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Abstract: The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM)
are the most important and widely used data sources in several applications—e.g., forecasting
drought and flood, and managing water resources—especially in the areas with sparse or no other
robust sources. This study explored the accuracy and precision of satellite data products over a span
of 18 years (2000–2017) using synoptic ground station data for three regions in Iran with different
climates, namely (a) humid and high rainfall, (b) semi-arid, and (c) arid. The results show that the
monthly precipitation products of GPM and TRMM overestimate the rainfall. On average, they
overestimated the precipitation amount by 11% in humid, by 50% in semi-arid, and by 43% in arid
climate conditions compared to the ground-based data. This study also evaluated the satellite data
accuracy in drought and wet conditions based on the standardized precipitation index (SPI) and
different seasons. The results showed that the accuracy of satellite data varies significantly under
drought, wet, and normal conditions and different timescales, being lowest under drought conditions,
especially in arid regions. The highest accuracy was obtained on the 12-month timescale and the
lowest on the 3-month timescale. Although the accuracy of the data is dependent on the season, the
seasonal effects depend on climatic conditions.

Keywords: TRMM; GPM; correction factor; SPI; rainfall accuracy; rainfall precision

1. Introduction

Water is a major part of a country’s economic and social development, and precip-
itation is the principal source of freshwater on the Earth. Efficient management in this
field needs accurate and precise information on precipitation and its spatio-temporal varia-
tions [1]. Furthermore, precipitation is the main factor in the water cycle and the balance of
the Earth’s energy [2] and directly affects climate change [3]. Precipitation data are used
in many areas, such as flood modeling [4], landslides [5], heavy rain forecast [6], water re-
source management [7], drought monitoring [8], hydrological modeling [9], meteorological
applications [10,11], and improving crop yield and soil moisture estimation [12].

Reliable measurements of areal precipitation are still the major challenge of hydrology
research and water management in all their sub-fields [13–15]. Rainfall timing and spatial
distribution make reliable measurements even more complicated in many semi-arid, arid,
and mountainous regions, while precipitation gauges are often sparsely distributed [15–17].
The latter is crucial in the more mountainous regions (of which snowfall is extremely
important for water resources in Iran). In this context, satellite-based rainfall estimates have
raised high expectations in the scientific community since 1998, when the first quasi-global
Tropical Rainfall Measurement Mission (TRMM)-derived dataset was made available. There
have been many discussions on whether those areal rainfall estimates were reliable or not,
and if yes, under which boundary conditions?
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Scientists concluded that, for many regions, those datasets were better than too
sparsely distributed precipitation gauge ‘networks’ and applied the TRMM datasets more
or less successfully in hydrological models and other applications. Many shortcomings
were documented in the literature, but TRMM data functioned well in several applications
with no alternative data sources.

Documented shortcomings of TRMM products were mostly based on ‘simple’ phys-
ical reasons: the spatial, temporal, and spectral resolution of the sensors, the common
problem of all satellite-based studies. However, for rainfall estimates, the compromises of
TRMM/TMPA were partly too big. Thus, logically, TRMM’s follow-on was expected to
have better spatial, temporal, and spectral resolutions to overcome the known shortcom-
ings. The Global Precipitation Mission (GPM) was launched in 2014 with high expectations
from the hydrological community.

1.1. Drought and Wet Conditions

Drought is generally driven by a moisture deficit condition that occurs due to a lack of
precipitation over a period [18,19]. Drought occurs almost anywhere globally, even in rainy
regions [20], and can last from a few months to several years, causing enormous damage
to the economy and society [21]. Due to global warming issues, decision-makers have
increasingly turned to drought-related studies in recent years. Different indicators are used
to diagnose drought and wet conditions [22]. However, many studies [23–27] have shown
that the standardized precipitation index (SPI) works well for different climates in Iran to
assess the frequency and duration of droughts. The index, developed by McKee et al. (1993),
describes the cumulative probability of precipitation in any given period. Meanwhile, this
index only requires rainfall data and therefore has fewer calculations.

1.2. Seasonal Importance of Precipitation

The amount of rainfall and its importance vary from season to season. For example,
winter rains have a more significant effect on forest health. The tree rings indicate rain
periods in the cold seasons; in other words, trees have the highest growth in the years with
rainy winters, and tree patterns can be traced back to winter rainfall patterns in northern
latitudes [28]. Moreover, the lack of rainfall in winter and spring causes forests to become
more vulnerable to fire and the fire season to start sooner [29]. However, rainwater quickly
enters the rivers in the summer, and the remaining moisture evaporates quickly in the
summer sun [30].

1.3. State of the Art

Precipitation data are currently available to the public from various data providers
such as the Climate Prediction Center MORPHing technique (CMORPH), and Precipi-
tation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN). This study compares precipitation products of Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis (TMPA version 7 research level
product) and Integrated Multisatellite Retrievals for GPM (IMERG version 6 research
level product).

GPM was launched in 2014 to continue collecting rainfall data after ending the TRMM
mission in 2015. TMPA/3B43 and IMERG provide monthly precipitation in millimeters per
hour in 0.25◦ × 0.25◦ and 0.1◦ × 0.1◦ resolutions, respectively. Several studies have been
conducted on their accuracy [31–34] worldwide. For example, Sharifi et al. [35] compared
the daily data of ground gauges and GPM data in different climatic conditions and seasons
throughout Iran. However, their work was limited to only the years 2014 and 2015. They
concluded that GPM/IMERG was superior to TRMM/TMPA and that monthly products
underestimated the precipitation in high rain climatic conditions. However, in arid and
semi-arid conditions, IMERG and TMPA overestimated the rainfall data.

Anjum and Ahmad [36] showed that the IMERG product was slightly better than
TMPA, although both correlated well with in-situ measurements. However, the satellite
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data underestimated moderate and heavy precipitation and overestimated light rainfalls. In
several other studies, researchers found the same results, in that IMERG and TMPA monthly
data were highly consistent with ground gauge measurements. However, they concluded
that the improvements were insignificant [37,38]. The main advantage of IMERG is its
fine resolution [39]. To summarize previous studies, there is a good correlation between
TMPA and IMERG precipitation data with in-situ measurements, although IMERG slightly
outperformed TMPA.

This study compared the satellite data products from 2000 to 2017 with in-situ measure-
ments. Although ground-based measurements of precipitation—especially snowfall—have
many errors and uncertainties, they are still used as the most accurate values in calcula-
tions and modeling. Ground station precipitation data were used to measure the drought
and wet conditions and evaluate the IMERG and TMPA products in the corresponding
conditions. Many researchers have used satellite data for drought monitoring [40–42] all
over the globe. However, no other study has so far compared satellite data accuracy in
drought and wet circumstances to our knowledge. In addition, this study evaluated the
effect of seasonal and drought conditions on satellite-based precipitation data accuracy
over different climates.

2. Materials and Methods
2.1. Study Area

The study area includes three provinces in northern, northeastern, and southeastern
Iran, each with a different climatic condition, namely rainy, semi-arid, and arid climates.
Figure 1 shows the study areas and average precipitation using IMERG product.

