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Abstract: Mapping soil heavy metal concentration using machine learning models based on readily
available satellite remote sensing images is highly desirable. Accurate mapping relies on appropriate
data, feature extraction, and model selection. To this end, a data processing pipeline for soil copper
(Cu) concentration estimation has been designed. First, instead of using single Landsat scenes,
the utilization of multiple Landsat scenes of the same location over time is considered. Second, to
generate a preferred feature set as input to a regression model, a number of feature extraction methods
are motivated and compared. Third, to find a preferred regression model, a variety of approaches
are implemented and compared for accuracy. In this research, 11 Landsat-8 images from 2013 to
2017 of Gulin County, Sichuan China, and 138 soil samples with lab-measured Cu concentrations
collected from the area in 2015 are used. A variety a metrics under cross-validation are used for
comparison. The results indicate that multi-temporal images increase accuracy compared to single
Landsat images. The preferred feature extraction varies based on the regression model used; however,
the best results are obtained using support vector regression and the original data. The final soil Cu
map generated using the recommended data processing pipeline shows a consistent spatial pattern
with a ground-truth land cover classification map. These results indicate that machine learning has
the ability to perform large-scale soil heavy metal mapping from widely available satellite remote
sensing images.

Keywords: Landsat-8; remote sensing; retrieval; soil heavy metal concentration; multi-temporal;
model selection; feature evaluation

1. Introduction

Heavy metal concentration (HMC) is a crucial property of soil quality that affects
environmental conditions and human health [1,2]. Traditionally, HMC maps are obtained
by first conducting field sampling and then performing spatial interpolation. Nevertheless,
the accuracy of the HMC maps obtained with the geostatistical interpolation approaches
are usually limited with the spatial stationary assumption [3] and the sparse, expensive
and time-consuming spatial samples process [4].

Remote sensing techniques offer efficiency, especially for studies using hyperspectral
imagery to deduce soil HMC [5–7]. Due to the significant uncertainties in the measuring
system, there are no known physical models available for the direct inversion of HMC
from hyperspectral data. Nevertheless, using empirical models, researchers have had more
success in estimating HMC based on hyperspectral data [7]. Currently, for HMC retrieval,
most studies adopt point-based spectrometer measurements with the limitations of spatial
coverage. Although some researchers employed hyperspectral images with dense and
wide spatial coverage capability for mineral concentration estimation [8,9], it is challenging
to obtain the hyperspectral imagery due to the lack of hyperspectral satellites and the cost
of airborne systems. In contrast, multispectral satellite images are more readily available
to researchers. For example, Landsat-8 imagery is freely available with the advantages of
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adequate spatial resolution and coverage, short revisit period, and broad spectral range
over the visible, near-infrared, short wave infrared and thermal infrared portion of the
spectrum. Although it is of benefit to utilize Landsat imagery for broad scale mapping
HMC, such investigations are not common. Therefore, to develop a fast and efficient
approach for soil HMC retrieval from Landsat-8 multispectral images is important.

The objective of this research is to investigate the use of Landsat-8 images for the
estimation of soil copper (Cu) concentration. This objective is challenging due to the weak
correlation between soil Cu concentration and spectral observations [10]; however, there
is potential for this weak spectral response to support soil Cu retrieval. For example,
wavelengths around 460, 1400, 1900 and 2200 nm have been found to be sensitive to Cu
concentration in a mining area [11]. Research with respect to a preferred band number
and the best spectral resolution for Cu detection have also been investigated [12]. Hence,
developing a framework that can effectively enhance this weak correlation to boost retrieval
accuracy is expected to have the ability to accurately map Cu concentrations. In this paper,
we highlight the following key items to improve Cu concentration detection using Landsat
imagery and follow with a detailed discussion of each one.

1. Instead of just using a single remote sensing image (SI), multi-temporal images (MTIs)
of the same area are considered;

2. Instead of just using the original Landsat data, various feature extraction scenarios
are evaluated;

3. A number of regression models are compared and contrasted to improve overall accuracy;
4. The complete data processing pipeline (multi-temporal data, feature extraction and

model selection) can produce maps consistent with ancillary ground-truth information.

