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Abstract: Spatially explicit crop yield datasets with continuous long-term series are essential for
understanding the spatiotemporal variation of crop yield and the impact of climate change on it.
There are several spatial disaggregation methods to generate gridded yield maps, but these either
use an oversimplified approach with only a couple of ancillary data or an overly complex approach
with limited flexibility and scalability. This study developed a spatial disaggregation method using
improved spatial weights generated from machine learning. When applied to Chinese maize yield,
extreme gradient boosting (XGB) derived the best prediction results, with a cross-validation coefficient
of determination (R2) of 0.81 at the municipal level. The disaggregated yield at 1 km grids could
explain 54% of the variance of the county-level statistical yield, which is superior to the existing
gridded maize yield dataset in China. At the site level, the disaggregated yields also showed much
better agreement with observations than the existing gridded maize yield dataset. This lightweight
method is promising for generating spatially explicit crop yield datasets with finer resolution and
higher accuracy, and for providing necessary information for maize production risk assessment in
China under climate change.

Keywords: maize yield; spatial disaggregation; machine learning; multisource data

1. Introduction

Global climate change poses a great threat to the production, access, use, and stability
of the food system [1–3]; thus, future food security is at stake, combined with increasing
food demand. Efforts have been devoted to developing a better understanding of the spatial
and temporal variations in crop yield, and its response to climate change, for mitigation
and adaptation purposes. Previous studies have mostly been based on crop yield as
recorded by station observations or by the administrative-level census. However, site-based
data are limited in representing large regions [4–7], while statistical yields provide only
regional averages, failing to present yield variations caused by intraregional differences in
environmental conditions [8–11]. In response, spatially explicit crop yield datasets with
continuous long-term series can overcome the shortcomings of station or administrative
yields, enabling a better understanding of yield gaps, crop responses to environmental
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stress, and the adaptation of cropping systems [12,13], while also offering the necessary
information for varying management inputs and insurance or land markets [14,15].

The impact of climate change on China’s food security is of great significance to the
entire world [16]. China is the largest producer of rice and wheat and the second-largest
producer of maize in the world [17,18], helping to feed 22% of the global population
on only 7% of the global cultivated land, which has suffered the most from extreme
climate events [19,20]. However, China has vast cultivated land areas across regions with
diverse climates, soil conditions, and management schemes, resulting in a huge spatial
heterogeneity in crop yields [21,22]. Only by considering as many sources of different
environmental information as possible can we better reproduce the spatial distribution of
crop yield in China.

To date, spatial disaggregation is the most widely used method for generating gridded
crop yields with a long time-series at a large scale. Administrative-region census yields are
disaggregated with gridded weights using either a simple spatial disaggregation method
or a complex hybridization method [23,24]. The simple spatial disaggregation method
allocates administrative polygon yields uniformly to all grids within it [25–27]. Conse-
quently, the resultant dataset contains no spatial heterogeneity information. The complex
hybridization method optimizes ancillary data (e.g., population density, crop suitability,
and irrigation) to create plausible gridded weights. However, previous research has usually
used a single parameter—such as net primary production (NPP) or population density—as
the weight, but has seldom considered environmental factors comprehensively [28,29]. The
spatial production allocation model (SPAM) was the first spatial disaggregation method
to use multisource data. However, the SPAM model is too complex for researchers to
reproduce or alter when emerging data become available [23]. Therefore, a lightweight
and robust model that can flexibly consolidate multisource data to produce more accurate
weights is still needed.

Machine learning is a promising tool to improve existing spatial disaggregation meth-
ods. Machine learning can flexibly and reliably integrate multisource data, and has achieved
impressive success in yield prediction. For example, it has explained more than 75% of spa-
tiotemporal variations in the yield of maize, wheat, rice, and soybeans—not only in China,
but also worldwide [30–33]. Several studies have shown its effectiveness in generating
gridded yields within small study areas during short periods [30,34–36]. However, machine
learning has not yet been applied to spatial disaggregation, and its ability to reproduce the
gridded maize yield in China on a large scale with a long time-series remains unknown.

