performing time to solve the dual problem of
the MCMS-STM or multiclass SVM once. From Figure 10, when using the same optimization algo-
rithm, i.e., interior-point algorithm or active-set algorithm, it can be seen that the time consumption
of solving dual problem of MCMS-STM is similar to that of solving dual problem of multiclass SVM.
In addition, it is seen that the time consumption of the interior-point algorithm is less than that of the
active-set algorithm under different sizes of training sample sets. Remarkably, it can be seen that the
proposed decomposition algorithm significantly reduces the time consumption compared with the
interior-point method and active-set method for training MCMS-STM, especially for the training set
with a larger size. It indicates the efficiency of the proposed decomposition algorithm for training the
MCMS-STM, especially for the training set with a large size.

5.4. Evaluation of the Performance of MCMS-STM Compared with Existing SVM and
STM Methods

In this section, the experiments are conducted on dataset 1 and dataset 2 to evaluate the
performance of MCMS-STM for multiclass multiscale airplane classification and ship classification
compared with typical SVM and STM methods. To avoid the classification results from being affected
by different feature extraction algorithms, the image slices represented as tensors are used as input
directly for all the classification methods. In detail, according to the size of different objects, the
dimensions of multiscale tensors for airplanes with five types are set to for 100× 100× 3, 80× 80× 3,
120× 120× 3, 70× 70× 3 and 80× 80× 3, respectively, and those for ships with five types are set to
770× 170× 3, 360× 50× 3, 400× 70× 3, 550× 140× 3 and 290× 70× 3, respectively. The first order,
second order and third order for multiscale tensors denote the horizontal spatial order, vertical spatial
order, and spectral order, respectively. For the comparison methods, two slice sets from dataset 1
and dataset 2 obtained by different slice cropping methods are utilized to obtain the classification
results under two types of image resizing operations, respectively. In addition, note that the SVM
and STM methods can only deal with bi-category classification problems. Therefore, the OVO and
OVR strategies are introduced to perform multiclass classifications for binary SVM and STM methods
indirectly. Considering that the SVM method cannot process tensors directly, the vectorization
operation is utilized to convert image slice to vector to comply with its input requirement. Then, all
the methods select parameters from C =

{
100, 101, 102}, ν = {0.1, 0.2, 0.3, 0.4} and R = {2, 4, 6, 8, 10}
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that corresponds to the best classification results to obtain the final recognization accuracy. Using the
N-fold cross-validation, the accuracies of MCMS-STM for different classification tasks under different
conditions are displayed in Table 3, Table 4, Table 5, and Table 6, respectively.

Table 3. The accuracies of different methods for multiscale airplanes recognization using 5-fold
cross-validation.

Method Parameter Setting Accuracy

OVR version of MCMS-STM C = 1 R = 8 84.9%
OVO version of MCMS-STM C = 1 R = 6 85.3%

C− SVM (OVO) 1 C = 10 82.2%
C− SVM (OVR) 1 C = 100 73.8%
ν− SVM (OVO) 1 ν = 0.1 80.7%
ν− SVM (OVR) 1 ν = 0.2 76.2%
Multi-class SVM1 C = 100 82.6%
C− STM (OVO) 1 C = 10 71.4%
C− STM (OVR) 1 C = 1 66.5%
C− SVM (OVO)2 C = 10 79.4%
C− SVM (OVR) 2 C = 100 77.1%
ν− SVM (OVO) 2 ν = 0.1 80.3%
ν− SVM (OVR) 2 ν = 0.1 75.2%
Multi-class SVM2 C = 10 81.7%
C− STM (OVO) 2 C = 1 75.2%
C− STM (OVR) 2 C = 1 70.6%

Table 4. The accuracies of different methods for multiscale airplanes recognization using 10-fold
cross-validation.