First, to overcome the limited spectral resolution of Landsat-8, we adopt the use of
Landsat-8 MTI, as opposed to just single images, to enhance the spectral information.
Landsat-8 imagery plays an important role in studies on land cover classification [13],
land surface temperature and climate change [14,15], agriculture [16], and vegetation
property retrieval [17–19]. More specifically, Landsat-8 has been used for studies on the
retrieval of soil properties, e.g., soil moisture [20,21] and soil salinity [22], while there are
few applications of Landsat-8 data for soil HMC retrieval due to their limited spectral
sensitivity for soil heavy metal components. Landsat-8 data have a lower spectral resolution
compared to hyperspectral data, so to improve detection of Cu concentrations, we combine
MTIs for HMC retrieval.

The use of all bands of multi-temporal images has been applied to problems such as
land cover classification [23] and unmixing [24] using multispectral data as well as quanti-
tative retrieval of land surface properties from synthetic aperture radar (SAR) data [25,26].
These studies leverage MTI with repeated observations based on the assumption of the
temporal correlation effect of the spectral-temporal profile. As an example, for crop classifi-
cation, the crop categories are supposed to keep constant or highly correlated during the
multi-temporal observation period.

We know of no published research that demonstrates the use of MTI for the retrieval
of soil Cu concentration. The research reported in this paper involves the investigation of
the benefits of using MTIs from 2013 to 2017 over using a single time observation in 2015
for retrieving the Cu concentration in 2015. Considering that the HMC has a strong impact
on soil and vegetation [8], the assumption is that the Cu concentration in 2015 is correlated
with the temporal observations and that pixels with similar Cu concentrations tend to have
similar temporal observation patterns. Moreover, compared to SI, the MTI is captured
under different environmental and illumination conditions, and therefore, using MTIs can
statistically reduce the influence of some less relevant factors, e.g., the soil moisture content.

Second, to extract the Cu-relevant information in the high-dimensional temporal
spectral cube, we explore the use of several common feature extraction techniques. The
process of feature extraction projects features in the original space into a new feature space
with lower dimensionality, hopefully finding more meaningful information to improve
the learning performance and build better generalizable models [27]. The application of
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feature selection algorithms can produce better prediction accuracy [28–31]. Although the
importance of feature selection for HMC retrieval from imagery has been realized, feature
importance is often not evaluated in a systematic way. Furthermore, the relationship be-
tween the feature importance and different models is not considered and discussed. In
our research, we systematically evaluate three commonly used feature extraction methods
(principal component analysis (PCA), minimum noise fraction transform (MNF) and iso-
metric feature mapping (ISOMAP)) and choose the preferred feature combination based on
the importance of different features relative to different regression algorithms.

Third, to identify the preferred regression algorithm, we adopt and compare several
common regressors: support vector regression (SVR), partial least square regression (PLSR)
and artificial neural network (ANN). Due to a lack of knowledge of the underlying physics
in the soil Cu retrieval problem, uncertainty from the false understanding of the mathe-
matical relationship between features and observations can harm the inversion accuracy.
Simply using any empirical model with the improper complexity or structure is not appro-
priate. Therefore, to select a regression model from a group of empirical models based on
unbiased model evaluation is important. However, the absence of external cross-validation
for unbiased accuracy measure and model selection is common [29,32–36] and raises uncer-
tainties in retrieval results. Since test sets do not influence the model training [32], accuracy
measures without external cross-validation is biased. Therefore, it is necessary to perform
test set validation. To address this, we systematically evaluate and select regression models
based on cross-validation conducted on the whole sample set [37].

Finally, we propose a data processing framework that involves the efficient data
selection, feature extraction, and regression model. We use 11 multi-temporal Landsat-8
image scenes and 138 soil samples with Cu concentration over the Gulin County in Sichuan,
China. Using this framework, we can explore the interaction between these three key
components and identify a data processing pipeline that can increase the accuracy of Cu
concentration estimation. The remainder of the paper is organized as follows. Section 2
demonstrates the theoretical background of using empirical models to retrieve soil Cu
concentration from the Landsat data. Section 3 describes the study area, data and methods
used for the retrieval. Section 4 shows the results, including the accuracies for different
models and the pixel-based map of the Cu concentration distribution over the study area.
Section 5 discusses the results and uncertainties. Section 6 summarizes the paper and
draws conclusions.