Figure 1. Distribution of annual average precipitation (GPM/IMERG) over the study areas in the
year 2017: (a) Gilan (humid and rainy), (b) North-Khorasan (semi-arid and low rainfall), (c) Sistan-
Baluchestan (arid and low rainfall).

Figure 2 shows the annual averages of relative humidity, sunny hours, temperature,
precipitation, and ground stations’ altitude in the study areas. The parameters have been
scaled to display the stations’ characteristics in a single graph.
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Figure 2. Annual average of environmental characteristics and elevation in the study areas.

2.2. Dataset
2.2.1. Basic Data

The datasets of synoptic ground stations were obtained from the Meteorology Organi-
zation of Iran. Gilan, North Khorasan, and Sistan-Baluchestan provinces have 13, 7, and
12 synoptic ground stations, respectively. Table 1 shows the characteristics of synoptic
ground stations.

Table 1. Characteristics of synoptic ground stations in study areas from 1998 to 2017 (collected from
Meteorology Organization of Iran, https://data.irimo.ir (accessed on 23 January 2020)). Blue rows
are in the rainy region, gray and yellow rows are in the semi-arid and arid regions, respectively. Perc
= precipitation, Tm = temperature, rHum = relative humidity, SH = sunny hours.

Station Lat. Lon. Alt. Perc.
Max

Perc.
Mean

Perc.
Std

Tm.
Min

Tm.
Max

Tm.
Mean

Tm.
Std

rHum.
Min

rHum.
Mean

rHum.
Std

SH.
Max

SH.
Mean

SH.
Std

Astara 38.36 48.85 18 264.00 3.00 9.90 −5.20 34.20 15.50 7.90 7.00 80.92 9.85 13.50 5.08 4.37
Anzali 37.48 49.46 −24 195.80 4.80 14.00 −7.00 37.00 16.30 7.40 3.00 83.46 8.58 14.00 5.01 4.36
Talesh 37.84 48.89 7 234.80 4.39 9.70 −6.00 37.00 16.94 7.89 9.00 77.29 11.72 12.60 4.28 4.02

Jirnadeh 36.71 49.80 1581 38.80 0.84 2.96 −13.80 37.60 12.35 8.56 4.00 59.29 20.19 13.00 7.40 3.86
Deylaman 36.89 49.94 1448 48.60 1.04 3.39 −18.20 39.50 12.26 7.90 5.00 63.58 19.99 14.20 5.76 3.96

Rasht
(Airport) 37.32 49.62 −9 170.40 3.56 10.33 −19.00 40.00 16.25 7.61 2.00 81.94 11.05 13.60 4.63 4.19

Rasht
(Agri.) 37.2 49.64 25 134.70 3.43 9.87 −13.60 38.70 16.65 7.88 8.00 82.24 11.71 13.70 4.83 4.20

Rood Bar 36.81 49.52 0 22.70 0.67 2.24 −4.70 43.10 19.19 7.96 11.00 63.34 12.92 14.20 4.60 4.08
Rood Sar 37.13 50.32 −22 178.00 3.51 11.56 −8.00 36.60 17.42 7.74 7.00 79.04 9.78 12.80 5.02 4.13
KiaShahr 37.39 49.89 −22 113.00 3.62 10.69 −7.00 38.00 17.62 7.77 16.00 79.58 10.87 13.20 4.74 4.06
Lahijan 37.19 50.02 34 264.00 3.95 11.54 −5.60 37.90 17.42 7.75 3.00 77.82 12.13 12.50 5.00 4.18

Masooleh 37.15 48.99 1081 64.50 2.58 5.64 −11.40 39.10 12.24 7.55 9.00 77.71 19.83 12.70 3.90 3.65
Manjil 36.73 49.41 338 42.50 0.58 2.37 −6.80 47.80 17.25 8.14 2.00 60.73 12.71 13.00 7.57 3.68
Mean 37.25 49.57 342.69 136.29 2.77 8.01 −9.72 38.96 15.95 7.85 6.62 74.38 13.18 13.31 5.22 4.06

StdDev 0.46 0.45 602.51 88.20 1.49 4.09 4.96 3.37 2.26 0.29 4.07 9.02 4.07 0.60 1.10 0.22
Esferain 37.05 57.49 1203 49.90 0.52 2.34 −17.60 42.30 16.34 10.41 2.00 43.50 18.29 13.60 8.36 3.78
Bojnoord 37.48 57.27 1100 37.40 0.67 2.45 −21.00 40.60 13.23 9.39 2.00 59.57 18.32 14.80 7.82 3.94

Jajrom 36.96 56.33 969 30.60 0.35 1.88 −16.30 42.00 16.68 10.34 2.00 44.85 16.84 13.50 8.47 3.51
Raz 37.94 57.10 1278 25.40 0.82 2.72 −17.30 38.30 13.74 9.20 10.00 53.70 20.86 13.1 8.32 3.48

Shirvan 37.43 57.84 1051 29.80 0.58 2.38 −16.70 40.10 13.24 9.61 7.00 58.82 20.87 13.30 8.42 3.52
Farooj 37.22 58.23 1196 28.00 0.68 2.66 −15.10 38.90 12.94 9.33 7.00 56.60 20.47 13.34 8.25 3.36

Ashkhaneh 37.57 56.95 762 31.20 0.78 2.64 −18.40 43.80 16.88 9.75 4.00 52.56 19.89 13.00 7.95 4.74
Mean 37.38 57.32 1079.9 33.19 0.63 2.44 −17.49 40.86 14.72 9.72 4.86 52.80 19.36 13.52 8.23 3.76

StdDev 0.33 0.62 174.39 8.23 0.16 0.29 1.87 1.96 1.81 0.48 3.18 6.42 1.56 0.60 0.25 0.47
Chabahar 25.28 60.62 8 130.10 0.29 3.73 7.90 42.60 26.62 3.71 1.00 73.76 14.53 12.20 9.19 2.27
IranShahr 27.20 60.70 591 56.50 0.27 2.12 −2.20 49.30 27.42 8.68 1.00 26.95 15.45 12.20 9.39 2.20

Khash 28.22 61.20 1394 99.00 0.42 3.20 −10.00 43.40 21.34 8.51 0.00 27.70 16.54 13.30 9.49 2.48
Rask 26.23 61.40 406 56.00 0.35 2.66 2.70 51.70 30.77 6.49 1.00 32.84 17.88 12.10 8.93 2.25
Zabul 31.03 61.48 489 28.60 0.14 1.11 −11.80 49.60 22.64 10.05 1.00 34.21 16.34 13.00 8.96 2.95

Zahedan 29.47 60.88 1370 53.80 0.20 1.59 −13.00 43.40 19.53 8.70 13.00 19.53 16.77 13.20 9.34 2.70
Zahak 30.90 61.68 495 70.00 0.13 1.28 −10.00 49.00 24.97 10.05 4.80 27.38 15.09 13.40 9.27 2.90

Saravan 27.33 62.33 1195 79.70 0.28 2.25 −6.00 45.40 22.81 8.35 1.00 27.14 15.50 13.10 9.53 2.26
Konark