The main objective of this study was to develop a spatial disaggregation method to
improve the accuracy of gridded yield by using maize in mainland China as an example.
Compared with previous yield spatial disaggregation methods, the proposed method uses
machine learning to fuse multisource data and generate a direct weight to disaggregate
statistical yields. We aimed to answer the following two research questions: (1) What is the
contribution of machine learning algorithms and multisource data to accuracy improve-
ments of maize yield estimation? (2) How much better are the gridded yields generated by
the proposed method, compared to existing gridded yield datasets?

2. Materials and Methods
2.1. Data and Variables
2.1.1. Data

The statistical maize yield at the municipal and county levels from 2000 to 2016 was
obtained from statistical yearbooks, with a temporary lack of information in Hong Kong,
Macao, and Taiwan. Yields were computed as the ratio of production to the sown area if
the yield was not directly provided. Site-level yields were acquired from 99 agricultural
meteorological stations (Figure S1). The municipal-level statistical yield was used for
modeling, while the county-level and site-level yields were used for cross-scale validation.
Global gridded yield maps, including EarthStat, MapSPAM, and GDHY, were obtained for
comparison. EarthStat was generated by a simple disaggregation method, and does not
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describe intra-county information [27]. MapSPAM was generated by a cross-entropy model
driven by spatial constraints, including cropland extent, crop potential suitability, etc. [37].
The GDHY map was generated based on the weights derived from the product of NPP and
the harvest index [12,29,38].

Multisource data for climate, remote sensing, soil, and management were considered
to disaggregate historical maize yield. Two climate datasets were used, including a 1 km
monthly temperature and precipitation dataset for China from 1901 to 2017 [39], as well as
TerraClimate [40]. Peng’s dataset was spatially downscaled from the 30’ Climatic Research
Unit (CRU) time-series dataset and the climatology dataset of WorldClim, and evaluated
using observations collected by 496 weather stations across China, showing higher accuracy
than the CRU [39]. TerraClimate was produced by a climatically aided interpolation method
and water balance model, and it performed with higher accuracy and greater spatial realism
than other coarser-resolution gridded datasets [40]. Vegetation index and land surface
temperature were collected from MOD13A2, MYD11A2, and MOD11A2, because MODIS
imagery has an overall higher quality calibration and longer records [35]. Solar-induced
chlorophyll fluorescence was obtained from a global spatially contiguous solar-induced
fluorescence dataset (CSIF) [41]. For management data, crop calendars were obtained
from agroclimatic stations. The Nutrient Application for Major Crops dataset was used
to provide information about the total applied amounts of fertilizer [42]. For soil data,
the physical and chemical characteristics of topsoil (0–30 cm) were obtained from the
Harmonized World Soil Database (HWSD) [43].

2.1.2. Variables

Seven climate variables, including mean near-surface air temperature, maximum near-
surface air temperature, minimum near-surface air temperature, precipitation, downward
shortwave flux at the surface, vapor pressure deficit, and the Palmer drought severity
index, were considered in estimating maize yield. These variables have been included in
explaining maize yield for a long time [44–48], because the growth and yield formation of
maize are significantly affected by climatic conditions [49,50]. The normalized difference
vegetation index and enhanced vegetation index were used to reflect the biomass accumu-
lation of maize, and previous research showed that they were closely associated with maize
yield [48,51–55]. Solar-induced chlorophyll fluorescence was used to capture the impact
of drought and heat stress on maize, which was significantly related to maize yield in the
USA [56–58]. We also took daytime land surface temperature and nighttime land surface
temperature into account, because previous studies showed that the correlation coefficients
between maize yield and land surface temperature were greater than 0.5, and their relative
importance was sometimes higher than air temperature [54,59–61].

Management measures and soil conditions played an important role in crop growth
and yield formation and were considered to be the main factors in restricting maize yield
and its stability in China [46,62]. Nine promising soil predictors that could better capture
the spatial differences in maize yield were considered, including the cation-exchange
capacity of soil, cation-exchange capacity of clay, clay fraction, organic carbon, pH, sand
fraction, silt fraction, and soil moisture [53,63,64]. Three fertilizer variables—containing
the total nitrogen application, phosphorus application, and potassium application—were
determined to represent the management measures. The year was added as the temporal
variable to explain the increasing trend in the maize yields from 2000 to 2016.

2.2. Methods

This study employed a four-step procedure to spatially disaggregate the statistical
yield from the municipal level to 1 km grids (Figure 1): (1) pre-processing of data; (2) fitting
of empirical models for yield prediction; (3) spatial disaggregation of statistical yields; and
(4) accuracy assessment and comparison.
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Figure 1. The framework of improving spatial disaggregation of maize yield by incorporating
multisource data with machine learning.