2. Theoretical Background

The retrieval of soil Cu concentration from remote sensing images is based on the
principle that Cu concentration can be represented as a function of the observed spectral
bands, which, however, is very complex and unknown. The objective of this work is to
establish an empirical model to retrieve the soil Cu concentration from Landsat-8 MTIs,
which can be formulated as:

y = fk(gj(xt)), (1)

where xt is the Landsat-8 images observed at time point t, gj(·) is a function of data
transformation for the feature extraction and selection and fk(·) is the regression model that
maps the feature representation of xt to y, which is associated with the soil Cu concentration.
The subscripts t, j, k of x, g(·), f (·) indicate, respectively, the variations of choices over
data preparation, feature configuration and regressor selection, which are key issues in
improving the performance of the empirical model. Therefore, to achieve an enhanced
empirical model for Cu concentration estimation, this paper tries to investigate these
three key issues by (1) using multi-temporal satellite observations temporally close to
2015 to enhance the spectral information of images, (2) extracting meaningful features
using different approaches, i.e., PCA, MNF and ISOMAP, and selecting the most effective
feature subset as model input and (3) employing multiple regressors, i.e., SVR, PLSR and
ANN, to estimate the Cu concentration and choose the best regressor for mapping the
Cu distribution over the study area. This research framework allows investigating the
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interactions among the three key components in the data inversion system and thereby
enables the identification of the preferred combination of algorithms to boost the retrieval
accuracy of Cu concentration.

3. Materials and Methods

We design an experiment to retrieve soil Cu concentration accurately and effectively
by exploring key issues in empirical data inversion, i.e., data preparation, feature extraction
and model selection. We compare three regressors that estimate the soil Cu concentration
based on four features generated from eleven multi-temporal Landsat-8 images. We employ
the cross-validation technique for bias-reduced accuracy measures. The Cu concentration
map is generated using the preferred model with its preferred input features. Figure 1
shows the workflow.

Figure 1. Workflow of the proposed baseline for Cu concentration mapping.

3.1. Study Area and Soil Samples

The study area is located in Shiping village, Gulin County, Sichuan Province, China.
The area has a subtropical climate, with annual average rainfall 748.4–1184.2 mm [38].
Due to many mining and industrial areas, the area is known to contain heavy metal
contamination. The location of the study area and the 3D representation of the remote
sensing image are shown in Figure 2. The soil in this area is mainly comprised of mollic
gleysols, gleyic luvisols, planosols and eutric fluvisols according to the soil map databased
provided by the Food and Agriculture Organization of the United Nations. A total of
138 soil samples were collected in this study area in 2015, and the Cu concentrations of
samples were analyzed and recorded.

3.2. Multi-Temporal Images of Landsat-8

In this paper, 11 single date images of Landsat-8 ranging from 2013 to 2017 (path
128, row 40 and 41) are obtained from Geospatial Data Cloud website [39] and selected
as the multi-temporal images with the cloudiness coverage lower than 10%. The imagery
acquisition dates are summarized in Table 1. The downloaded images are level 1T products
after topographic correction and have a 30 m spatial resolution except for the panchromatic
band (band 8) with a spatial resolution of 15 m, which is not used in this study. Bands 10
and 11 of the 28 December 2014 imagery were destroyed due to a broken file and had to be
excluded. As a result, the combined MTI comprises 108 bands in total.
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Figure 2. Location of the study area and the distribution of soil samples.

Table 1. Landsat-8 image acquisition dates.

2013 2014 2015 2016 2017

16 June 2013 6 August 2014 a 3 April 2015 a 8 June 2016 19 February 2017
6 August 2014 b 3 April 2015 b 26 July 2015
9 October 2014 8 July 2015
28 December 2014

“a” represents for the image from row 40 of the satellite; “b” represents for the image from row 41 of the satellite.

3.3. Feature Selection
3.3.1. Feature Extraction

Feature extraction projects variables in the original space into a new feature space
with a lower dimensionality, finding more meaningful information to improve the model
learning performance and build better generalizable models [27]. In this study, three
representative feature extraction methods are employed for extracting features from multi-
temporal images of Landsat-8. Principal component analysis (PCA), minimum noise
fraction (MNF) and isometric feature mapping (ISOMAP) are applied for feature extraction
from multi-temporal images. The obtained features extracted by these three methods have
5, 5 and 10 dimensions separately.