(Airport) 25.44 60.38 528 147.00 0.28 3.42 3.80 49.00 27.29 4.94 1.00 62.20 13.15 12.70 8.76 2.19

MirJave 29.02 61.43 836 25.80 0.11 1.02 −8.10 47.40 26.59 9.68 1.00 18.13 14.45 13.00 9.30 2.54
NosratAbad 29.85 59.98 1127 42.00 0.20 1.67 −6.90 45.50 24.69 9.52 1.00 20.26 13.94 13.20 9.49 2.57
NikShahr 26.23 60.20 510 110.70 0.48 3.95 2.80 50.80 29.59 7.02 1.00 31.33 16.40 12.70 9.61 2.08

Mean 28.02 61.02 745.75 74.93 0.26 2.33 −4.23 47.26 25.36 7.98 2.23 26.55 15.50 12.84 9.27 2.45
StdDev 2.04 0.68 434.92 39.23 0.11 1.04 7.00 3.10 3.34 2.04 3.58 5.61 1.35 0.46 0.27 0.29

https://data.irimo.ir
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2.2.2. Satellite-Based Data

Several techniques have been developed to take advantage of satellite observations
over the last few years. Satellite precipitation products are obtained by combining infrared,
microwave, and radar precipitation data from various satellite sensors. TRMM/TMPA and
GPM/IMERG products are two well-known and commonly used sources of precipitation
data. Following the end of the TRMM mission in 2015, GPM, together with partner
satellites, took over the main role of providing data for precipitation products. In addition
to measuring rainfall, GPM can record snowfall and rainfall of less than 0.5 mm per hour.
GPM can also cover latitudes between 65◦ in the Northern and Southern hemispheres.
TRMM’s satellite precipitation data was discontinued in 2015; however, the TMPA/3B43
version 7 uses other satellites in the constellation. As was the case for TMPA, the IMERG
algorithm was applied to TRMM data and reprocessed to present a homogeneous dataset
with the current GPM data since 2000. TMPA/3B43V7 and IMERG version 6 were obtained
from the NASA website (https://gpm.nasa.gov, accessed on 23 January 2020) for the
2000–2017 period.

2.3. Technical Framework

The objective of this study is twofold. The first aim is to compare the performance of
the satellite precipitation products against ground station measurements over the study
period, drought conditions, and seasons. The second aim is to achieve a correction model
to predict the errors of the satellite precipitation data using a coefficient that minimizes the
root mean square error (RMSE) between satellite and ground station precipitation data.

Ground data are usually at point scales while satellite products include gridded
precipitation products; therefore, comparing them is always challenging. There are two
general approaches to comparison. The first method is to compare the gauge directly with
the pixel value at the station [31,43]. The second method is pixel-to-pixel comparison, in
which in-situ data are converted to the desired grid scale using interpolation methods
and then compared [1,44,45]. Although the second approach has been used in several
studies, it has been criticized by some researchers because it creates some uncertainties in
computation through interpolation. In this study, the first method was used to evaluate
the satellite-derived products and compare them for two reasons. First, in areas with
sparse ground stations or heterogeneous physiography, interpolation does not yield good
results, as confirmed by the findings of this study. Secondly, this method has been done
comparatively for the whole study area. Thus, if an error occurs, it is generally for the
whole calculation and will not affect the results. The following formulas were used to
assess the performance of the satellite products. For IMERG, the formulas are the same.

RMSE =

√
∑(TMPA − Station)2

N
(1)

Bias =
∑(TMPA − Station)

N
(2)

CC =
∑
(
station − station

)
×
(
TMPA − TMPA

)√
∑
(
station − station

)2 × ∑
(
TMPA − TMPA

)2
(3)

Standard_Error =

√√√√∑
(
TMPA − TMPA

)2

N × (N − 1)
(4)

2.4. Comparison of Satellite Data with Interpolated Ground-Based Data

Data from synoptic stations are at point scales compared to satellite precipitation
data with at least 100 km2 area pixels. Therefore, the satellite data were compared with
the interpolated values of some stations for 2017. The inverse distance weighting (IDW)

https://gpm.nasa.gov
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interpolation method, used here, assumes that values measured near the prediction location
have more influence on the prediction than those farther away. In other words, the quantity
of precipitation was interpolated in the ground station location using other ground stations
measurements. Then, the interpolated value in the station’s location was compared with
the station and satellite products. Three modes for selecting comparison points were
considered. In the first case, a station that was in a relatively densely populated area was
selected. In the second case, a station with a heterogeneous topography was selected, and
in the third case, a station relatively far from the other stations.

2.5. Assessment of Satellite Data on the Synoptic Ground Stations

The satellite products were compared using the Pearson correlation coefficient be-
tween ground stations and corresponding satellite image pixels. It determines how well
satellite datasets fit ground-based measurements. R-squared is the square of the correlation
coefficient; higher values of R2 result in lower errors. Moreover, this study introduced
the following equation called RMSEx, where ‘x’ is the factor that should be calculated in
such a way as to make the equation minimum based on the ground stations and their
corresponding satellite data. With x = 1, it will be typical RMSE. The best coefficients for
approaching precise rainfall values from two sources are achievable by minimizing the
following equation.

RMSEx =

√
∑(x × (satellite product)− (gauge product))2

N
(5)

In Equation (5), by changing x, the smallest RMSEx can be obtained, and N is the
number of records. If the x-factor is higher than one, the stations’ values are greater than
satellite product values, and so satellite product underestimates the data. If the x value is
less than one, the satellite product overestimates the rainfall data. X, which hereafter is
called the ‘correction factor’ (CF), controls the peaks, which may be an essential factor in
flood occurrences.

2.6. Assessment of Satellite Data over Drought and Wet Conditions

SPI is widely used in meteorological drought studies over different periods [46,47].
Lack of rainfall in the short term affects soil moisture, while it often affects groundwater,
river flow, and water resources in long periods [47,48]. Therefore, SPI indicates soil moisture
in short periods, while it is associated with the number of groundwater reserves over more
extended periods. In addition, this indicator can be used to compare climates that are
significantly different.

The threshold values of SPI proposed by McKee et al. (1993) and developed by
Edwards [49] are shown in Table 2. The precipitation data of the ground stations were
classified according to this table, and then their correlation with satellite data was examined.
The same method was used to compare the seasonal performance of satellite data.

Table 2. Classes of drought and wet conditions based on SPI [18].

Period SPI

Extremely wet ≥+2.0
Very wet +1.5 to +1.99

Moderately wet +1.0 to +1.49
Normal +0.99 to −0.99

Moderately dry −1.0 to −1.49
Very dry −1.5 to −1.99

Extremely dry ≤−2.0
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3. Results
3.1. Interpolated Precipitation Versus IMERG and TMPA

The comparisons of interpolated results with IMERG, TMPA, and ground-based
measurements are presented in Figure 3. The maps are provided for the precipitation data
from 2017, the newest data used in this study. The calculations are implemented for the
points in areas with different heterogeneities. The stations selected for comparison are
shown in pink in Figure 3. As can be seen, the interpolation results are sometimes higher
than the satellite values and sometimes vice versa. The difference between the measured
and the interpolated values depends on the distance of the surrounding stations to the
desired point and the heterogeneity of the topography between the desired point and
other stations.