2.2.1. Preprocessing

Crop calendars recorded by stations were interpolated into grids using the nearest-
neighbor interpolation method. The planting month was defined as month 1 to harmonize
the order of months from planting, based on the planting and harvesting month of the
crop calendars. The dynamic data whose temporal resolution was higher than monthly
was composited into monthly and growing-seasonal predictors according to specific rules
(Table 1). For example, the maximum normalized difference vegetation index value was
calculated monthly and by growing season, named “NDVIm” and “NDVIgs”, respectively;
the data whose original temporal resolution was monthly were only composited to growing-
seasonal predictors. For example, the average value of monthly mean near-surface air
temperature during the growing season was calculated and named “TMPgs.” Lastly, the
SPAM maize harvest area was used as a mask to extract climate, remote sensing, management,
and soil predictors. After that, predictors with various spatial resolutions were resampled to
1 km and then aggregated according to the municipal boundary for model training.
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Table 1. Detailed information about the data collected in this work.

Dataset Data Source Original Resolution Predictors Description

Yield data

https://data.cnki.net/Yearbook/Navi?
type=type&code=A (accessed on 8 May 2022)

Annual, 2000–2016
county and municipal-level — Yield

China Meteorological Administration
(https://data.cma.cn/, accessed on

8 May 2022)

Annual, 2000–2013
site level — Yield

EarthStat [27] 5-year average, 2000 and 2005
10 km — Yield

MapSPAM [37,65,66] 3-year average, 2000, 2005 and 2010
10 km — Yield

GDHY [29] Annual, 2000–2016
0.5◦ — Yield

Climate data

a 1-km monthly temperature and
precipitation dataset for China from 1901 to

2017 [39]

Monthly, 2000–2016
1 km

Tmpm
Tmpgs

Mean near-surface air temperature (TMP)
for month m of the growing season (“gs”)

Tmxm
Tmxgs

Maximum near-surface air temperature

Tmnm
Tmngs

Minimum near-surface air temperature

PREm
PREgs

Total precipitation

TerraClimate [40] Monthly, 2000–2016
4 km

VPDm
VPDgs

Mean vapor pressure deficit

SRADm
SRADgs

Mean downward shortwave flux at the
surface

PDSIm
PDSIgs

Mean Palmer drought severity index

Remote sensing data MYD11A2 and MOD11A2 8 day, 2000–2016
1 km

LSTDm
LSTDgs

Maximum daytime land surface
temperature

LSTNm
LSTNgs

Minimum nighttime land surface
temperature

https://data.cnki.net/Yearbook/Navi?type=type&code=A
https://data.cnki.net/Yearbook/Navi?type=type&code=A
https://data.cma.cn/
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Table 1. Cont.

Dataset Data Source Original Resolution Predictors Description

MOD13A2

16 day, 2000–2016
1 km

NDVIm
NDVIgs

Maximum normalized difference
vegetation index

16 day, 2000–2016
1 km

EVIm
EVIgs

Maximum enhanced vegetation index

CSIF
[41]

16 day, 2000–2016
0.05◦

SIFm
SIFgs

Maximum solar-induced chlorophyll
fluorescence

Management data

Fertilization [42] Static, 2000
0.083◦

NAT Nitrogen application total

PAT Phosphorus application total

KAT Potassium application total

— Annual, 2000–2016 year Prediction year

Crop calendar (https://data.cma.cn/,
accessed on 8 May 2022)

Annual, 2010–2013
site level — Planting and harvest months

MapSPAM [37,65,66] 3-year average, 2000, 2005, and 2010
10 km — Harvest area

Soil data HWSD [43] Static, 2007
1 km

CEC_SOIL Cation exchange capacity of soil

CEC_CLAY Cation exchange capacity of clay

CLAY Clay fraction

OC Percentage organic carbon

pH PH

SAND Sand fraction

SILT Silt fraction

TerraClimate [40] Monthly, 2000–2016
4 km

SMm
SMgs

Mean soil moisture

Notes: “—”: not applicable; the subscript m stands for monthly values, while the subscript gs stands for growing-season values.

https://data.cma.cn/
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2.2.2. Model Training

Multivariate linear regression (MLR), random forest (RF), extreme gradient boosting
(XGB), and Bayesian neural network (BNN) models were used to fit all of the municipal-
year maize yield samples. MLR was conducted in this study to compare the above machine
learning algorithms [67].

ln Y = a1v1 + . . . + anvn + ε (1)

where Y is the municipal yield, a1, . . . , an are the parameters to be fit, v1, . . . , vn are the
predictors, and ε is the error term.

