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Abstract: Sea surface temperature (SST) is a crucial factor that affects global climate and marine
activities. Predicting SST at different temporal scales benefits various applications, from short-term
SST prediction for weather forecasting to long-term SST prediction for analyzing El Niño–Southern
Oscillation (ENSO). However, existing approaches for SST prediction train separate models for
different temporal scales, which is inefficient and cannot take advantage of the correlations among
the temperatures of different scales to improve the prediction performance. In this work, we propose
a unified spatio-temporal model termed the Multi-In and Multi-Out (MIMO) model to predict SST
at different scales. MIMO is an encoder–decoder model, where the encoder learns spatio-temporal
features from the SST data of multiple scales, and fuses the learned features with a Cross Scale
Fusion (CSF) operation. The decoder utilizes the learned features from the encoder to adaptively
predict the SST of different scales. To our best knowledge, this is the first work to predict SST
at different temporal scales simultaneously with a single model. According to the experimental
evaluation on the Optimum Interpolation SST (OISST) dataset, MIMO achieves the state-of-the-art
prediction performance.

Keywords: sea surface temperature (SST); multi-scale SST prediction; spatio-temporal model; data fusion

1. Introduction

Sea surface temperature (SST) refers to the temperature of the water from 1 millimeter
to 20 meters below the sea surface. The ocean covers about three-quarters of the Earth’s
surface and greatly influences global climate [1] and human activities [2]. As one key factor
of ocean environment, SST affects global climate when assimilating and releasing heat. For
instance, global precipitation is influenced by ocean evaporation, which is highly dependent
on SST [3]. The widely known El Niño–Southern Oscillation (ENSO) phenomenon is an
irregular periodic variation of SST in the tropical eastern Pacific Ocean, and occurs every
3∼5 years [4]. Therefore, accurately predicting SST could benefit various applications, e.g.,
weather forecasting, global warming prevention and extreme climate tracking.

Most existing methods for SST prediction are either numerical models or data-driven
models. Numerical models [5], e.g., General Circulation Model (GCM), Integrated Forecast
System (IFS) and Global Forecast Systems (GFS), predict SST by using differential equations
to describe the relations between SST and other oceanic factors (e.g., sea surface height and
air temperature) according to the laws of physics. Numerical models are usually of high
complexity due to the large number of parameters, thus resulting in high computation cost.
Data-driven SST prediction models predict SST by discovering the hidden regularity and

Remote Sens. 2022, 14, 2371. https://doi.org/10.3390/rs14102371 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14102371
https://doi.org/10.3390/rs14102371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2331-1333
https://orcid.org/0000-0002-8768-6740
https://doi.org/10.3390/rs14102371
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14102371?type=check_update&version=2


Remote Sens. 2022, 14, 2371 2 of 16

patterns in historical SST data, and can be further divided into three sub-categories, i.e., sta-
tistical models [6], shallow neural network models [7–9] and deep learning models [10–12].
In contrast to numerical models, data-driven models require less domain knowledge and
usually can achieve better prediction performance.

The existing methods mentioned above all focus on single-scale SST prediction, e.g.,
predicting the SST of the next seven days, and predicting the monthly average SST in the
next one year. However, single-scale SST prediction has some disadvantages. First, we
have to train different models for predicting different scales of SST, which is inefficient
and costs many computation resources. Second, single-scale SST prediction ignores the
correlations among SST of different scales. In practice, SST has different scales of temporal
regularity. For example, the short-term SST usually depends on the long-term trends and
periodicity of SST. In this case, the correlations of different scales of SST could be used for
improving SST prediction.

To overcome the disadvantages of existing SST prediction methods, we propose multi-
scale SST prediction to predict daily, weekly and monthly SST simultaneously. To this
end, we face some technical challenges. First, multi-scale SST prediction needs to learn
the features that can capture the regularity of different temporal scales of SST. Second,
it is nontrivial to exploit the correlations among SST data of different scales. Third, the
prediction model should be able to adapt to different scales of SST prediction.

To address these challenges in multi-scale SST prediction, we propose a new spatio-
temporal model, i.e., the Multi-In and Multi-Out (MIMO) model. Concretely, the MIMO
model first learns the spatio-temporal features for different scales of SST with independent
learning blocks. Then, the learned features are fused to obtain unified feature representa-
tion. Finally, the MIMO model adaptively predicts different scales of SST with different
prediction components. This is the first work that achieves unified prediction for SST of
different temporal scales. The proposed model can learn the spatio-temporal features of
SST well and fully take advantage of the correlations among different scales of SST to
enhance the prediction.