Figure 3. Comparison of station (pink dots) precipitation in 2017 with IMERG, TMPA, and interpo-
lated value using IDW interpolation method, (a) humid and rainy, (b) semi-arid, and (c) arid climate;
horizontal axes are months.
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3.2. Performance of Satellite Data over the Study Areas

Figure 4 shows the comparison of precipitation data from satellite and ground stations
for the province centers under study with different climatic conditions. The precipitation
data are measured in millimeters per hour; only three stations are displayed here. In
all graphs, IMERG shows higher R2 than TMPA, especially in low rainfall, in which the
R-squared of IMERG is over 30% higher than TMPA. In the high rain region (a), the higher
the rainfall, the greater the errors.

Figure 4. Comparison of monthly average precipitation between stations and satellite data for (a,b)
Rasht (humid and rainy) (c,d) Bojnoord (semi-arid), and (e,f) Zahedan (arid). Red and black dashed
lines show the trend line, and x = y line, respectively. The stations used here are marked by red points
in Figure 1.
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3.3. Error Adjustment of Satellite Precipitation

Figure 5 illustrates the effect of the correction factor on the monthly variations of
IMERG and TMPA precipitation compared to a ground station. Only five years were
selected for better visualization. The graphs show that IMERG and TMPA overestimate
the station’s rainfall data, especially in the peaks. However, the patterns of corrected data
are the same as the original ones. This is because the correction factor is multiplied by the
IMERG/TMPA values; therefore, it does not change values equal to zero.

Figure 5. Comparison of monthly precipitation change graphs of ground-station measurement,
IMERGV6, TMPAV7, and corrected data (using CF) from 2001 to 2005 for Bojnoord in semi-arid and
low rainfall conditions. (a) IMERG, (b) TMPA.

R-squared and correction factors (CFIMERG and CFTMPA) of all ground stations are
listed in Table 3. The IMERG/TMPA data overestimate precipitation because the CF is less
than one. It means the satellite data should be decreased. However, in the high rain region,
IMERG/TMPA mostly underestimates the precipitation. Nevertheless, not only IMERG
outperforms TMPA, but it is also more precise than TMPA. On average, IMERG has the
best performance in the arid region and TMPA in high rain areas. The highest discrepancy
between IMERG and TMPA happened in ZAHAK, which is displayed in bold.

Figures 6–8 demonstrate the values of correction factors for both datasets in the study
areas as colored circles. These circles work in such a way that if the satellite estimate is
equal to ground measurement, then the circle is divided into two equal parts. However, if
the satellite estimate is higher than the ground observation, its share in the circle is greater,
and the correction factor will be less than one, and if the correlation factor is less than one,
vice versa. In these figures, the Google Earth satellite images are tilted to be visualized
as 3D images. The small precipitation maps were included in the top-right of each figure.
Comparison of the precipitation map and the corresponding Google Earth image reveals a
direct relationship between the amount of precipitation and IMERG/TMPA performance.
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Table 3. R-squared and correction factors of IMERG and TMPA in ground stations.

Station R2
IMERG R2

TMPA CFIMERG CFTMPA

Astara 0.74 0.73 1.27 1.29
Anzali 0.76 0.76 1.29 1.20
Talesh 0.59 0.46 0.96 1.01

Deylaman 0.54 0.53 0.38 0.48
Rasht (Airport) 0.86 0.83 0.95 0.79

Rasht (Agri.) 0.83 0.77 0.99 0.94
Rood Bar 0.25 0.30 0.36 0.40
Rood Sar 0.66 0.73 1.11 1.16
Kiashahr 0.72 0.68 0.99 0.86
Lahijan 0.77 0.76 1.21 1.20
Masoole 0.77 0.66 0.98 1.05
Manjil 0.50 0.57 0.29 0.39

Average 0.67 0.65 0.90 0.90
StdDev 0.17 0.16 0.36 0.32

Esferain 0.71 0.67 0.64 0.57
Bojnoord 0.74 0.72 0.65 0.57

Jajrom 0.54 0.45 0.47 0.51
Raz 0.68 0.67 0.71 0.85

Shirvan 0.84 0.75 0.59 0.56
Farooj 0.94 0.92 0.76 0.71

Ashkhaneh 0.76 0.71 0.94 0.78

Average 0.75 0.70 0.68 0.65
StdDev 0.12 0.14 0.15 0.13

Khash 0.74 0.59 0.60 0.60
Rask 0.88 0.78 0.71 0.66
Zabul 0.90 0.81 1.25 1.15

Zahedan 0.68 0.58 0.83 0.74
Zahak 0.85 0.15 0.43 0.05

Saravan 0.90 0.70 0.79 0.70
Konarak (Airport) 0.80 0.63 0.46 0.43

MirJave 0.77 0.83 0.73 0.86
NosratAbad 0.69 0.47 0.69 0.91

NikShahr 0.75 0.63 0.48 0.48
Chabahar 0.68 0.50 0.89 0.76
IranShahr 0.70 0.69 0.78 0.81

Average 0.78 0.61 0.72 0.68
StdDev 0.09 0.18 0.23 0.28

Figure 6. Precipitation correction coefficient for Gilan. The legend is shown when satellite and station
have an equal amount. The image is tilted to create a 3D perspective.
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Figure 7. Precipitation correction coefficient for North Khorasan. The legend is shown when satellite
and station have an equal amount. The image is tilted to create a 3D perspective.

Figure 8. Precipitation correction coefficient for Sistan-Baluchestan. The legend is shown when
satellite and station have an equal amount. The image is tilted to create a 3D perspective.

3.4. Performance of IMERG and TMPA Data in Wet, Normal, and Drought Periods

SPI takes advantage of at least 20 years of data, but some ground stations were newly
established and covered short periods. Therefore, SPI was calculated only for stations
with available data over the period from 1998 to 2017. First, the drought, wet, and normal
conditions were calculated using in-situ data over this period (20 years). The performance
of satellite-based precipitation (2000 to 2017) was assessed in comparison to the obtained
in-situ results. Figure 9 shows the results of comparing ground data with satellite data for
different study areas under different drought conditions. Three- and six-month intervals
were considered for short-term, and 12- and 24-month intervals for long-term analysis.
The improvement of performance from IMERG to TMPA is considerable in arid climatic
conditions. The overall R2 factor in the arid region is 0.64 for TMPA, while for IMERG, it is
0.86. However, R2 increased from 0.76 to 0.78 for TMPA and IMERG in humid and 0.77 to
0.80 in semi-arid regions.
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Figure 9. Comparison of average performance of satellite product in wet, normal, and drought
periods of (a) humid and rainy, (b) semi-arid, and (c) arid climate.