RF and XGB are both state-of-the-art tree-based ensemble methods that employ a
collection of learning algorithms to achieve better predictive power than could be gained
from any of these algorithms alone [68]. RF is a combination of tree predictors, such that
each tree depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest (Figure S3). The final predicted yield of RF is
derived by averaging the predicted yields from all of the individual regression trees. The
generalization error for forests converges to a limit as the number of trees in the forest
becomes large. The generalization error of a forest of tree classifiers depends on the strength
of the individual trees in the forest and the correlation between them [69]. XGB sequentially
builds the model—adding a tree each time in XGB is fitting the residual of the previous
prediction with a new function [70]. Unlike RF, each tree in XGB is fitted on a modified
version of the original training dataset (Figure S4). XGB generalizes boosting methods by
allowing the minimization of an arbitrary differentiable loss function; thus, it has a highly
efficient realization of the gradient boosting and showed the best performance in recent
machine learning challenges [71].

A BNN is a type of artificial neural network (ANN) that models the synapses in a
biological brain, where the signal transmits from one neuron to another. The “signal” in
ANNs is a real number, and the output of each neuron is calculated as the sum of its
input according to specific nonlinear functions. The traditional ANNs need a considerable
number of training samples to prevent the model from overfitting. However, BNNs
introduce probability distributions over the weights in the neurons and are less prone to
overfitting [72]. In this study, the BNN had an input layer with 256 neurons, two hidden
layers with 128 neurons, and an output layer with two fully connected hidden layers, with
64 and 32 neurons each, respectively (Figure S5).

The MLR and RF models were trained using the LinearRegression and RandomFore-
stRegressor modules from the package sklearn, while the XGB model was trained using
XGBRegressor from the package xgboost in python. The BNN model was developed in
TensorFlow 2.0 with Python version 3.7. To compare the performance of different models,
the machine learning models were trained with default parameters. The default parameter
values of RF and XGB can be found in Table S1, and more details about the settings of the
BNN can be found in previous research [72]. To reveal the contribution of multisource data,
the four models were driven by nine combinations of input data (Table 2). Seventy-five
percent of the complete dataset was randomly selected to train each model, and the re-
maining data were used to validate the model. The coefficient of determination (R2) and
root-mean-square error (RMSE) between statistical and estimated yields were calculated to
assess the predictive accuracy, according to Equations (2) and (3), respectively:

R2 = 1 −

N
∑

n=1
(rn − fn)

2

N
∑

n=1
(rn − rn)

2
, (2)

RMSE =

√√√√ 1
N

N

∑
n=1

(rn − fn)
2. (3)
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where N is the number of samples, rn and fn refer to the municipal statistical yield and
estimated maize yield, respectively, and rn is the averages of rn.

Table 2. The combinations of predictors.

Abbreviation Predictors

c Only climate predictors
r Only remote sensing predictors

c + m Climate and management predictors
r + m Remote sensing and management predictors
c + s Climate and soil predictors
r + s Remote sensing and soil predictors

c + m + s Climate, management, and soil predictors
r + m + s Remote sensing, management, and soil predictors

c + r + m + s Climate, remote sensing, management, and soil
predictors

2.2.3. Spatial Disaggregation

After selecting the best-performing model, a leave-one-out method was adopted to
identify the outliers, with estimated yields biased by more than three standard devia-
tions relative to the observed yields [73]. The best-performing model was run using the
default parameter values to identify the outliers (Table S1). The outlier elimination pro-
cess can eliminate certain unrepresentative samples, which may introduce errors into the
models [73–75]. Then, predictors with importance of over 1% were retained, according
to feature importance in the scikit-learn module. Feature importance assesses how much
each predictor decreases the weighted impurity. This procedure can effectively reduce the
number of predictors, and further prevent models from overfitting the highly dimensional
training data [76]. Lastly, the grid search was used to tune hyperparameters by trying all of
the possible combinations of hyperparameter settings and comparing the out-of-bag data
errors of the models with different combinations of parameters.