3.3.2. Feature Importance Measure

The permutation feature importance measure used to evaluate different groups of
features. The rationale is that when a variable is permuted, the connection between this
variable and the response is lost. If this variable is associated with the response, using
the permuted variable and the remaining unpermuted variables for prediction would
lead to the prediction accuracy decreasing. Therefore, by calculating the difference in the
prediction accuracy before and after permuting a variable, the importance of this variable
can be quantified [40,41].

We explore the importance of four groups of features, i.e., original bands (OB) of
MTIs, PCA, MNF and ISOMAP, by removing one of them each time and calculating the
difference value of prediction accuracy before and after removing this group of features. In
this manner, we can obtain the importance of each group of features related to different
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models used for predicting different kinds of HMC. Then, we select the “best” feature
combination using forward feature selection [42], where the feature groups are added one
by one from the most important to the least important until the prediction accuracy not
increasing any more.

3.4. Regression Methods

Three regression methods are compared for the retrieval soil Cu concentration from
Landsat-8 images. PLSR, ANN and SVM are all popular and efficient regression methods
that are commonly used in soil property studies [8,18,43]. PLSR is based on the linear
model, ANN represents the data-driven machine learning method and SVR implements
regression by building a decision boundary.

3.4.1. Partial Least Square Regression, PLSR

PLSR is a specific form of multivariate linear regression [10], which has been widely
used for soil property estimation [22,44,45]. PLSR assumes that the dependent variable
can be estimated via a linear combination of explanatory variables [10]. By using the
partial least-squares approach, PLSR obtains the projections of both dependent variables
and explanatory variables, maximizing the covariance between projections, and then
establishes the regression model based on these projections [46]. PLSR has the advantages
of effectively dealing with collinear and noisy independent variables, modelling multiple
response variables simultaneously [44,47] and having the inferential capability for possible
linear relationships [44].

3.4.2. Artificial Neural Network, ANN

ANNs have become a popular machine learning regression algorithm over the last
decade [46]. Compared to the linear regression models, ANNs can fit the data and model
the complicated underlying relationships more flexibly [48]. Though ANN is good at
processing nonlinear and complex problems, even with the inaccurate and noisy data [49],
its performance highly relies on the network structure with a proper number of layers and
neurons [46].

We use a multiple-layer feed-forward backpropagation network with three layers,
including an input layer, a hidden layer and an output layer, with a learning rule based
on the Levenberg–Marquardt algorithm. This common structure was adopted in related
studies [44,50,51] and turned out to be effective for soil property retrieval. Tan-sigmoid and
linear activation functions are applied to the hidden layer and the output layer separately
in this study. A common hyperparameter optimization method, grid search [52], is adopted
to find the optimal neuron number of the hidden layer in the set of {10, 15, 20, 25}.

3.4.3. Support Vector Regression, SVR

SVR is based on the same principles as the support vector machine for classification by
minimizing error and individualizing the hyperplane, which maximizes the margin. As a
kernel-based regression method, SVR solves nonlinear regression problems by transferring
the data from the original space to a higher dimensional space via a kernel function [53]. In
ε-SVR, the goal is to find an estimation function as flat as possible that has a deviation under
ε from the targets of the training data [54]. In this study, ε-SVR with a radial basis kernel is
adopted to build the HMC inverse model from Landsat-8 imagery. The performance of SVR
deeply depends on the hyperparameters [55]. There are two main hyperparameters to set,
i.e., cost and ε. The cost is the penalty associated with errors larger than ε, and ε represents
the minimally required precision. Optimal hyperparameters are set by performing the grid
search in a discretized two-dimensional parameter space.

3.5. Accuracy Measure

To quantify model performances based on different regression methods and different
input features, four parameters, including the adjusted coefficient of determination (R2),
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root mean square error (RMSE), mean absolute error (MAE) and standard error (SE), are
calculated. R2 indicates the goodness of fit of the model, ranging from 0 to 1. RMSE
indicates the absolute estimation errors [44]. The total MAE is attributed by each error
in proportion to its magnitude rather than its square [56]. SE is calculated by taking the
standard deviation and dividing it by the square root of the sample size.