MethodC− STM Parameter Setting Accuracy

OVR version of MCMS-STM C = 10 R = 8 88.1%
OVO version of MCMS-STM C = 10 R = 8 89.5%

C− SVM (OVO) 1 C = 10 84.0%
C− SVM (OVR) 1 C = 1 76.6%
ν− SVM (OVO) 1 ν = 0.1 85.3%
ν− SVM (OVR) 1 ν = 0.2 77.3%
Multi-class SVM1 C = 1 85.3%
C− STM (OVO) 1 C = 100 79.4%
C− STM (OVR) 1 C = 1 74.8%
C− SVM (OVO)2 C = 100 87.6%
C− SVM (OVR) 2 C = 1 78.0%
ν− SVM (OVO) 2 ν = 0.1 88.6%
ν− SVM (OVR) 2 ν = 0.2 79.4%
Multi-class SVM2 C = 100 88.1%
C− STM (OVO) 2 C = 1 77.5%
C− STM (OVR) 2 C = 1 71.2%
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Table 5. The accuracies of different methods for multiscale ships recognization using 5-fold cross-
validation.

Method Parameter Setting Accuracy

OVR version of MCMS-STM C = 100 R = 6 90.2%
OVO version of MCMS-STM C = 1 R = 6 87.4%

C− SVM (OVO) 1 C = 1 86.1%
C− SVM (OVR) 1 C = 1 80.7%
ν− SVM (OVO) 1 ν = 0.1 86.1%
ν− SVM (OVR) 1 ν = 0.1 79.0%
Multi-class SVM1 C = 1 85.3%
C− STM (OVO) 1 C = 10 76.9%
C− STM (OVR) 1 C = 1 73.1%
C− SVM (OVO)2 C = 10 83.3%
C− SVM (OVR) 2 C = 100 79.2%
ν− SVM (OVO) 2 ν = 0.1 84.5%
ν− SVM (OVR) 2 ν = 0.1 79.5%
Multi-class SVM2 C = 100 84.2%
C− STM (OVO) 2 C = 1 77.0%
C− STM (OVR) 2 C = 1 70.6%

Table 6. The accuracies of different methods for multiscale ships recognization using 10-fold cross-
validation.

Method Parameter Setting Accuracy

OVR version of MCMS-STM C = 10 R = 8 87.7%
OVO version of MCMS-STM C = 1 R = 8 91.4%

C− SVM (OVO) 1 C = 1 87.4%
C− SVM (OVR) 1 C = 100 83.6%
ν− SVM (OVO) 1 ν = 0.1 87.0%
ν− SVM (OVR) 1 ν = 0.1 82.4%
Multi-class SVM1 C = 1 89.9%
C− STM (OVO) 1 C = 1 78.2%
C− STM (OVR) 1 C = 1 74.4%
C− SVM (OVO)2 C = 100 85.6%
C− SVM (OVR) 2 C = 1 81.0%
ν− SVM (OVO) 2 ν = 0.1 86.2%
ν− SVM (OVR) 2 ν = 0.2 80.5%
Multi-class SVM2 C = 100 86.2%
C− STM (OVO) 2 C = 1 76.4%
C− STM (OVR) 2 C = 10 69.6%