The main contributions of this work are highlighted as follows.

• We raise the multi-scale SST prediction problem and highlight its technical challenges.
• We propose the MIMO model that can predict SST at multiple scales simultaneously

with a single model. MIMO learns different scales of temporal regularity in SST and
can be adapted to the requirements of SST prediction at different scales.

• We conduct extensive experiments on real SST datasets to evaluate the proposed
method, and the experimental results shows that MIMO outperforms existing SST
prediction methods, including CNN, LeNet and ConvLSTM.

The remainder of this work is organized as follows. Section 2 reviews the related work
on SST prediction and analyzes the disadvantages of existing methods. Section 3 formally
defines the problem of multi-scale SST prediction, and Section 4 gives the technical details
of the proposed MIMO model. Section 5 reports the experimental results. Finally, Section 6
concludes the work.

2. Background

As discussed previously, existing SST prediction methods can be classified into nu-
merical models and data-driven models, where data-driven models can be further divided
into statistical models, shallow neural network models and deep learning models. Figure 1
shows the taxonomy of existing SST prediction methods and their representative models.
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Figure 1. The taxonomy of existing SST prediction models.

2.1. Numerical Models

Numerical models utilize mathematical equations to describe the underlying regularity
in SST and its correlations with other oceanic and atmospheric variables [13–15]. This
requires a better understanding of the dynamics of SST to design the prediction models.
Representative numerical SST prediction models include General Circulation Model (GCM),
Integrated Forecast System (IFS) and Global Forecast Systems (GFS).

GCM simulates the changes of the global climate by calculating the hourly evolution
of the atmosphere based on the conservation laws for atmospheric mass, momentum,
total energy and water vapor [16]. For example, Krishnamurti et al. used 13 coupled
atmosphere-ocean models to predict SST [17].

The IFS model and GFS model are developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the Command National Centers for Environmental
Prediction (NCEP), respectively [18]. The IFS model can predict the SST of the following
10–15 days while the GFS model can predict the SST of the following 16 days. Both models
contain multiple GCMs and can also predict other variables of the ocean and atmosphere.

Numerical models are usually of high computational complexity due to the large
number of mathematical equations they have. In addition, numerical models are widely
used for analyzing the global trends of SST but cannot predict the SST of high spatial
resolutions well.

2.2. Data-Driven Models

Different from numerical models, data-driven models directly learn knowledge from
historical SST data with machine learning techniques to conduct the prediction. Therefore,
data-driven models depend more on SST data than the domain knowledge in ocean climate
and environment.

2.2.1. Statistical Models

Statistical models for SST prediction learn the regularity and hidden patterns of SST
from historical data [19,20]. Representative statistical models include support vector ma-
chine (SVM) and multi-linear regression (MR) model. SVM constructs a set of hyperplanes
in a high dimensional space and uses these hyperplanes for classification and regression.
For example, Lins et al. developed an SVM model that uses historical daily SST as input to
predict the SST across the Northeastern Brazilian Coast [21] and the tropical Atlantic [6].
The MR model combines the SST anomaly index with the tropical Pacific SST anomaly to
predict SST. It takes 12 months of historical SST data as the input and assumes that the SST
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follows some statistical assumptions. Then, the MR model uses a linearly weighted sum
method to predict the SST of the following month [22]. Statistical models need feature engi-
neering to extract features from SST data, which may result in the loss of some important
information for SST prediction.

2.2.2. Shallow Neural Network Models

Shallow neural network (SNN) models are of high flexibility in fitting raw SST
data [23–25]. Compared with the statistical models, SNN models can capture the non-
linear correlations in SST data, thus achieving better prediction performance. For instance,
Patil et al. proposed an Artificial Neural Network (ANN) to predict the SST of the following
5 days [26]. Aparna et al. proposed an SNN that comprises three layers, i.e., input layer,
linear layer and output layer, to predict the SST of the next day at specific locations [18].
Wei et al. separated SST time series data into monthly mean SST and monthly anomaly SST,
and constructed two multilayer perceptron (MLP) models to generate the predicted results
of SST [7].

Most shallow neural network models predict SST at some specific locations and ignore
the spatial correlations and temporal regularity in SST. In addition, due to the limited
learning ability, SNN models cannot fully exploit the large volume of historical SST data to
train prediction models.