3.6. Cross-Validation Estimation

To guarantee an unbiased evaluation of models, the test dataset should be separated
from the training dataset and follow the same distribution as the training set [57]. The
accuracy measures evaluated should be based on both the training set and the test set to
avoid overestimating the generalization ability of complex models due to the overfitting
effect [41]. In the k-fold cross-validation, samples are randomly partitioned to k equal-sized
subsets, and only one subset is used as the test set. The process is repeated k times so
that each of the subsets is used as a test set once. In this study, 6-fold cross-validation is
used for model evaluation. Therefore, given 138 soil samples, 115 samples are used to
train the model and the remaining 23 samples are used to evaluate the model performance
on the test dataset. This is repeated 6 times. In order to obtain results independent of a
particular partitioning, this procedure is repeated 20 times, and then 6× 20 = 120 models
are obtained. Both training and test accuracies of each model are calculated.

For training each model, 5-fold cross-validation is adopted to set hyperparamters
that guarantee the best performance of each method, including the number of principal
components for PLSR, cost and ε value for SVR, as well as neuron numbers and learning
rate for ANN. Hyperparameters that generate the highest R2 on test data would be selected
for model training.

4. Results
4.1. Comparison between Single and Multi-Temporal Images of Landsat-8

Both the combined MTIs and SIs of Landsat-8 are used to train the regressors (i.e.,
PLSR, ANN and SVR) for the prediction of the soil Cu concentration. The 20 repeated 6-fold
cross-validation is adopted to evaluate the performance of each model using all indicators:
R2, RMSE, MAE and SE. The mean value of R2, as well as the standard deviation of R2,
are shown in Table 2. The mean values of R2 on MTIs are higher than that on SI for all
regressors, and the standard deviation of R2 decreases when using MTIs rather than SIs.
For MAE and SE, the mean values of MTI are lower than those on SI, and the standard
deviation is slightly higher than SI. The mean values of RMSE of PLSR and SVR do not
show an obvious advantage of MTIs, given that the mean values increase when using MTIs.
For ANN, RMSE reaches a lower RMSE mean and a lower standard deviation.

Table 2. The mean and standard deviation values of regression indicators on three regressors over
20 repeated 6-fold cross-validation using MTL and SI on the training dataset and the test dataset.

PLSR SVR ANN

Mean Std.dev Mean Std.dev Mean Std.dev

Adjusted R2 MTI 0.568 0.131 0.641 0.160 0.476 0.197
SI 0.368 0.148 0.433 0.237 0.249 0.185

RMSE MTI 16.997 3.178 15.515 3.426 20.651 5.664
SI 16.257 3.014 14.636 3.508 23.305 6.213

MAE MTI 15.215 3.021 12.498 3.914 17.673 5.444
SI 19.493 2.752 16.711 4.857 22.994 5.310

SE MTI 15.215 3.021 9.099 2.691 12.910 4.270
SI 19.493 2.752 11.874 3.915 14.504 4.461

The highest accuracies are in bold format.
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4.2. Feature Evaluation and Selection

Following the method of feature importance measurement introduced in Section 3.3.2,
we first combine all the features to C1 and drop PCA, MNF and ISOMAP one by one to form
C2, C3, C4 and C5 separately. The prediction accuracy of these five feature combinations
on PLSR, SVR and ANN are summarized in Table 3. By subtracting the adjusted R2 mean
values of C2, C3, C4 and C5 from that of C1 separately, we obtain the feature importance of
each feature group, which is plotted in Figure 3. The importance score of these features
based on RMSE, MAE and SE are all calculated in addition to the importance score based on
R2. Except for the RMSE-based importance order of features, other indicators demonstrate
the same importance rank. For all three regressors, OB is always the most important feature
group for the retrieval of Cu concentration. PCA is the second important feature group for
both PLSR and ANN, while SVR takes PCA as the worst input feature. The importance
orders of three regressors are listed in Table 4.

Table 3. Mean and standard deviation of prediction accuracies of Cu concentration estimated by
PLSR, SVR and ANN using 20 repeated 6-fold cross-validations.

PLSR SVR ANN PLSR SVR ANN

Mean Std.dev.