In these tables, the bolding accuracy indicates the best results, and the notation C− SVM (OVO)
1 denotes using OVO strategy based C− SVM under slice set 1. Overall, note that the classification
results for 10-fold cross-validation are better than those for 5-fold cross-validation, mainly because
the 10-fold cross-validation indicates that more samples are used for training. From these tables, it is
observed that applying OVO strategy based comparison methods present better classification results
than applying OVR strategy based comparison methods because the OVO is a competitive multiclass
classification strategy compared with OVR strategy. For N-fold cross-validation, by comparing the
classification accuracies between N = 5 and N = 10, it can be found that there is a minor difference
between different N for STM methods and a significant difference between different N for SVM
methods. The reason is that the SVM method is embedded with much more parameters, and thus it
is easy to improve performance as the number of samples increases. In addition, it can be seen that
the recognization accuracy of multiclass SVM is better than most comparison methods under OVR
or OVO strategy. Since the two resizing operations have their own advantages and disadvantages,
i.e., the first type of resizing operation can reduce the impact of background interferences, while
it loses the scale information of object, and the image the second type of resizing operation can
maintain the scale information of objects, while it brings much more interferences for objects with
small size, it is observed that using the slices set 1 obtains the largest accuracy for ship recognization
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under 10-fold cross-validation (see Table 6), and using the slices set 2 obtains the largest accuracy for
airplane recognization under 10-fold cross-validation (see Table 4). That means two image resizing
operations present comparable results. Moreover, it is seen that the optimal R that corresponds to
the largest accuracy is located at the range from 4 to 8, as the projection with small R is difficult
to describe the effective classification hyperplane, and the projection tensor with large R is easy to
over-fit the training samples. It is worth observing that the MCMS-STM gets the best classification
results among all the methods for different classification tasks. In detail, MCMS-STM gets 89.5%
and 91.4% recognization accuracy for airplane recognization and ship recognization, respectively,
while the largest accuracies of comparison methods for airplane recognization and ship recognization
are equal to 88.6% and 89.9%, respectively. Therefore, it is concluded that the MCMS-STM is more
effective for multiclass multiscale object recognition using remote sensing images compared with the
comparison methods.

In addition, to verify whether the MCMS-STM makes improvements from a statistical view,
the statistical test is applied to analyze the performance of the MCMS-STM against the SVM and
STM methods.

For convenience, the most commonly applied test method, i.e., right-tailed significance t-test [41],
is used to test the null hypothesis H0 that the difference of accuracy between MCMS-STM and the
competitor is equal to zero. On the other hand, the alternate hypothesis H1 is that the difference of
accuracy between MCMS-STM and the competitor is greater than zero.

To obtain effective results, half of samples in dataset 1 are used to train a classifier, and the rest
of the samples in dataset 1 are used to evaluate the recognization accuracy of trained classifier for
five classes of airplanes. The same processing is performed for dataset 2. In this way, ten paired
observations are obtained for the sign test. According to obtained ten paired observations, use
paired-sample right-tailed significance t-test [41], and the resulting p-value for MCMS-STM against
the other methods is shown in Table 7.

Table 7. The accuracies of different methods using the second type of normalization operation for
multiscale airplanes classification using 10-fold cross-validation.

Method Positive Negative Ties p-Value

C− SVM (OVO) 9 0 1 <0.0001
C− SVM (OVR) 8 1 1 0.0045
ν− SVM (OVO) 9 0 1 <0.0001
ν− SVM (OVR) 8 2 0 0.0049
Multi-class SVM 8 0 2 0.0097
C− STM (OVO) 9 0 1 <0.0001
C− STM (OVR) 10 0 0 <0.0001

Where positive, negative, ties, and p-value denote the number of times that the MCMS-STM
outperforms the comparison method, the number of times that the comparison method outperforms
the MCMS-STM, the number of times that both the MCMS-STM and comparison method obtain the
same results, and the probability of the observation under H0. From Table 7, it is found that all the
p-values are less than 0.05. Therefore, the null hypothesis can be rejected at the 0.05 significance level
for all the comparison methods. It indicates that the proposed MCMS-STM outperforms the existing
SVM and STM methods from the view of statistics.

5.5. Evaluation of the Performance of MCMS-STM Compared with Deep Learning Methods
Compared with deep learning methods relying on a large number of training samples, the

proposed MCMS-STM can recognize multiclass multiscale objects effectively using a small number
of training samples. To verify this advantage, the experiments are conducted on datasets 1 and
2 to compare the recognition accuracies of the MCMS-STM with two deep learning methods, i.e.,
GhostNet [42] and ResNeXt networks [43], of which the GhostNet utilizes the Ghost module to
improve the feature representation power of the conventional convolutional layer and the ResNeXt
improved from deep residual networks can exploit the aggregated residual transformations to mine
the effective features to improve the recognization results. When training the GhostNet and ResNeXt,
the learning rate and the batch size are set to 0.001 and 128, respectively. Since these two deep
learning methods can only deal with slices with a fixed size, the slice sets 1 from two datasets are
used to examine their performances. For MCMS-STM, the multiscale projection tensors are exploited,
and the detailed sizes of projection tensors can be found in Section 5.4. To compare the recognization
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results of the proposed OVO version of MCMS-STM with the deep learning methods under different
sizes of training sets, different proportions of samples in the dataset are selected as training samples
and the rest as test samples, and the obtained recognization results are shown in Tables 8 and 9.