2.2.3. Deep Learning Models

With the substantial increase of SST data, statistical models and SNN models are
unable to learn comprehensive knowledge from big SST data to further improve the
prediction performance. Therefore, deep learning (DL) models have been introduced for
SST prediction [27]. DL models can be classified into three sub-categories, i.e., deep spatial
models, deep temporal models and deep spatio-temporal (ST) models.

Deep spatial models focus on learning the spatial correlations in SST data to achieve
prediction. Ham et al. proposed a CNN-based model to predict the Niño 3.4 index of the
next 12 months based on the historical SST data of 12 months [28]. Zheng et al. proposed a
model with stacked multiple CNN layers, Max Pooling layers and upsampling layers to
predict the SST of the next day using the historical SST data of 14 days [11].

Deep temporal models focus on learning the temporal regularity in SST data to achieve
prediction. Zhang et al. proposed an LSTM model to predict the SST in the next three days
in the East China Sea with the historical SST data of 15 days [10]. Xiao et al. combined
Ada-Boost and LSTM to predict the SST in the next 10 days in the East China Sea with the
historical SST data of 40 days [29]. Yao et al. proposed an encoder–decoder model based
on LSTM to predict the SST in the next 10 days using the historical data of 10 days [30].

Deep spatio-temporal models learn both spatial correlations and temporal regularity
in SST to achieve prediction. Xiao et al. proposed a multi-layer convolutional LSTM model
to predict the SST in the next 10 days with the historical SST data of 50 days in the East
China Sea [12]. Weyn et al. combined the ConvLSTM model and the CNN model to predict
the SST of the next three days with the historical SST data of 12 days [31]. Zhang et al.
proposed a CNN-LSTM-based model to predict the SST in the next eight months using
the historical SST data of 28 months [32]. In addition, deep graph models have also been
used for SST prediction in recent years. Zhang et al. proposed a graph model MGCN that
uses historical SST data of six days to predict the SST of the next three days. They used
a temporal convolution to learn the temporal features of SST which are then put into the
graph model to learn the spatial features [33].

In general, deep learning models can achieve better prediction performance than
statistical models and shallow neural network models. However, all existing data-driven
models only consider single-scale SST prediction, i.e., predicting daily or monthly SST
separately, and cannot achieve multi-scale SST prediction.
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3. Problem Definition

For SST prediction, we usually divide the target region of interest R into small grid
regions of the same size along the latitude and longitude, and then predict the SST for each
grid region. For example, as illustrated in Figure 2, the region Niño 3.4 can be divided into
40 × 200 grid regions of size 0.25◦ × 0.25◦.

Latitude

Longitude

Time

Figure 2. The daily SST sequence for the region of Niño 3.4, which is located within [5◦N∼5◦S,
120◦W∼170◦W] in the Pacific Ocean and divided into 40 × 200 grid regions of size 0.25◦ × 0.25◦.

Assuming that the region of interest R is divided into c × d grid regions, the corre-
sponding SST records at time slot t are denoted by Xt ∈ Rc×d. Data-driven SST prediction
methods learn the underlying patterns of SST from historical SST data to predict the SST in
the future. Specifically, the problem of single-scale SST prediction is defined as below.

Definition 1 (Single-Scale SST Prediction). Given a sequence of historical SST records
Xt−a+1→t= ( Xt−a+1, Xt−a+2, . . . , Xt) of length a, single-scale SST prediction aims to predict the
SST sequence Xt+1→t+b = (Xt+1, Xt+2, . . . , Xt+b) of length b in the future, i.e.,

Xt+1→t+b = arg max
Xt+1→t+b

p(Xt+1→t+b|Xt−a+1→t) (1)

In general, the time slot in single-scale SST prediction could be daily, weekly and
monthly. For example, we can have the following SST prediction schemes:

• Using the historical daily SST of 10 days to predict the daily SST of the following
seven days, where a = 10 and b = 7;

• Using the historical monthly SST of 36 months to predict the monthly SST of the
following 12 months, where a = 36 and b = 12.

In existing studies on SST prediction, different scales of SST prediction are treated
separately, i.e., training different prediction models for different scales of SST prediction.
In this work, we aim to unify the prediction for multiple scales of SST and propose the
problem of multi-scale SST prediction as defined below.