Adjusted R2

C1 0.608 0.600 0.507 0.134 0.169 0.183
C2 0.103 0.254 0.144 0.119 0.233 0.154
C3 0.556 0.626 0.498 0.117 0.143 0.206
C4 0.614 0.593 0.528 0.109 0.164 0.186
C5 0.601 0.577 0.498 0.132 0.158 0.186

RMSE

C1 16.384 14.741 20.338 3.543 3.806 5.407
C2 14.809 20.707 27.151 4.858 4.910 8.275
C3 17.920 15.314 20.522 4.569 3.519 6.533
C4 16.365 15.335 19.598 3.571 3.385 5.628
C5 16.532 15.515 21.511 2.952 3.426 5.741

MAE

C1 14.475 13.698 16.717 2.955 4.140 4.722
C2 24.426 20.835 26.282 3.854 5.491 5.900
C3 15.872 13.193 17.028 2.961 3.675 5.576
C4 14.246 13.702 16.423 2.786 3.865 4.732
C5 14.691 14.340 17.378 2.738 3.636 4.957

SE

C1 14.475 9.189 12.595 2.955 2.831 3.931
C2 24.426 12.995 16.786 3.854 3.920 5.942
C3 15.872 9.552 12.931 2.961 2.884 5.040
C4 14.246 9.481 12.125 2.786 2.624 3.852
C5 14.691 9.579 13.118 2.738 2.594 3.826

The highest accuracies are in bold format.

Once the importance order of feature groups for each regressor was obtained, we use
the forward feature selection strategy to determine the best feature combination by adding
a feature once from the most important to the least important to the model input. For
example, for PLSR, we use the OB as the input to train a regressor and test its accuracy.
Next, OB together with the second important feature, PCA, is used, then ISOMAP and
MNF are added one by one. For all three regressors, we tested the Cu prediction accuracy
on different numbers of the feature. The mean values of test R2 are plotted in Figure 4.
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Figure 3. Feature importance of OB, PCA, MNF and ISOMAP for PLSR, SVR and ANN.

Figure 4. The mean values of R2 on 20 repeated 6-fold cross-validations using a different number of
feature groups for Cu estimation.

For PLSR and ANN, the overall trend is that R2 increases first and then decreases as
the feature number increases. For SVR, the R2 has reached the highest value when using OB
only and then goes down with the increasing number of features. By identifying the peak
positions of three regressors, the best feature combination for each regressor is identified.
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Table 4. Features importance in descreasing order for PLSR, SVR and ANN.

Importance
Order PLSR SVR ANN

1 OB OB OB
2 PCA ISOMAP PCA
3 ISOMAP MNF ISOMAP
4 MNF PCA MNF

4.3. Model Selection

To fairly compare three regressors—PLSR, SVR and ANN—we choose the most pre-
ferred feature combination for each regressor to ensure that we are comparing the best
performances of these three regressors. We use OB as the input for SVR training, the
combination of OB and PCA for PLSR and the combination of OB, PCA and ISOMAP
for ANN. Moreover, the hyperparameters of the three models are determined by the grid
search approach. Then, the prediction accuracies of three regressors are plotted in Figure 5,
including the mean and standard deviation values of RMSE, MAE and ANN, since the R2

statistics have been displayed in Figure 4. SVR obtains the lowest mean values of RMSE,
MAE and SE. PLSR performs worse than SVR and better than ANN.

Figure 5. The mean value and standard deviation of RMSE, MAE and SE obtained by SVR, PLSR and
ANN using 20 repeated 6-fold cross-validations.

4.4. Soil Cu Concentration Mapping

Given the operations of data preparation, feature extraction and model comparison,
the OB feature is selected to input into the trained SVR model with the highest prediction
R2, which is the “best” model among 120 models obtained during the 20 repeated 6-fold
cross-validations. The adjusted R2 of this model reaches 0.87 on the training set and 0.84
on the test set (see Figure 6). By inputting the OB of the images over the entire study area
to the preferred SVR model, the Cu concentration distribution map is generated, which is
shown in Figure 7a.

To compare the retrieval and mapping of the Cu concentration to the traditional
mapping approach based on interpolation, an interpolation map, shown in Figure 7b, is
produced using exponential-kriging interpolation [58] on the ArcGIS platform. The expo-
nential semi-variogram model is used as the semi-variance function, where the parameters,
including the range, sill and nugget, are default values calculated internally. We set the
number of points to 60 within the default search radius. Figure 7a shows more details
about the Cu concentration distribution and has a larger spatial coverage compared with
Figure 7b.
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(a) (b)

Figure 6. Scatterplot of the best SVR model for Cu concentration estimation on (a) the training dataset
and (b) the test dataset.