Table 8. The accuracies of the MCMS-STM and deep learning methods for dataset 1 under different
numbers of training samples.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

GhostNet 47.09% 48.50% 57.82% 61.42% 71.03%
ResNeXt 40.86% 46.06% 52.08% 54.84% 60.19%

MCMS-STM 61.73% 63.79% 73.20% 79.39% 81.65%

Table 9. The accuracies of the MCMS-STM and deep learning methods for dataset 2 under different
numbers of training samples.

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

GhostNet 35.41% 35.03% 46.43% 50.66% 56.31%
ResNeXt 30.37% 34.97% 44.64% 47.74% 54.23%

MCMS-STM 62.21% 70.07% 70.29% 74.76% 79.53%

Where the notation p in Tables 8 and 9 denotes the proportion of the training samples occupying
the data set. From the above tables, it is observed that the recognization accuracy is generally
improved with the increase of training set size because more training samples can ensure sufficient
training of the classifier. In addition, it is seen that the GhostNet obtains better results than ResNeXt
under the same p. It indicates that the GhostNet can extract more effective features using its Ghost
module. Since the deep learning methods rely on a large number of training samples, they obtain
worse results under a small p. Remarkably, it is worth noting that the proposed MCMS-STM obtains
significantly better results compared to deep learning methods, especially when the training samples
are small. This funding implies the superiority of the proposed MCMS-STM for the small sample
case compared with the deep learning methods.

6. Conclusions
To classify the multiclass multiscale objects in RSIs effectively, the MCMS-STM is proposed

incorporating multiple hyperplanes defined by multiscale projection tensors to map the input of
object slices with different sizes to multiclass class space, getting rid of the conventional image
resizing operation. The main contributions of this paper can be summarized in the three folds below.

(1) To achieve multiclass classifications for objects in RSIs, the MCMS-STM is proposed to learn
multiple hyperplanes defined by rank-R projection tensors simultaneously to map input rep-
resented as tensor into class space. This new multiclass classification mechanism makes it
easy to construct the corresponding decomposition algorithm to accelerate the training of the
MCMS-STM and enables the classifier to present OVO and OVR interpretations, ensuring the
MCMS-STM can deal with different classifications tasks effectively.

(2) To identify multiscale objects in RSIs, instead of the conventional image resizing operation,
according to the object position obtained from detection results, multiple slices of different
sizes are extracted to describe the contained object with unknown class, and multidimensional
classification hyperplanes are established to separate input of multiple slices with different
sizes to achieve cross-scale object recognition. This multiscale classification mechanism can
avoid the loss of scale information and reduce the impact of background interferences caused
by conventional image resizing preprocessing.

(3) To accelerate the training of OVO version of MCMS-STM, combining graph-based analysis, a
decomposition algorithm is proposed to break the dual problem of OVO version of MCMS-STM
as a series of small sub-optimizations, reducing the time consumption caused by the large Q. It
ensures the MCMS-STM can be trained efficiently for more samples and classes.