Definition 2 (Multi-scale SST prediction). Given daily, weekly and monthly historical SST
records Xdaily

t−a+1→t, Xweekly
t−a+1→t and Xmonthly

t−a+1→t, respectively, multi-scale SST prediction aims to
predict their corresponding records in the next b time slots, i.e.,

{
Xdaily

t+1→t+b,Xweekly
t+1→t+b,Xmonthly

t+1→t+b

}
= arg max{

Xdaily
t+1→t+b,Xweekly

t+1→t+b,Xmonthly
t+1→t+b

} (2)

p(
{

Xdaily
t+1→t+b,Xweekly

t+1→t+b,Xmonthly
t+1→t+b

}
|
{

Xdaily
t−a+1→t,X

weekly
t−a+1→t,X

monthly
t−a+1→t

}
)
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Figures 3 and 4 illustrate the difference between single-scale SST prediction and multi-
scale SST prediction. Single-scale SST prediction uses the same scale of historical SST data to
predict the corresponding future SST records. Therefore, in single-scale SST prediction, the
input has three dimensions, i.e., latitude, longitude and time slots. In contrast, multi-scale
SST prediction considers multiple scales of historical SST data and achieves the prediction
for all the scales of SST together, thus covering short-term, mid-term and long-term SST
prediction. Therefore, in multi-scale SST prediction, the input has four dimensions, i.e.,
latitude, longitude, time slots and scales.

Historical  SST Predicted SST

Figure 3. Single-scale SST prediction that uses the historical SST of single scale to predict the future
single-scale SST.

Historical SST Predicted SST

Sh
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t-t
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Short-term
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Long-term

Figure 4. Multi-scale SST prediction that uses different scales, e.g., daily, weekly and monthly, of
historical SST data to predict their future records simultaneously.

Considering that the prediction periods of most existing SST prediction methods are
less than 12 time slots, we use the daily, weekly and monthly SST records of 36 time slots
to predict the daily, weekly and monthly SST records in the next 12 time slots, i.e., a = 36
and b = 12. With such a setting, we can cover most of the prediction schemes in existing
studies.

4. Methodology

Figure 5 presents the overall architecture of the MIMO model which consists of an
input layer, an encoder and a decoder. The input layer contains multi-scale SST data and
some external factors, where external factors, including short wave radiation (SWR) and
long wave radiation (LWR), are regarded as important influence factors for SST and are
thus introduced to enrich the information for SST prediction. Considering that the spatial
resolutions of SST data and external factors are usually different due to the difference in
the ways of data collection, we use Bicubic Convolutional Interpolation (BCI) to align the
spatial resolutions of external factors to that of SST data. The technical details of BCI are
discussed in Appendix A.

In the encoder, MIMO uses five independent Zoom In Spatio-Temporal (ZIST) blocks
to learn the hierarchical spatio-temporal features from multi-scale SST data and external
factors and uses Cross Scale Fusion (CSF) to fuse the learned features. In the decoder, MIMO
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designs three independent components for monthly, weekly and daily SST prediction,
respectively. Each component comprises three Zoom Out Spatio-Temporal (ZOST) blocks
and one Full Connection (FC) layer, where ZOST blocks decode the fused features from the
encoder stage and the FC layer achieves the final prediction.

CSF

ST 
Layer 
Three

CSF

ST 
Layer 
Two

CSF

ST 
Layer 
One

Monthly SST Weekly SST Daily SST

Short-termMid-termLong-term
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External Features
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Figure 5. The architecture of MIMO model which consists of an input layer, an encoder and a decoder.
The input layer contains multi-scale SST data and some external factors. The encoder contains three
spatio-temporal layers and each layer contains five independent Zoom In Spatio-Temporal (ZIST)
blocks, where each ZIST block consists of Batch Normalization (BN), Dilated ConvLSTM (DCL),
Rectified Linear Unit (ReLU) and Max Pooling (MP). The decoder contains three components for
monthly, weekly and daily SST prediction, respectively, and each component contains three Zoom
Out Spatio-Temporal (ZOST) blocks and one Full Connection (FC) layer, where each ZOST block
consists of BN, DCL, ReLU and Up Sampling (US).

4.1. Encoder

The encoder of the MIMO model has three spatio-temporal (ST) layers, and each
ST layer consists of five Zoom In Spatio-Temporal (ZIST) blocks and one Cross Scale
Fusion (CSF) sub-layer.