(a) (b) (c)

Figure 7. Cu concentration mapping and evaluation: (a) the distribution map of Cu concentration
generated by trained SVR model; (b) the distribution map of Cu concentration obtained by E-kriging
interpolation; (c) the classification map of the study area.

5. Discussion
5.1. Benefits of Using Multi-Temporal Landsat-8 Images

The experiment results of the comparison between MTIs and SIs (see Section 4.1)
show that using MTIs to establish the inversion model of Cu concentration achieves better
prediction precision, which is consistent with our assumption that MTIs can enhance the
spectral information for a better estimation of Cu concentration. MTI techniques have
been adopted to many other applications, e.g., crop classification [59,60] and spectral
unmixing [24]. MTIs turned out to be more efficient for classification [59,60], unmixing [24]
and land surface property retrieval [25,26] by many studies. Previouse research took
advantage of the temporal correlation effect among the MTI observations. For example, for
crop type identification, the assumption is that the crop type dictates the temporal patterns
in the MTI data, i.e., different crop types tend to have different temporal behaviours.
Similarly, we assume the Cu concentration in 2015 is correlated with the MTI observations
from the year 2013 to the year 2017, which also generates better inversion accuracy than
just using SI.

5.2. Feature Selection

Feature selection is conducted by first ranking four feature groups according to the per-
mutation feature importance and then choosing the useful feature groups via the forward
feature selection. As shown in Table 4, all three regressors take OB as the most valuable
feature, given that without OB ranking first for all regressors, the estimation accuracy
generated by the combination of other remaining features largely decreases. We attribute
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this importance of OB to its rich spectral information, which can be regarded as multiple
repeated observations of the study area. Except for OB, the ranking the feature importance
varies with different regressors, which is ascribed to different feature preferences of regres-
sors. For example, PCA is the second most important feature group for both PLSR and
ANN but is the least important for SVR (see Figure 3). A related work [41] reports the
difference in feature preference between different classifiers on classification tasks.

This paper evaluates one feature importance under the existence of all other features.
The importance of a certain feature to a regressor cannot be defined independently without
taking into account other input features because its importance can vary with different
feature combinations that input into the regressor with this feature. For example, the PCA
feature group per se is very helpful for SVR but is less valuable with the existence of OB,
MNF and ISOMAP. On the contrary, a feature can be more useful when with other features
than itself [42].

5.3. Regressor Comparison

Based on four indicators obtained with the 20 repeated 6-fold cross-validations, SVR
turns out to be the model with the best capability of generalization, given that the mean R2 of
prediction is 0.641 and the maximum R2 of prediction is 0.844, as well as the smallest RMSE,
MAE and SE among three regressors. PLSR also performs well with the mean prediction R2

0.618 and much better than ANN with the mean prediction R2 0.528. Generally speaking,
SVR outperforms PLSR, and PLSR outperforms ANN at any feature group number (see
Figure 4). In a related study [51], Cu estimation by ANN is also inferior to multiple linear
regression. SVR has been demonstrated to have a stronger generalization ability compared
to ANN [61,62]. We are not indicating that ANN has no potential capability for soil HMC
because not many different architectures with dense grid search for hyperparameters
are tested exhaustively. Some research demonstrated that ANN performed well on soil
property estimation [18,44]. Particularly for the HMC retrieval from Landsat images, ANN
outperforms PLSR, and the R2 exceeds 0.8 for the concentration estimation of As, Cd, Ni
and Pb [50]. This inconsistency in ANN performance between this work and other works
is attributed to the different heavy metal categories, study area, training samples, network
structures and hyperparameters, which need further study.

5.4. Cu Concentration Mapping

To evaluate the Cu concentration map, the classification map of this study area is
introduced, which is provided by China Land Consolidation and Rehabilitation. The red
regions on the classification map (Figure 7c) represent the mining area, the positions of
which are consistent with the distribution of red areas representing a high Cu concentration
in the Cu distribution map (Figure 7a). In the areas of farmland and forest (yellow and green
on the classification map), the Cu concentration is much lower (blue areas of Figure 7a).
The Cu concentration map can be explained by the classification map by assuming that Cu
contamination is caused by the mining activities of humans.