3.5. Seasonal Performance of Satellite Products in Different Climatic Conditions

Figure 10 compares R-squared and standard error Equation (4) of satellite data with
ground measurements in different seasons. The R-squared shows how the data are con-
sistent with each other. However, the standard error indicates how the data is good and
spread out around the mean. In general, R-squared of IMERG is higher than TMPA over
yearly measurements. The highest was seen in the arid area, where IMERG’s R2 was 0.8,
while TMPA’s 0.67, with a higher standard error. Furthermore, the most considerable
difference between IMERG and TMPA performance occurred for spring in the arid region.
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Figure 10. Average seasonal performance of IMERG and TMPA data and their standard errors.

3.6. Estimating the Correction Factor Based on the Properties of Ground Synoptic Stations

Linear regression using a stepwise method showed that among the variables of Table 1,
there are only three statistically significant independent variables. Therefore, the final
regression equation for IMERG was converted to Equation (5)

X = 1.343 + 0.242 ∗ MeanPrecip + 0.00024 ∗ Altitude − 0.031 ∗ Latitude (6)

In Equation (6), MeanPrecip is the average precipitation of each ground station over the
study period (2000 to 2017). Altitude and Latitude are the characteristics of the ground sta-
tions. The coefficients of Equation (6) for IMERG and TMPA data are shown in Tables 4 and 5,
respectively. The t-values show that the mean precipitation effect is two times higher than
the altitude and latitude effects on the correction factor and is statistically significant based
on the p-value.

Table 4. Results of a linear regression of the prediction accuracy of IMERG data based on station
parameters.

Parameter of Stations Coefficient Std. Error t Sig. VIF.

(Constant) 1.343 0.239 5.609 0.000
Latitude −0.031 0.008 −3.822 0.001 1.698
Altitude 0.00024 0.000 3.170 0.004 1.851

Precipitation Mean 0.242 0.032 7.470 0.000 2.716

Table 5. Results of a linear regression of the prediction accuracy of TMPA data based on station
parameters.

Parameter of Stations Coefficient Std. Error t Sig. VIF.

(Constant) 1.322 0.256 5.156 0.000
Latitude −0.031 0.009 −3.644 0.001 1.698
Altitude 0.00026 0.000 3.249 0.003 1.851

Precipitation Mean 0.246 0.035 7.085 0.000 2.716

The comparison of observed and predicted correction factors for IMERG and TMPA
data are shown in Figure 11. The R2 values for the prediction of IMERG and TMPA precision
were 0.71 and 0.68, respectively.
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Figure 11. Comparison of the observed and predicted correction factors of GPM/IMERG and
TRMM/TMPA.

4. Discussion

Rainfall is the primary source of freshwater supply on the Earth [50]. Therefore, an
accurate and precise understanding of precipitation can help in various fields, such as
agriculture and preventing natural disasters [51]. Satellite data is an essential source of
rainfall data due to its global coverage, broad time ranges, and low cost. However, various
studies have shown that the accuracy of satellite data is not entirely reliable in some places
and requires error correction [52]. In this study, satellite data performance (IMERG/TMPA)
was evaluated in three different climates. Winter rainfall plays a vital role in tree growth in
the study area and prevents premature forest fires, so a more accurate estimate of rainfall
in winter can benefit forest management research [29]. Therefore, the accuracy of the data
should be checked in different seasons. Furthermore, drought and wet conditions are
critical in water resource management. Consequently, the reliability of data on drought
and wet conditions is essential and can be useful in increasing the accuracy of predictions
and timely warnings.

4.1. Interpolation of Ground-Based Precipitation or Satellite Measurement

Interpolation is a standard method for estimating precipitation in areas with no rain
gauge stations [53,54]. Figure 3 compares ground station precipitation, interpolated values,
and satellite imagery results for 2017 for three different climatic zones. Statistical compar-
ison based on the t-test method showed no significant difference between interpolated
values and satellite measurements. There was a good agreement between ground measure-
ments and interpolated values on homogeneous areas. In the rainy region, interpolation
roughly outperformed satellite data in the homogeneous areas. In contrast, the satellite
data was more consistent with the ground data than interpolated data in the heterogeneous
region. In other words, the interpolation method cannot accurately estimate the amount
of precipitation using the surrounding stations in heterogeneous areas. In the semi-arid
region with dense rain gauges, the output of the interpolation method was more consistent
with ground measurements than the satellite products. However, the performance of
satellite measurements in remote areas was more relevant to the interpolation results based
on ground station measurements. Similar results were seen in the arid region, showing
that interpolation works better at short distances around the pixels of satellite imagery.
However, satellite data have more acceptable results than interpolation methods in areas
with sparse and heterogeneous rain gauges. The results of comparing ground data and in-
terpolated values show that the amount of rainfall measured at ground stations can be used
for distances comparable to the pixels of satellite images, especially in homogeneous areas.
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4.2. Comparison of IMERG and TMPA Performance and Precision Prediction

Based on the investigations, the GPM/IMERG product was mainly more accurate
than TRMM/TMPA over different climates, although, in some stations, TMPA was slightly
(less than 5%) better than IMERG. The performance of satellite data in the arid climate was
better than in other climates. On average, the highest difference between the IMERG and
TMPA data was in the arid climate and the lowest in the rainy climate. For example, in the
arid climate station, namely ZAHAK, the R2 was 0.15 for TMPA and 0.85 for IMERG. The
same results were found by Huffman [55] in the driest place of Colombia.

The correction factor obtained by minimizing the root mean square error (RMSE)
between the ground station and satellite data varied in different climates. For example, the
spatial analysis of CF (Figures 6–8) shows that in the humid area, in locations exposed to sea
with dense vegetation, the rainfall was underestimated by satellite. However, precipitation
was overestimated in stations behind the mountains, as was the case for semi-arid and
arid climates.

Although the CF does not affect the precipitation estimation correlation between the
stations and satellite data, it corrects the monthly precipitation totals. In other words,
IMERG/TMPA overestimates and underestimates the rainfall, and CF adjusts the rainfall
estimation to be close to the station amount. Results show that CF could be calculated
using the average precipitation, altitude, and latitude of the locations in the study area.
Average precipitation and altitude have positive, and latitude negative, effects on the
amount of CF. Therefore, for locations with high rain or high altitudes, IMERG/TMPA
underestimates the precipitation. Many validation studies confirm the strong dependence
of the accuracy of satellite rainfall estimation on the climate regime and topographic
features of the study regions. Therefore, they propose regionally-based evaluations instead
of global approaches [56–58]. It should be mentioned that the calculated CF are specific for
the case study area and may not work for other case studies.

4.3. Performance of Satellite Products in Drought, Normal, and Wet Conditions

Due to the importance of rainfall in drought periods and a positive correlation between
the CF and the amount of rainfall, the performance was examined to measure the satellite
products’ reliability in drought and wet conditions. The results show that by increasing
the time scales, the correlation increases as well. In other words, satellite products have
higher accuracy in predicting long-term drought or wet conditions, but they should be
used cautiously for short periods.