4.1.1. Zoom in Spatio-Temporal Block

Each ZIST block comprises Batch Normalization (BN), Dilated ConvLSTM (DCL),
Rectified Linear Unit (ReLU) and Max Pooling (MP), where BN normalizes the data to
avoid overfitting, DCL learns hierarchical features from the data using dilated convolution,
ReLU filters the negative values to speed up the training process and MP reduces the
number of model parameters and alleviates the position sensitivity.
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Specifically, the DCL uses the dilated convolutional operation to replace the Hadamard
product in LSTM to capture more spatial features. Figure 6 illustrates the 2D dilated
convolutional operations that use intermittent connections between grids in traditional
convolutional kernels. The dilation rate r is used to quantify the distance of intermittent
connections between grids. Given a k× k convolutional kernel, the corresponding dilated
kernel size is kd = k + (k − 1)(r − 1). For example, in Figure 6, r = 1 corresponds to a
normal convolution kernel, r = 2 corresponds to a dilated convolution kernel of size kd = 5,
and r = 3 corresponds to a dilated convolution kernel of size kd = 7.

Normal Kernel Kernel with one 
imtermittent connection

Kernel with two 
imtermittent connections

Figure 6. The normal convolutional kernel and dilation convolutional kernels.

DCL will face the “gridding” issue [34] when multiple ST layers are stacked. To
address this issue, MIMO sets different dilation rates r, i.e., 1, 2 and 3, for three ST layers,
respectively.

In addition, the features learned by DCL can be affected by the changes of position,
which makes the prediction model sensitive to specific positions and shapes. Meanwhile,
with multiple stacked DCLs, we may lose the features for the marginal areas of feature
maps. Both issues will damage the generalization of the MIMO model. We introduce Max
Pooling (MP) to address these two issues. MP can reduce the model size and indirectly
increase the receptive field of the kernel size to better learn spatial features in the data. In
addition, MP brings the advantage of feature invariance to the prediction model, which
avoids the learning errors due to location changes.

4.1.2. Cross Scale Fusion

MIMO learns the spatio-temporal features of different scales of SST and external
features separately, and then fuses them together. Concretely, in each ST layer, the fea-
tures learned from five ZISTs are fused with the CSF sub-layer. Each CSF sub-layer is a
ConvLSTM layer with kernel size of 1× 1. As illustrated in Figure 7, CSF can reduce the
dimensions of the outputs from five ZISTs to achieve the fusion.
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Figure 7. The structure of the Cross Scale Fusion (CSF) sub-layer, where the learned spatio-temporal
features of different scales of SST and external features.

4.2. Decoder

The decoder of the MIMO model comprises three independent components, each
consisting of three Zoom Out Spatio-Temporal (ZOST) blocks and one Full Connection (FC)
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layer. As illustrated in Figure 5, each ZOST comprises BN, DCL, ReLU and Up Sam-
pling (US) and can decode the fused features from the encoder to the target scale of SST.

We use the nearest neighbor upsampling method to decode the features from the
encoder. The nearest upsampling method directly enlarges the fused features in proportion
to the input data. As illustrated in Figure 8, the 2 × 2 feature map is converted to a 4 × 4
feature map using upsampling with 2 × 2 filters.

28.78 29.07

28.74 28.77

Up Sampling with 
2x2 filters 28.78

29.07

28.74 28.77

28.78 28.78

28.78

29.07

29.07 29.07

28.74

28.74 28.74

28.77

28.77 28.77

Figure 8. The upsampling that recovers the shape of the input data.

4.3. Loss Function

The objective of the MIMO model is to minimize the total error of the SST predictions
of multiple scales, i.e.,

Loss =
3

∑
i=1

αiLi(Xobs
i , X̂pre

i ) (3)

where Li is the loss function for the i-th scale of SST, αi is the weight parameter for loss
function Li, Xobs

i is the ground truth and X̂pre
i is the predicted result of the MIMO model.

Since different scales of SST have different effects on the MIMO model, the loss
functions corresponding to different scales of SST also have different effects on the total loss
function. If we calculate the loss functions for SST predictions of different scales separately,
the convergence speed of each loss function will be inconsistent. Hence, the MIMO model
introduces weight parameters, i.e., αi, to balance the convergence speed between the loss
functions for different scales of SST prediction. According to the experimental analysis, we
set the weights for the loss functions of daily, weekly and monthly scales of SST prediction
to 0.6, 0.2 and 0.2, respectively.

The loss function Li for the i-th scale of SST is the mean squared error (MSE), calculated
as below.

Li =
1
n ∑(Xobs − X̂pre)2 (4)

where n is the number of samples. During the training, the model is optimized using
Nadam [35].

5. Model Evaluation

We used the SST data from the El Niño region to compare the accuracy of our model
to SVM, CNN, LeNet, LSTM and ConvLSTM. The time range of the SST dataset is from 1
January 1982 to 31 December 2019.