The future work will focus on extending the MCMS-STM to adapt to the objects with different
orientations and constructing a universal decomposition algorithm to accelerate the training of
different versions of MCMS-STM.
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Appendix A

We give the procedure of training OVR version of MCMS-STM in this section. Similar to the
solving method of OVO version of MCMS-STM, an alternating optimization scheme is adopted for

training of OVR version of MCMS-STM, i.e., optimize
{

w(r,liter)
m

∣∣∣1 ≤ r ≤ R, 1 ≤ m ≤ M
}

by fixing

the other normal vectors in the kth iteration, where liter = mod(k, L) + 1. First, all the projection

vectors
{

w(r,l)
m

∣∣∣1 ≤ r ≤ R, 1 ≤ l ≤ L, 1 ≤ m ≤ M
}

are initialized using uniformly distributed random
numbers within 0 to 1. Then, get the Lagrangian function for alternating optimization in kth iteration
as follows.
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Let the partial derivatives of
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Substituting Equation (19) and Equation (20) into Equation (18) yields the following 

Lagrangian dual problem. 
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Substituting Equation (19) and Equation (20) into Equation (18) yields the following 

Lagrangian dual problem. 
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where 
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Substituting Equations (A2) and (A3) into Equation (A1) yields the following Lagrangian
dual problem.
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where
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Using quadratic programing method (e.g., interior-point method [35]), the optimization problem

in Equation (A4) can be solved. Then, according to the resulting α, the w(r,liter)
mh can be updated using

Equation (A2). To stop iterating at the proper time, the termination criteria are constructed in
Equation (A6).
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m in the last iteration. To calculate bias b, we have
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Then, the equations and inequalities in terms of b can be drawn in following:
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When the optimal solution is reached, the above equations and inequalities hold. Therefore, b
can be calculated by following linear programming using the classical simplex method [37].
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After training MCMS-STM, for any test sample Xm|Mm=1, the following decision function is used
to predict the corresponding label.

argmax
m

{
∑
r
X (m)

i

L

∏
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m + bm

}
. (A10)
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Abstract: The support tensor machine (STM) extended from support vector machine (SVM) can 

maintain the inherent information of remote sensing image (RSI) represented as tensor and obtain 

effective recognition results using a few training samples. However, the conventional STM is binary 

and fails to handle multiclass classification directly. In addition, the existing STMs cannot process 

objects with different sizes represented as multiscale tensors and have to resize object slices to a 

fixed size, causing excessive background interferences or loss of object’s scale information. 

Therefore, the multiclass multiscale support tensor machine (MCMS-STM) is proposed to recognize 

effectively multiclass objects with different sizes in RSIs. To achieve multiclass classification, by 

embedding one-versus-rest and one-versus-one mechanisms, multiple hyperplanes described by 

rank-R tensors are built simultaneously instead of single hyperplane described by rank-1 tensor in 

STM to separate input with different classes. To handle multiscale objects, multiple slices of different 

sizes are extracted to cover the object with an unknown class and expressed as multiscale tensors. 

Then, M-dimensional hyperplanes are established to project the input of multiscale tensors into class 

space. To ensure an efficient training of MCMS-STM, a decomposition algorithm is presented to 

break the complex dual problem of MCMS-STM into a series of analytic sub-optimizations. Using 

publicly available RSIs, the experimental results demonstrate that the MCMS-STM achieves 89.5% 

and 91.4% accuracy for classifying airplanes and ships with different classes and sizes, which 

outperforms typical SVM and STM methods. 

Keywords: multiclass multiscale support tensor machine; multiclass classification; multiscale object 

recognition; decomposition algorithm; tensor space 

 

1. Introduction 

The diverse types and sizes of objects bring a challenge to object recognition in 

remote sensing images (RSIs). Recently, mainly owing to its powerful feature abstraction 

ability, various deep learning technologies have achieved impressive success in different 

object recognition tasks, such as Fast R-CNN [1], Faster R-CNN [2], local attention based 

CNN [3], 2  CNN [4], SSD [5] and YOLO [6]. In addition to object recognition, deep 

learning-based methods are widely used for a wide variety of classification tasks based 

on remote sensing data acquired by different sensors, such as graph convolution neural 

networks [7] based hyperspectral image classification [8], and multimodal deep learning-

based multisource image classification [9]. Despite the recent advances, deep learning-

based methods rely heavily on massive available labeled samples. In comparison, the 

machine learning-based object recognition method can obtain effective results using a 

small number of samples. 
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