Comparing the obtained Cu concentration map using the proposed pipeline with the
interpolation Cu concentration map, it is observed that the distributions of Cu in these two
maps share a similar distribution pattern with different spatial coverages and resolutions.
Figure 7a is mapped based on pixels, and Figure 7b is produced based on sample points, so
Figure 7a contains more spatial details. Another advantage of the proposed method is that
the trained model has better extrapolation abilities, while the prediction area of Figure 7b
is limited due to the poor extrapolation capability of interpolation methods.

5.5. Uncertainty Analysis

Although the proposed data processing pipeline leads to fairly accurate soil Cu con-
centration estimation, there is still a discrepancy between the estimated values and the true
values of the Cu concentration, which could be caused by uncertainties in both (i) feature
extraction and regression models and (ii) data.
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The model uncertainty is fundamentally caused by the lack of knowledge about the
true relationship between Cu concentration and remote sensing observations. In this paper,
an empirical approach consisting of feature extraction and regression models is used to
approximate this true relationship. Nevertheless, this approximation will inevitably lead to
model bias, especially if the feature extraction and regression models are not optimized.
Previous research indicates that feature selection and model selection can produce better
prediction accuracy [28,29,38], where cross-validation and bootstrapping approaches are
used to better utilize limited training samples [30,37,63,64]. Although this paper tries
to reduce this model bias by comparing and identifying the “best” feature extraction
and regression approaches and the “best” data processing pipeline, there might still be
remaining model bias due to limitations of our research. For example, this study is still
limited due to the limited number of feature extraction approaches and regression methods,
as well as the coarse grid search density. Furthermore, for model evaluation matrices, only
some classical matrices are used in this paper. However, using more matrices, e.g., residual
prediction deviation or the ratio of performance to interquartile distance, might help to
evaluate models more comprehensively, which could be considered for future work.

The data uncertainty is essentially caused by the inexactness, incompleteness, and
insufficiency of the training samples. For example, the spatial distribution and quantity of
soil samples might not be able to well-characterize the heterogeneity of the study area. The
samples are not uniformly distributed in all land use types due to access limitation. The
samples from the forestland are few, which could easily lead to bias for the Cu estimation
over the forestland. Furthermore, although the Cu concentration of soil samples are
collected and measured by a professional institution, there might be inaccuracy and even
errors in the provided results.

6. Conclusions

This paper has proposed a pipeline for retrieving and mapping soil Cu concentration
from Landsat MTIs. First, repeated satellite observations were utilized to enhance the
spectral information of images. Second, the preferred feature is extracted and selected by
systematically evaluating the feature importance. Third, the preferred model is selected by
the bias-reduced model evaluation.

MTI was demonstrated to be able to make a more reliable and accurate estimation of
Cu concentration using empirical regression methods. By utilizing 11 images of Landsat-8
captured in different time phases, the mean adjusted R2 obtained by SVR using 20 repeated
6-fold cross-validations on 138 soil samples increases from 0.433 to 0.641. Based on the
OB of the MTIs, feature extraction and selection further facilitate the improvement of Cu
concentration estimation. The mean R2 of PLSR and ANN increase from 0.568 to 0.618 and
from 0.476 to 0.528 separately, indicating the necessity and benefit of feature extraction
and selection. Using cross-validation estimation, PLSR, SVR and ANN are compared
unbiasedly based on their best performances using their favourite feature combinations.
Although ANN is a popular regression method, in our work, SVR outperforms ANN by
achieving a mean R2 of 0.641, which is 21.4% higher than ANN. RMSE, MAE and SE also
support the highest generalization capability of SVR.

The preferred model with the highest R2 obtained by SVR is selected to estimate the
Cu concentration in soil over the study area. Compared to the interpolation map, the Cu
concentration distribution map generated by the recommended pipeline gives the pixel-
based Cu estimation with more spatial detail and wider spatial coverage. It also shows a
consistent spatial pattern with the ground-truth land cover classification map. The results
show this model’s ability to perform large-scale soil HMC mapping from widely avaliable
satellite imagery.
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