5.1. Datasets

We use the Optimum Interpolation SST (OI-SST) data from the National Oceanic and
Atmospheric Administration (NOAA) and select the region of Niño 3.4 as the target region
for prediction. The NOAA 0.25◦ OI-SST is a long-term climate data record that incorporates
the observations from different platforms, e.g., satellites, ships, buoys and Argo floats,
into a regular global grid format. The Niño 3.4 region covers the area of [5◦00′N∼5◦00′S,
120◦00′W∼170◦00′W] and is divided into 40 × 200 grids of size 0.25◦ × 0.25◦. In addition,
the data for the external factors SWR and LWR are from NCEP/NCAR Reanalysis 1.
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The whole dataset is divided into three subsets for training, validation and testing,
respectively. The ratio of the three subsets is 72:1. Concretely, the training dataset contains
8956 samples, the validation dataset has 2239 samples and the testing dataset has 1244 samples.
In the experiments, we aim to predict the daily, weekly and monthly SST records in the next
12 time slots. The number of iterations for model training is set to 1000 and the training
process could end early if the loss function no longer changes for 10 consecutive rounds. The
experiments run on a 64-core Intel Xeon processor with 256 GB RAM and 3 NVIDIA RTX
2080Ti GPUs. All SST prediction models are implemented based on TensorFlow 1.15.0.

5.2. Evaluation Metrics

We use four evaluation metrics to measure the performance of SST prediction models.
The equations of the four evaluation metrics are listed as follows.

MSE =
1
n ∑

i
(xi − x̂i)

2, (5)

RMSE =

√
1
n ∑

i
(xi − x̂i)2, (6)

MAE =
1
n ∑

i
|xi − x̂i|, (7)

MAPE =
100%

n ∑
i
| xi − x̂i

xi
|. (8)

where x̂ and x are the predicted value and the observed value, respectively, and n is the
total number of predicted samples.

5.3. Results
5.3.1. Weight Evaluation

To decide the values for the weights αi (i = 1, 2, 3) in the loss function, we evaluate
the performance of MIMO models with different settings as below, where L1, L2 and L3
correspond to the loss functions of daily, weekly and monthly predictions, respectively.

• MIMO-122: L1 = 1, L2 = 2 and L3 = 3.
• MIMO-911: L1 = 0.9, L2 = 0.1 and L3 = 0.1.
• MIMO: L1 = 0.6, L2 = 0.2 and L3 = 0.2.
• MIMO-433: L1 = 0.4, L2 = 0.3 and L3 = 0.3.
• MIMO-244: L1 = 0.2, L2 = 0.4 and L3 = 0.4.

Table 1 presents the results of these models, where the best results are highlighted by
boldface. As suggested by the table, MIMO-911 and MIMO achieve comparable performance
and outperform all the other prediction models. Considering that MIMO has the best perfor-
mance in predicting weekly and monthly SST and also achieves a high accuracy in predicting
daily SST, we thus set L1 = 0.6, L2 = 0.2 and L3 = 0.2 in the following experiments.

Table 1. The results of MIMO with different settings for the weights of loss function.

Model
Daily Weekly Monthly

Total MSE
MSE RMSE MAE MAPE MSE RMSE MAE MAPE MSE RMSE MAE MAPE

MIMO-122 2.08 1.44 1.18 4.31% 1.88 1.37 1.11 4.07% 1.37 1.17 0.96 3.55% 1.99

MIMO-911 0.37 0.61 0.47 1.76% 0.61 0.78 0.60 2.22% 0.81 0.90 0.72 2.63% 0.44

MIMO 0.40 0.63 0.49 1.81% 0.50 0.71 0.55 2.04% 0.58 0.76 0.60 2.24% 0.45

MIMO-433 0.46 0.68 0.53 1.95% 0.58 0.76 0.60 2.20% 0.66 0.82 0.64 2.37% 0.56

MIMO-244 2.14 1.46 1.19 4.34% 2.01 1.42 1.14 4.19% 1.41 1.19 0.97 3.59% 1.80
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5.3.2. Model Comparison

To verify the effectiveness of the MIMO model, we compare it with five representative
forecasting models: CNN, ConvLSTM, LeNet, LSTM and SVM. The experimental results
are shown in Table 2, where the best results are highlighted by boldface. The MIMO model
has the best total MSE. LeNet and SVM also achieve good prediction performance and
largely outperform CNN, ConvLSTM and LSTM. Concretely, the MIMO model has the
best performance in predicting weekly and monthly SST. MIMO also achieves comparable
performance with LeNet in predicting daily SST on MAE and MAPE. The MIMO model is
designed for multi-scale SST prediction and needs to balance the prediction performance of
different scales. Therefore, the MIMO model can achieve accurate predictions for all three
scales of SST.