The gridded predictors at 1 km resolution were used to force the fine-tuned models
and generate the gridded estimated yield of 2000–2016. Then, the estimated yield was used
to compute the gridded distribution weight wcit:

wcit =
ysim

cit

1
I

I
∑

i=1
ysim

cit

, (4)

where ysim
cit represents the estimated yield of the grid i located in the municipality c in the

year t, and I is the number of grids located in this city. The weight wcit was then used
to disaggregate the related statistical yield Yyb

ct to pixels. The disaggregated yield was
produced by using the following equation:

ycit = Yyb
ct · wcit (5)

2.2.4. External Cross-Scale Validation

A common method to assess the accuracy of disaggregated yield is aggregating it to a
finer spatial resolution and comparing it with statistical yield [12,37,77]. Such a procedure
was conducted at the county level in this study. In addition, disaggregated yields were also
validated using yield time-series from agrometeorological stations, which were superior
to the cross-validation at the county level, but the number of agrometeorological stations
was limited. For comparison purposes, the validation procedure included data from three
existing global datasets: EarthStat, MapSPAM, and GDHY. We harmonized the temporal
resolution to match different datasets to enable such a comparison. Our results were
calculated to 5-year average yields in two periods—2000–2002 and 2003–2007 to compare
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with EarthStat. Three-year average yields of our results in three periods—2000–2001,
2004–2006, and 2009–2011—were calculated to match MapSPAM. For GDHY, the annual
yields enable a year-to-year comparison. After that, the harmonized yield maps were
aggregated to the county level, and comparisons were made with the county-level statistical
yields. The R2 and RMSE between statistical and disaggregated yields were calculated to
assess the accuracy of gridded yield maps, according to Equations (2) and (3).

3. Results
3.1. Model Training Results
3.1.1. The Contribution of Machine Learning Approaches and Multisource Data

The model training statistics with various combinations of predictors and models are
summarized in Figure 2. The machine learning models always outperformed the MLR.
The XGB model showed better prediction skills than RF, and was comparable with the
BNN. XGB showed a stronger ability than RF to integrate multisource data; the R2 of XGB
increased as more predictors were adopted, while the R2 of RF reached the maximum (0.67)
after integrating three types of predictors. The BNN outperformed XGB when it was driven
by the combination of climate, management, and soil predictors, but XGB generally showed
slight outperformance over the BNN when driven by other combinations.

Adding predictors tended to improve the models’ performance by increasing R2

and reducing RMSE. If only one group of predictors was used, the climate predictors
outperformed remote sensing predictors. Taking XGB as an example, the R2 of the model
with climate predictors was 0.47–0.15 greater than that of the model with remote sensing
predictors only. When adding a second group of predictors, soil data improved model
performance more than management data. The models generally had the highest accuracy
forced by the full combination of multisource data (c + r + m + s). As the XGB model with
a full list of predictors performed the best, we only present those results in the following
sections. After parameter tuning, the R2 between the estimated yields of XGB and the
reported yields increased from 0.74 to 0.81 (Figure S6).
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3.1.2. Feature Importance

The relative importance in maize yield prediction of climate, soil, remote-sensing,
and management predictors was 39%, 29%, 17%, and 15%, respectively (Figure 3). There
was a total of 23 predictors with relative importance greater than 1%. Among them,
there were 10 climate predictors. Growing-season total precipitation (PREgs; 13%), the
growing-season mean downward shortwave flux at the surface (SRADgs; 5.6%), and the
fourth-month mean vapor pressure deficit (VPD4; 5%) were the top three climate predictors.
Five soil predictors entered the final model, and the top three were the cation-exchange
capacity of clay (CEC_CLAY), silt fraction (SILT), and percentage of organic carbon (OC),
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whose relative importance accounted for 12%, 5.9%, and 4.1%, respectively. There were
four remote sensing predictors. Among them, the fourth-month maximum solar-induced
chlorophyll fluorescence (SIF4) and third-month maximum enhanced vegetation index
(EVI3) were the top two predictors. They made a relatively equal contribution to maize yield
prediction, at 6.9% and 5.1%, respectively. There were three management predictors, among
which the nitrogen application total (NAT) made the greatest relative contribution, at 7.9%.
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3.2. Validation
3.2.1. Cross-Validation at the County Level