Because of the SPI index limitations, the calculations were done only for the stations
with at least 20 years of data. Generally speaking, IMERG products are always more
accurate than TMPA in all drought conditions. However, it seems their products have
different accuracies in different scales of droughts and other conditions. In general, satellite
products have the highest correlation in wet conditions and the lowest in drought periods.
Furthermore, Figure 9 shows that the IMERG algorithm operates more accurately than
TMPA in the arid region, especially in drought conditions. More importantly, the accuracy
of satellite products in short-term drought conditions, especially in the arid climate, is
significantly lower than in normal and wet conditions. In drought conditions, the lowest
correlation belongs to the arid area in the short-term period. In other words, there can be
significant uncertainties in the monitoring of agricultural drought. As far as our research
shows, many evaluations of drought or wet monitoring are based on satellite products, but
this study shows that drought or wet monitoring through satellite products, especially for
drought periods, should be done with caution [31,59–62].

4.4. Performance of Satellite Products in Different Seasons

In general, IMERG has outperformed TMPA in yearly and seasonal performance. The
highest enhancement of IMERG belongs to the arid region, where there are sparse ground
stations. Aside from performance, the standard error has also been noticeably reduced
in IMERG, especially for arid and semi-arid regions. Seasonal exploration of product
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performance showed that IMERG had the best results during winter in the arid region.
In contrast, it had slightly lower correlation and a larger standard error in other seasons.
On the other hand, TMPA had the best results in summer and worst in spring with a
high standard error. On average, the highest correlation and lowest spread occurred in
the studied areas in winter and spring. However, the worst correlation with the highest
dispersion occurred in summer. These results are contrary to the findings of Kolios and
Kalimeris [63] in the Mediterranean region.

It can be inferred that product performance decreased with the warming of the air
and reached the lowest value in the summer. Then the correlation began to increase in
the fall and reached its highest value in the winter. The standard error was the highest in
summer and lowest in winter. These results are in complete agreement with the results of
Adeyewa and Nakamura [64]. The overall average correlation from highest to lowest was
in winter, spring, fall, and summer. A hypothesis is formed here in the study that the low
performance of satellite products in the summer is probably due to the rapid evaporation
and short duration of precipitation in the regions. In other words, the satellite has measured
precipitation, a part of which has evaporated before reaching the ground, so precipitation
accuracy in hot weather is estimated to be lower than in cold weather.

In the end, the lack of long-term meteorological ground station data, the limited
number of stations, and the non-uniform distribution of ground stations limited our study
to explore the satellite products in depth. Therefore, more investigations with a larger
number of ground stations across the country and a more extensive study area, especially
for drought monitoring, are suggested for future studies. Moreover, the accuracy of
precipitation after long drought conditions that can lead to flood occurrence calls for extra
investigations.

5. Conclusions

The provision of accurate precipitation data leads to improvements in various agricul-
tural applications, water resource management, and natural disaster forecasting. Despite
the advantages of satellite precipitation products, remote sensing measurements are inaccu-
rate in some parts of the world, leading to incorrect results and unreliable interpretations.
This paper examined the performance of satellite products in three climates—including
humid and rainy, semi-arid with low rainfall, and arid with low rainfall—in drought and
wet conditions and different seasons. The results of this study are as follows. (1) In the
case study, the precision of satellite products in different climates depends on latitude, so
that in high latitudes, IMERG/TMPA products overestimate the precipitation products
and vice versa. (2) The average monthly rainfall measured by satellite is 11% (in the high
rainfall region), 50% (in the semi-arid region), and 43% (in the arid region) higher than
station measurements. (3) The introduced correction factor (CF) does not affect the value
of the R2 coefficient. CF increases the precision of the satellite products. (4) Respectively,
71% and 68% of the variation in IMERG and TMPA CF values can be explained by three
parameters, namely mean precipitation, altitude, and latitude. (5) The performance of
satellite precipitation products in wet conditions is higher than in normal conditions, and
the correlation in normal conditions is higher than in drought conditions. The lowest
performance occurs in the drought condition of the arid region. (5) Satellite products have
the best performance in winter and the worst performance in summer.

Author Contributions: Conceptualization, J.K. and A.A.K.; formal analysis, J.K.; funding acquisition,
S.Q.; investigation, J.K., A.A.K. and S.Q.; methodology, J.K.; project administration S.Q. and A.A.K.;
software, J.K.; supervision, S.Q. and A.A.K.; visualization, J.K.; writing—original draft, J.K.; writing—
review and editing, S.Q., A.A.K. and M.K.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.



Remote Sens. 2022, 14, 76 17 of 19

Data Availability Statement: Data are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shukla, A.K.; Ojha, C.S.P.; Singh, R.P.; Pal, L.; Fu, D. Evaluation of TRMM precipitation dataset over Himalayan catchment: The

upper Ganga basin, India. Water 2019, 11, 613. [CrossRef]
2. Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical

models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [CrossRef]
3. Faurès, J.-M.; Goodrich, D.; Woolhiser, D.A.; Sorooshian, S. Impact of small-scale spatial rainfall variability on runoff modeling. J.

Hydrol. 1995, 173, 309–326. [CrossRef]
4. Yan, Y.; Wu, H.; Gu, G.; Huang, Z.; Alfieri, L.; Li, X.; Nanding, N.; Pan, X.; Tang, Q. Climatology and Interannual Variability of

Floods During the TRMM Era (1998–2013). J. Clim. 2020, 33, 3289–3305. [CrossRef]
5. Robbins, J. A probabilistic approach for assessing landslide-triggering event rainfall in Papua New Guinea, using TRMM satellite

precipitation estimates. J. Hydrol. 2016, 541, 296–309. [CrossRef]
6. Ibadullah, W.M.W.; Tangang, F.; Juneng, L.; Jamaluddin, A.F. Practical Predictability of the 17 December 2014 Heavy Rainfall

Event over East Coast of Peninsular Malaysia using WRF Model. Sains Malays. 2019, 48, 2297–2306. [CrossRef]
7. Amini, A.; Abdeh Kolahchi, A.; Al-Ansari, N.; Karami Moghadam, M.; Mohammad, T. Application of TRMM Precipitation Data

to Evaluate Drought and Its Effects on Water Resources Instability. Appl. Sci. 2019, 9, 5377. [CrossRef]
8. Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating

MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [CrossRef]
9. Collischonn, B.; Collischonn, W.; Tucci, C.E.M. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates.

J. Hydrol. 2008, 360, 207–216. [CrossRef]
10. Turk, F.J.; Rohaly, G.D.; Jeff, H.; Smith, E.A.; Marzano, F.S.; Mugnai, A.; Levizzani, V. Meteorological applications of precipitation

estimation from combined SSM/I, TRMM and infrared geostationary. In Microwave Radiometry and Remote Sensing of the Earth’s
Surface and Atmosphere; VSP International Science Publishers: Leiden, The Netherlands, 2020; p. 353.