Table 2. The results of different SST prediction models.

Model
Daily Weekly Monthly

Total MSE
MSE RMSE MAE MAPE MSE RMSE MAE MAPE MSE RMSE MAE MAPE

MIMO 0.40 0.63 0.49 1.81% 0.50 0.71 0.55 2.04% 0.58 0.76 0.60 2.24% 0.45

ConvLSTM 2.78 1.67 1.36 5.01% 2.86 1.69 1.40 5.11% 2.53 1.59 1.33 4.80% 2.75

LeNet 0.41 0.64 0.47 1.77% 0.99 0.99 0.76 2.86% 1.52 1.23 0.95 3.59% 0.58

CNN 1.20 1.10 0.84 3.09% 1.73 1.32 1.05 3.88% 2.82 1.68 1.35 5.09% 1.42

LSTM 2.04 1.41 1.15 4.24% 1.88 1.35 1.10 4.01% 1.39 1.16 0.95 3.53% 1.88

SVM 0.43 0.64 0.48 1.77% 0.82 0.90 0.71 2.62% 1.13 0.96 0.85 3.18% 0.61

LeNet with EXT 0.56 0.75 0.56 2.09% 1.62 1.27 1.00 3.69% 1.54 1.24 0.99 3.75% 0.97

LSTM with EXT 1.86 1.34 1.10 4.04% 1.80 1.32 1.08 3.98% 1.36 1.15 0.94 3.49% 1.75

SVM with EXT 1.33 1.14 0.91 3.35% 1.21 1.09 0.86 3.13% 1.04 1.01 0.82 3.00% 1.25

In addition, we add more experiments to evaluate the influence of external factors, i.e.,
short wave radiation (SWR) and long wave radiation (LWR). In accordance with Table 2,
after including the external factors, the performance of LSTM has a small increase while
the performance of LeNet and SVM decreases. This is because some models cannot handle
external factors well and the contribution of these external factors is also limited. In
addition, our MIMO model still outperforms these models with external factors, which
indicates that the MIMO model can fully take advantage of the correlations among SSTs of
different scales to improve the prediction.

5.3.3. Visualization

To better demonstrate the effectiveness of the MIMO model, we visualize the mean
absolute errors of MIMO, ConvLSTM, LeNet and CNN for daily, weekly and monthly SST
prediction in Figures 9–11, respectively.

As shown in Figure 9, MIMO and LeNet have similar MAE in daily SST prediction.
The MAE of these two models is less than 0.5 for most grid regions. In contrast, the MAE
of ConvLSTM is quite large. As for CNN, the predicted results for the 4th, 8th and 11th
days are also bad.

Figure 10 illustrates the MAE for weekly SST prediction. MIMO has the best prediction
performance among four models and its MAE errors are less than 0.5 for most grid regions.
With the increase of time, the MAE of LeNet becomes large and reaches 1.25 for some grid
regions. The MAEs of ConvLSTM and CNN are still very large but CNN performs better
than ConvLSTM.

Figure 11 illustrates the MAE for monthly SST prediction. MIMO also achieves the
best prediction performance. For LeNet, the MAE becomes larger than that of weekly SST
prediction and still outperforms ConvLSTM and CNN. The MAE errors of ConvLSTM and
CNN even reach 2.0 for some grid regions.
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Figure 9. The results of daily SST prediction in Niño 3.4 region.
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Figure 10. The results of weekly SST prediction in Niño 3.4 region.

In sum, in accordance with Figures 9–11, the MIMO model can achieve quite good
prediction performance in all daily, weekly and monthly SST prediction. LeNet also
achieves good prediction performance on daily SST prediction but has larger prediction
errors than MIMO in weekly and monthly SST prediction. Both MIMO and LeNet largely
outperform ConvLSTM and CNN.
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Figure 11. The results of monthly SST prediction in Niño 3.4 region.
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5.4. Discussion

According to the experimental evaluation, the proposed MIMO model achieves good
performance in predicting SSTs of different temporal scales and outperforms multiple
classical forecasting methods. The underlying principles can be explained from two aspects.