When cross-validated with the county-level statistical yield (Figure 4), our disaggre-
gated yield can explain around 54% of the county-level yield variation in mainland China,
with an RMSE of 1.02 t/ha. The gridded yield performed best in the Northern China maize
zone and the Huang-Huai-Hai maize zone—two maize-planting zones. For regions with
sparsely sown areas, it was more challenging to derive reasonable cross-validation scores,
i.e., the northwestern maize zone.
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with GDHY, the improvement of our results was even greater than that of the previous 
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Figure 4. Seventeen-year average maize yield distribution (left) and hexbin (right) for our results
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maize zone). The gradient color from blue to yellow (from 0 to 1) represents the density of points. For
example, 0 means the lowest density, while 1 means the highest density.
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Our method largely improved upon the accuracy of the gridded yield from the existing
gridded maize yield datasets (Figure 5). Compared with EarthStat, the RMSE of our results
was reduced by 16%, and the R2 increased by around 0.13. Compared with MapSPAM, the
RMSE of our results was reduced by 29–41%, and the R2 increased by about 0.17, showing
much better consistency with the statistical yields. Notably, there is a cutoff at 10 t/ha
in MapSPAM2000, inconsistent with the statistical yields. Compared with GDHY, the
improvement of our results was even greater than that of the previous two datasets. GDHY
offered continuous annual yield series, but its R2 was rather small (<0.02), and the RMSE
was mostly greater than 2 t/ha.
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3.2.2. Cross-Validation at the Site Level

In general, the yield series of our disaggregated results could capture the mean and
interannual variation of the station records. Among the 99 sites (Table S2), the average
R2 of our results was 0.30, and the average RMSE was 2.39 t/ha, outperforming the other
datasets. The only dataset with continuous yield was GDHY, and its average R2 was 0.28,
while its average RMSE was 3.17 t/ha. The RMSE of our results was 0.3 t/ha lower than
that of EarthStat and 0.81 t/ha lower than that of MapSPAM for specific years. The yield
series of the 24 best-documented sites are shown in Figures 6 and S7. At most sites located
in the major croplands, the yield series of our results (green lines) were much closer to the
observations (black lines) than other yield datasets. However, in the minor corn-growing
area, the capability of our method to capture the average and variability of maize yields
was similar to that of other datasets, e.g., Qidong station in Jiangsu Province. In addition,
there is a discontinuity in our results (green line) for Bachu station in 2009, because there
were missing values in the remote sensing images.
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4. Discussion
4.1. Machine Learning and Multisource Data Improved the Spatial Disaggregation Method

This study took advantage of multisource data and machine learning algorithms in
yield prediction, and applied yield prediction results as spatial weights to disaggregate
historical maize yield. Our cross-validation results indicated that the proposed method
could reasonably generate spatiotemporally continuous gridded yields to large extents. This
method benefits from two factors: first, the multisource data that contain rich information
about maize growth and yield with various spatial resolutions, and second, the machine
learning algorithm that could integrate the complicated relationships between these data.

Compared to our approach, existing spatial disaggregation methods mostly rely on
only a few ancillary data, without considering the potential nonlinear and complex internal
relationships. MapSPAM is another extreme case that uses a cross-entropy model to
integrate multiple sources of information. Nevertheless, the MapSPAM predictors are fixed,
and it is hard for researchers to explore the new sources of input information. Our cross-
validation results indicate that our method could produce gridded data records slightly
better than MapSPAM, and with higher flexibility.

Our method is promising in generating gridded yields at higher resolution because
it can flexibly take more predictors with higher temporal and spatial resolution into ac-
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count, while the spatial resolutions of existing datasets remain dominant at the 10–55 km
level [26,27,37]. Our approach could readily be applied to disaggregate crop yields at vari-
ous scales and resolutions. Most of the predictors used to generate weights in this study
are available in the Google Earth Engine. National or subnational yield statistics can be
collected from global agencies, including the Food and Agriculture Organization (FAO)
and the World Bank.