11. Macharia, J.M.; Ngetich, F.K.; Shisanya, C.A. Comparison of satellite remote sensing derived precipitation estimates and observed
data in Kenya. Agric. For. Meteorol. 2020, 284, 107875. [CrossRef]

12. Zipper, S.C.; Loheide II, S.P. Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high
resolution surface energy balance model. Agric. For. Meteorol. 2014, 197, 91–102. [CrossRef]

13. Niemczynowicz, J. Urban hydrology and water management–present and future challenges. Urban Water 1999, 1, 1–14. [CrossRef]
14. Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015,

51, 4823–4839. [CrossRef]
15. Mashaly, A.F.; Fernald, A.G. Identifying Capabilities and Potentials of System Dynamics in Hydrology and Water Resources as a

Promising Modeling Approach for Water Management. Water 2020, 12, 1432. [CrossRef]
16. Boluwade, A. Spatial-Temporal Assessment of Satellite-Based Rainfall Estimates in Different Precipitation Regimes in Water-Scarce

and Data-Sparse Regions. Atmosphere 2020, 11, 901. [CrossRef]
17. de Carvalho Lopes, D.; Neto, A.J.S.; de Queiroz, M.G.; de Souza, L.S.B.; Zolnier, S.; da Silva, T.G.F. Sparse Gash model applied to

seasonal dry tropical forest. J. Hydrol. 2020, 590, 125497. [CrossRef]
18. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th

Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183.
19. Zhou, Z.; Guo, B.; Su, Y.; Chen, Z.; Wang, J. Multidimensional evaluation of the TRMM 3B43V7 satellite-based precipitation

product in mainland China from 1998–2016. PeerJ 2020, 8, e8615. [CrossRef]
20. Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65. [CrossRef]
21. Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin,

Malaysia. Water 2017, 9, 57. [CrossRef]
22. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 gridded dataset (1901–2006)

of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J.
Hydrometeorol. 2010, 11, 1033–1043. [CrossRef]

23. Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J.
Climatol. A J. R. Meteorol. Soc. 2006, 26, 971–985. [CrossRef]

24. Akhtari, R.; Morid, S.; Mahdian, M.H.; Smakhtin, V. Assessment of areal interpolation methods for spatial analysis of SPI and EDI
drought indices. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 135–145. [CrossRef]

25. Tabari, H.; Abghari, H.; Hosseinzadeh Talaee, P. Temporal trends and spatial characteristics of drought and rainfall in arid and
semiarid regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [CrossRef]

26. Rostamian, R.; Eslamian, S.; Farzaneh, M.R. Application of standardised precipitation index for predicting meteorological drought
intensity in Beheshtabad watershed, central Iran. Int. J. Hydrol. Sci. Technol. 2013, 3, 63–76. [CrossRef]

27. SafarianZengir, V.; Sobhani, B.; Asghari, S. Modeling and Monitoring of Drought for forecasting it, to Reduce Natural hazards
Atmosphere in western and north western part of Iran, Iran. Air Qual. Atmos. Health 2020, 13, 119–130. [CrossRef]

http://doi.org/10.3390/w11030613
http://doi.org/10.1175/BAMS-88-1-47
http://doi.org/10.1016/0022-1694(95)02704-S
http://doi.org/10.1175/JCLI-D-19-0415.1
http://doi.org/10.1016/j.jhydrol.2016.06.052
http://doi.org/10.17576/jsm-2019-4811-01
http://doi.org/10.3390/app9245377
http://doi.org/10.1016/j.jag.2012.09.010
http://doi.org/10.1016/j.jhydrol.2008.07.032
http://doi.org/10.1016/j.agrformet.2019.107875
http://doi.org/10.1016/j.agrformet.2014.06.009
http://doi.org/10.1016/S1462-0758(99)00009-6
http://doi.org/10.1002/2014WR016869
http://doi.org/10.3390/w12051432
http://doi.org/10.3390/atmos11090901
http://doi.org/10.1016/j.jhydrol.2020.125497
http://doi.org/10.7717/peerj.8615
http://doi.org/10.1002/wcc.81
http://doi.org/10.3390/w9010057
http://doi.org/10.1175/2010JHM1224.1
http://doi.org/10.1002/joc.1264
http://doi.org/10.1002/joc.1691
http://doi.org/10.1002/hyp.8460
http://doi.org/10.1504/IJHST.2013.055233
http://doi.org/10.1007/s11869-019-00776-8


Remote Sens. 2022, 14, 76 18 of 19

28. Rittenhouse, C.D.; Rissman, A.R. Changes in winter conditions impact forest management in north temperate forests. J. Environ.
Manag. 2015, 149, 157–167. [CrossRef]

29. Westerling, A.L.; Cayan, D.R.; Brown, T.J.; Hall, B.L.; Riddle, L.G. Climate, Santa Ana winds and autumn wildfires in southern
California. Eos Trans. Am. Geophys. Union 2004, 85, 289–296. [CrossRef]

30. Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison
of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [CrossRef]

31. Nastos, P.; Kapsomenakis, J.; Philandras, K. Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece. Atmos.
Res. 2016, 169, 497–514. [CrossRef]

32. Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA)
estimation over Iran. Atmos. Res. 2017, 190, 121–127. [CrossRef]

33. Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating satellite-based and reanalysis precipitation datasets with
gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [CrossRef]

34. Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021,
13, 1745. [CrossRef]

35. Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under
different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [CrossRef]

36. Anjum, M.N.; Ahmad, I.; Ding, Y.; Shangguan, D.; Zaman, M.; Ijaz, M.W.; Sarwar, K.; Han, H.; Yang, M. Assessment of IMERG-
V06 precipitation product over different hydro-climatic regimes in the Tianshan Mountains, North-Western China. Remote Sens.
2019, 11, 2314. [CrossRef]

37. Wu, L.; Xu, Y.; Wang, S. Comparison of TMPA-3B42RT legacy product and the equivalent IMERG products over mainland China.
Remote Sens. 2018, 10, 1778. [CrossRef]

38. Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary evaluation of GPM-IMERG rainfall estimates over three distinct climate
zones with APHRODITE. Earth Space Sci. 2019, 6, 1321–1335. [CrossRef]

39. Tan, M.L.; Duan, Z. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens. 2017, 9, 720. [CrossRef]
40. Zeng, H.; Li, L.; Li, J. The evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) in drought monitoring in the Lancang

River Basin. J. Geogr. Sci. 2012, 22, 273–282. [CrossRef]
41. Tan, M.L.; Chua, V.P.; Tan, K.C.; Brindha, K. Evaluation of TMPA 3B43 and NCEP-CFSR precipitation products in drought

monitoring over Singapore. Int. J. Remote Sens. 2018, 39, 2089–2104. [CrossRef]
42. Xu, F.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical evaluation of GPM IMERG and TRMM 3B42V7

precipitation products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [CrossRef]
43. Michot, V.; Vila, D.; Arvor, D.; Corpetti, T.; Ronchail, J.; Funatsu, B.M.; Dubreuil, V. Performance of TRMM TMPA 3B42 V7 in

replicating daily rainfall and regional rainfall regimes in the Amazon basin (1998–2013). Remote Sens. 2018, 10, 1879. [CrossRef]
44. Pombo, S.; de Oliveira, R.P. Evaluation of extreme precipitation estimates from TRMM in Angola. J. Hydrol. 2015, 523, 663–679.