On the one hand, the dynamics of SST has short-term temporal dependency, middle-
term trend and long-term periodicity. For short-term temporal dependency, the SST in the
next few days is usually similar to the that of past few days. For the middle-term trend, the
SST may keep increasing within a few weeks. For long-term periodicity, the SST of the same
month in two consecutive years is often similar. Therefore, integrating SST predictions of
different temporal scales lets us have a better understanding of the dynamics of SST from
an overall review and could further enhance the prediction performance.

On the other hand, the SSTs of different temporal scales are often correlated. For
example, the increase of short-term SST causes the ocean to accumulate energy, which will
result in the changes of long-term SST. Meanwhile, when the energy is accumulated to a
certain extent, the ocean begins to release energy. Therefore, long-term SST changes will
also affect short-term SST. The proposed MIMO model can fully take advantage of such
correlations to improve SST prediction.

6. Conclusions

This work proposes the multi-scale SST prediction problem and develops a new model
named Multi-In and Multi-Out (MIMO) to address this problem. MIMO can fuse multi-scale
SST data and external data to learn comprehensive features and decode the learned features
to adaptively predict daily, weekly and monthly SST. Experimental evaluation shows
that MIMO can achieve much better prediction performance than existing SST prediction
methods in predicting weekly and monthly SST, and comparable prediction performance
with the state-of-the-art prediction method in predicting daily SST. The superiority of
MIMO lies in that it can do multi-scale SST prediction in a unified model, thus improving
the prediction accuracy by capturing the correlations among different scales of SST.
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Appendix A. Data Alignment

Due to the different data acquisition equipment and the different resolutions of various
data, it is not easy to use the data. In this work, the resolution of SST data in the Niño
3.4 region is 0.25◦ × 0.25◦ and the resolution of the external factors SWR and LWR are 1◦ ×
1◦, which means that the Niño 3.4 area can be represented by a 40 × 200 matrix based on
SST resolution, and a 10 × 50 matrix based on external factor resolution.

BCI is introduced in MIMO to align external factors from low-resolution data to high-
resolution data to overcome the issue, and it is an efficient 2D data interpolation method
that has been validated in several fields. The target data resolution is increased using cubic

https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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polynomial interpolation along two axes on a two-dimensional plane. Compared with
other interpolation methods, the interpolated results obtained by BCI are smoother.

Take the external data SWR as an example that needs to increase the resolution to the
same size of the SST data, i.e., from 1◦ × 1◦ to 0.25◦ × 0.25◦. Assume the input data is SWt
at time slot t, and the output data through BCI is SW ′t at time slot t. In this work, SW ′t is

4 times larger than SWt, i.e., scale size s = 4. Take a grid SW ′(i,j)t in SW ′t as an example,
where i, j represent the row and column where the grid is located in SW ′t . To calculate

the output data SW ′(i,j)t , the SW ′(i,j)t needs to be proportionally scaled into the input data

matrix SW ′(
i
s , j

s )
t , i.e., ( i

s , j
s ) is the position of the scaled output data in the SWt data.

As illustrated in Figure A1, a grid in SW ′t is scaled to the position p = ( i
s , j

s ) in SWt.
Taking p as the original grid and assuming that the distance between adjacent grids is 1,
the BCI obtains the value of 16 adjacent grids with a maximum distance of 2 from grid p to
obtain the final value of p. This can be represented by Equation (A1).

g(x, y) = W(dx)AW(dy)
T (A1)

where A is the matrix of the nearest 16 grid value represented as follows:

A =


a−1,−1 a−1,0 a−1,1 a−1,2
a0,−1 a0,0 a0,1 a0,2
a1,−1 a1,0 a1,1 a1,2
a2,−1 a2,0 a2,1 a2,2


dx and dy represent the distance between the p grid and nearest 4 grids on the x and y axes,
respectively. the distance dxi = [−1− i

s , 0− i
s , 1− i

s , 2− i
s ], and dyj = [−1− j

s , 0− j
s , 1−

j
s , 2− j

s ]. W(·) is the Bicubic Convolutional Kernel (BCK), i.e.,

W(d) =


(a + 2)|d|3 − (a + 3)|d|2 + 1 |d| ≤ 1
a(|d|3 − 5a|d|2 + 8a|d| − 4d 1 < |d| ≤ 2
0 |d| > 2

(A2)

where a is a hyperparameter. According to the experience of other related studies [36],
the value of a is set to −0.5.

p

1 2

0

1

2

0

Target grid

−1 

−1 

Figure A1. The bicubic mapping in BCI.
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