Our method could be further improved by incorporating the machine learning model
with process-based crop models such as the Agricultural Production Systems Simulator (AP-
SIM) to predict maize yield grown in environments that have yet to be observed [72,78,79].
For example, we can expand the size of the training samples by simulating yield responses
under different extreme environments on APSIM to help improve the generalizability of
the machine learning model. A similar idea was adopted in the Scalable Crop Yield Mapper
(SCYM) to estimate gridded yield in areas with few observational samples. The SCYM
uses the pseudo-observations generated by APSIM as response variables and has achieved
encouraging success in the USA and Africa [14,80,81].

4.2. Models’ Performance and Feature Importance in Maize Yield Prediction

In this study, we employed climate, remote sensing, soil, and management data. Our
results indicated that their full combination was critical to providing complementary infor-
mation in yield prediction. Among those four groups of predictors, climate predictors were
the most relevant for maize yield in this study, because they provide background weather
and external stressor information. However, our results greatly differed for individual
climate predictors concerning the relative importance of precipitation and temperature.
Growing-seasonal total precipitation (PREgs) was the most important predictor, while the
contribution of growing-seasonal average temperature (TMPgs) was much smaller than that
of precipitation (PREgs) here. This result is consistent with recent maize research conducted
in Germany [82], but opposite conclusions were found in the Midwestern USA [61,72].
This may be because water stress has a stronger influence on maize yield than temperature
stress in China, since more than 70% of the covered area affected by agrometeorological
disasters was induced by drought or flood [83,84], and the very weak correlations between
precipitation and yield in the USA may be the result of better irrigation conditions, larger
irrigated areas, and more advanced equipment in the USA.

Soil predictors in our model ranked second in terms of contribution. However, soil
predictors were less frequent in previous research, and their importance also remains
controversial [53,64,72,85]. For instance, Crane-Droesch (2018) used 39 soil predictors
for maize yield prediction, but found them to be the least important among climate,
management, and soil predictors. A possible explanation for this disagreement centers
around the homogeneity of soil in the US Corn Belt, in contrast with the huge heterogeneity
in China. Our results highlight the importance of soil predictors—especially in China,
whose arable areas show considerable heterogeneity. As for individual predictors, the
cation exchange capacity of clay (CEC_CLAY) from this group ranked second among all of
the predictors, consistent with conclusions from previous research conducted in the North
China spring maize zone [53]. In addition, the contribution of soil moisture (SMgs) in this
study was surprisingly limited, whereas it brought significant accuracy improvements to
the process-based models in previous research [63,86–88]. This is because the soil moisture
cannot reflect the physical damage and pollination disturbances caused by excessive rainfall
in China. The soil moisture is also likely to become saturated under excessive rainfall; that
is, although soil moisture can capture the influence of drought on maize yield, its ability to
reflect conditions of excessive wetness is limited.

Remote sensing predictors were the third most important, because they contain unique
information about the growing progress and health condition of crops [74]. The land surface
temperature did not significantly outperform air temperature in our results, while previous
research found that replacing air temperature with land surface temperature (LST) could
significantly improve the model accuracy across the US Corn Belt [60]. However, Pede
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et al. (2019) only considered climate data and LST, while we used multisource data. Their
research assumed that the LST can provide additional canopy information when using
only climate data [89]. Our results indicated that this information might have been already
captured by vegetation indices, such as the EVI.

Management predictors were the fourth most important, but the nitrogen application
total (NAT) ranked third among all predictors. The dramatic increase in grain yield across
the Chinese maize belt relied heavily on the application of nitrogen fertilizer [90], which
can delay leaf senescence and sustain further grain yield increase—especially for high-
yield maize production [91]. Although the application of fertilizer plays an important role in
increasing grain yields in China [92–94], it has seldom been considered in yield prediction in
previous research. Thus, our results encourage future studies to apply management predictors.

Machine learning models in this study highly outperformed MLR, due to MLR’s limi-
tations in dealing with nonlinear relations and collinearity. Machine learning algorithms
allow for the extraction of information about complicated interplays of various predictors,
and can be performed independently from previously defined interrelationships [82,95].
The XGB model is comparable to the BNN, and similar results were found in previous re-
search conducted in the USA and China [61,96]. This may be because it is hard to determine
the optimal structure of a BNN, while the optimal parameters of XGB can be determined by
cross-validation or grid search [96]. Furthermore, XGB showed better performance than RF,
which is one of the most popular methods in yield prediction [33,53,61,97]. The superiority
of XGB can be attributed to its boosting technique, which iteratively reduces bias and
variance. Compared with RF, XGB fits each tree on a modified version of the original
training dataset, i.e., every new tree uses information from previously grown trees [61].