[CrossRef]
45. Mahbod, M.; Shirvani, A.; Veronesi, F. A comparative analysis of the precipitation extremes obtained from tropical rainfall-

measuring mission satellite and rain gauges datasets over a semiarid region. Int. J. Climatol. 2019, 39, 495–515. [CrossRef]
46. Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data.

Remote Sens. Environ. 2010, 114, 2875–2887. [CrossRef]
47. Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm 1. JAWRA J. Am. Water Resour. Assoc.

1999, 35, 311–322. [CrossRef]
48. Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in

Ethiopia using wavelet neural network and wavelet support vector regression models. J. Hydrol. 2014, 508, 418–429. [CrossRef]
49. Edwards, D.C. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Air Force Institute of Technology:

Wright-Patterson AFB, OH, USA, 1997.
50. Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1—A strategy

for system predictor identification. J. Hydrol. 2000, 239, 232–239. [CrossRef]
51. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global

precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]
52. Kenabatho, P.; Parida, B.; Moalafhi, D. Evaluation of satellite and simulated rainfall products for hydrological applications in the

Notwane Catchment, Botswana. Phys. Chem. Earth Parts A/B/C 2017, 100, 19–30. [CrossRef]
53. Haberlandt, U. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall

event. J. Hydrol. 2007, 332, 144–157. [CrossRef]
54. Teegavarapu, R.S.; Meskele, T.; Pathak, C.S. Geo-spatial grid-based transformations of precipitation estimates using spatial

interpolation methods. Comput. Geosci. 2012, 40, 28–39. [CrossRef]
55. Vallejo-Bernal, S.M.; Urrea, V.; Bedoya-Soto, J.M.; Posada, D.; Olarte, A.; Cárdenas-Posso, Y.; Ruiz-Murcia, F.; Martínez, M.T.;

Petersen, W.A.; Huffman, G.J. Ground validation of TRMM 3B43 V7 precipitation estimates over Colombia. Part I: Monthly and
seasonal timescales. Int. J. Climatol. 2021, 41, 601–624. [CrossRef]

http://doi.org/10.1016/j.jenvman.2014.10.010
http://doi.org/10.1029/2004EO310001
http://doi.org/10.1175/2008JCLI2028.1
http://doi.org/10.1016/j.atmosres.2015.08.008
http://doi.org/10.1016/j.atmosres.2017.02.011
http://doi.org/10.1016/j.atmosres.2019.104746
http://doi.org/10.3390/rs13091745
http://doi.org/10.3390/rs8020135
http://doi.org/10.3390/rs11192314
http://doi.org/10.3390/rs10111778
http://doi.org/10.1029/2018EA000503
http://doi.org/10.3390/rs9070720
http://doi.org/10.1007/s11442-012-0926-1
http://doi.org/10.1080/01431161.2018.1425566
http://doi.org/10.3390/rs11060697
http://doi.org/10.3390/rs10121879
http://doi.org/10.1016/j.jhydrol.2015.02.014
http://doi.org/10.1002/joc.5824
http://doi.org/10.1016/j.rse.2010.07.005
http://doi.org/10.1111/j.1752-1688.1999.tb03592.x
http://doi.org/10.1016/j.jhydrol.2013.10.052
http://doi.org/10.1016/S0022-1694(00)00346-2
http://doi.org/10.1175/BAMS-D-13-00164.1
http://doi.org/10.1016/j.pce.2017.02.009
http://doi.org/10.1016/j.jhydrol.2006.06.028
http://doi.org/10.1016/j.cageo.2011.07.004
http://doi.org/10.1002/joc.6640


Remote Sens. 2022, 14, 76 19 of 19

56. Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite
Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin,
China. Water Resour. Res. 2010, 46. [CrossRef]

57. Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.; Zhang, Z.; Shen, Y.; Hu, J. Similarity and difference of
the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos. 2013,
118, 13060–13074. [CrossRef]

58. Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during
the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeorol. 2016, 17, 1101–1117. [CrossRef]

59. Cashion, J.; Lakshmi, V.; Bosch, D.; Jackson, T.J. Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave
imager (TMI) satellite for the Little River Watershed Tifton, Georgia. J. Hydrol. 2005, 307, 242–253. [CrossRef]

60. Wang, J.; Wolff, D.B. Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J. Appl. Meteorol.
Climatol. 2010, 49, 310–324. [CrossRef]

61. Cao, Y.; Zhang, W.; Wang, W. Evaluation of TRMM 3B43 data over the Yangtze River Delta of China. Sci. Rep. 2018, 8, 5290.
[CrossRef]

62. Li, R.; Shi, J.; Ji, D.; Zhao, T.; Plermkamon, V.; Moukomla, S.; Kuntiyawichai, K.; Kruasilp, J. Evaluation and Hydrological
Application of TRMM and GPM Precipitation Products in a Tropical Monsoon Basin of Thailand. Water 2019, 11, 818. [CrossRef]

63. Kolios, S.; Kalimeris, A. Evaluation of the TRMM rainfall product accuracy over the central Mediterranean during a 20-year
period (1998–2017). Theor. Appl. Climatol. 2020, 139, 785–799. [CrossRef]

64. Adeyewa, Z.D.; Nakamura, K. Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteorol.
2003, 42, 331–347. [CrossRef]

http://doi.org/10.1029/2009WR008965
http://doi.org/10.1002/2013JD019964
http://doi.org/10.1175/JHM-D-15-0190.1
http://doi.org/10.1016/j.jhydrol.2004.10.019
http://doi.org/10.1175/2009JAMC2264.1
http://doi.org/10.1038/s41598-018-23603-z
http://doi.org/10.3390/w11040818
http://doi.org/10.1007/s00704-019-03015-3
http://doi.org/10.1175/1520-0450(2003)042&lt;0331:VOTRRD&gt;2.0.CO;2

	Introduction 
	Drought and Wet Conditions 
	Seasonal Importance of Precipitation 
	State of the Art 

	Materials and Methods 
	Study Area 
	Dataset 
	Basic Data 
	Satellite-Based Data 

	Technical Framework 
	Comparison of Satellite Data with Interpolated Ground-Based Data 
	Assessment of Satellite Data on the Synoptic Ground Stations 
	Assessment of Satellite Data over Drought and Wet Conditions 

	Results 
	Interpolated Precipitation Versus IMERG and TMPA 
	Performance of Satellite Data over the Study Areas 
	Error Adjustment of Satellite Precipitation 
	Performance of IMERG and TMPA Data in Wet, Normal, and Drought Periods 
	Seasonal Performance of Satellite Products in Different Climatic Conditions 
	Estimating the Correction Factor Based on the Properties of Ground Synoptic Stations 

	Discussion 
	Interpolation of Ground-Based Precipitation or Satellite Measurement 
	Comparison of IMERG and TMPA Performance and Precision Prediction 
	Performance of Satellite Products in Drought, Normal, and Wet Conditions 
	Performance of Satellite Products in Different Seasons 

	Conclusions 
	References