4.3. Limitations and Future Work

This research is not free of uncertainties. First, our results could be significantly
improved if we had access to the masks, which could present changes in the planting area
from year to year. We only considered planting masks of 2000, 2005, and 2010 in this study
due to lacking annual data, largely limiting the performance of our results. This problem
will be solved as the cropland masks become increasingly available at high frequency
and spatial resolution. Second, the generalization ability of machine learning models can
be improved. For example, the XGB model trained at the municipal level succeeded in
explaining around 81% of the municipal-level yield variation in the testing process (Figure
S6), but only explained around 54% of the county-level yield variation (Figure 4). The
weak generalization ability can be ascribed to the domain shift—the models trained from
the municipal-level data may lose validity when directly applied to estimate yields at the
gridded level, since they have different data distributions [98]. This problem will likely be
addressed by integrating the process-based models or transfer learning [99–102].

5. Conclusions

This study developed a spatial disaggregation method based on machine learning
algorithms and multisource data to produce spatially explicit gridded yields. Compared
with the traditional disaggregation method, our method comprehensively considers the
information contained in the multisource data, mining the relationships between them and
maize yield through machine learning algorithms, while still maintaining strong flexibility
and scalability. We found that XGB outperformed MLR and RF, and was comparable to the
BNN. The disaggregated maps could reproduce 54% of the county-level yield variability
when it was validated by finer-resolution statistical yields. The combination of machine
learning and multisource data in producing spatially explicit yields improved upon the existing
gridded datasets. Our method is not limited to using MODIS imagery as inputs, and shows
promise in generating yield maps at much higher resolution and larger scales. Its accuracy
could be further improved by transfer learning and integrating process-based models.
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68. Folberth, C.; Baklanov, A.; Balkovič, J.; Skalský, R.; Khabarov, N.; Obersteiner, M. Spatio-Temporal Downscaling of Gridded Crop

Model Yield Estimates Based on Machine Learning. Agric. For. Meteorol. 2019, 264, 1–15. [CrossRef]
69. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
70. Guo, R.; Zhao, Z.; Wang, T.; Liu, G.; Zhao, J.; Gao, D. Degradation State Recognition of Piston Pump Based on ICEEMDAN and

XGBoost. Appl. Sci. 2020, 10, 6593. [CrossRef]
71. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In KDD’16, Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Online Conference, 13 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794.
[CrossRef]

http://doi.org/10.1038/370204a0
http://doi.org/10.1016/j.eja.2007.03.002
http://doi.org/10.3390/rs12071111
http://doi.org/10.1126/science.1251423
http://www.ncbi.nlm.nih.gov/pubmed/24786079
http://doi.org/10.1029/2018GL079291
http://doi.org/10.1073/pnas.0906865106
http://doi.org/10.1016/j.agrformet.2018.09.019
http://doi.org/10.1016/j.agrformet.2004.12.006
http://doi.org/10.1016/j.compag.2018.05.035
http://doi.org/10.3390/rs12010021
http://doi.org/10.1016/j.rse.2013.10.027
http://doi.org/10.1016/j.agrformet.2013.01.007
http://doi.org/10.1016/j.agrformet.2019.107826
http://doi.org/10.1111/gcb.14302
http://doi.org/10.1111/gcb.15603
http://doi.org/10.1016/j.jag.2016.05.010
http://doi.org/10.1016/j.agrformet.2019.107615
http://doi.org/10.1088/1748-9326/ab7df9
http://doi.org/10.1016/j.eja.2018.07.003
http://doi.org/10.1016/j.rse.2013.07.018
http://doi.org/10.3389/fpls.2019.00621
http://www.ncbi.nlm.nih.gov/pubmed/31191564
http://doi.org/10.1016/j.agsy.2006.01.008
http://doi.org/10.1016/j.agsy.2014.01.002
http://doi.org/10.1016/j.agrformet.2010.07.008
http://doi.org/10.1016/j.agrformet.2018.09.021
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3390/app10186593
http://doi.org/10.1145/2939672.2939785


Remote Sens. 2022, 14, 2340 18 of 19
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