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Abstract: River ice segmentation, used for surface ice concentration estimation, is important for
validating river processes and ice-formation models, predicting ice jam and flooding risks, and
managing water supply and hydroelectric power generation. Furthermore, discriminating between
anchor ice and frazil ice is an important factor in understanding sediment transport and release
events. Modern deep learning techniques have proved to deliver promising results; however, they
can show poor generalization ability and can be inefficient when hardware and computing power is
limited. As river ice images are often collected in remote locations by unmanned aerial vehicles with
limited computation power, we explore the performance-latency trade-offs for river ice segmentation.
We propose a novel convolution block inspired by both depthwise separable convolutions and local
binary convolutions giving additional efficiency and parameter savings. Our novel convolution
block is used in a shallow architecture which has 99.9% fewer trainable parameters, 99% fewer
multiply–add operations, and 69.8% less memory usage than a UNet, while achieving virtually the
same segmentation performance. We find that the this network trains fast and is able to achieve high
segmentation performance early in training due to an emphasis on both pixel intensity and texture.
When compared to very efficient segmentation networks such as LR-ASPP with a MobileNetV3
backbone, we achieve good performance (mIoU of 64) 91% faster during training on a CPU and an
overall mIoU that is 7.7% higher. We also find that our network is able to generalize better to new
domains such as snowy environments.

Keywords: river ice; deep learning; segmentation; efficient networks

1. Introduction

Due to recent advancements, deep learning has become a powerful tool in the seg-
mentation of remote sensing imagery. Image segmentation extended to river ice is an
important step in estimating surface ice concentration for validating river process and
ice-formation models [1]. Information regarding river ice can also be integral for water
supply management, hydroelectric power generation [2], and predicting ice jam risks [3].
Furthermore, discriminating between different classes of ice, such as surface-forming frazil
ice and sediment-rich anchor ice, can be important in understanding sediment transport
and release events [4].

The first ice type of interest, frazil ice, forms as ice crystals flocculate together, float
to the surface forming surface slush, and consolidate to form frazil ice pans. In the late
stages of freeze up, frazil ice pans can freeze together to form frazil ice rafts. Frazil ice
pans often appear circular and can have upturned edges caused by collisions with other
ice pans. The second ice type of interest, anchor ice, forms on river beds, resulting in a
high sediment content within the ice. Through thermal or mechanical means, the anchor
ice can be released from the river bed and float to the surface [4]. On the surface, anchor
ice usually appears darker than frazil ice due to the high sediment content, and may have
fewer upturned edges due to less time on the surface and different structural properties.
When anchor ice release events occur, frazil ice generation may have already stopped. This
can result in a much higher concentration of anchor ice than frazil ice [4].
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The Peace River flows from the Rocky Mountains of British Columbia in Western
Canada to the Northeast corner of Alberta, Canada, where it forms the Peace–Athabasca
Delta, the largest boreal freshwater ecosystem in the world and a UNESCO World Heritage
Site [5]. A study regarding suspended load mass flux in the Peace River determined that
with a mean annual flow of 1600 m2/s, there was a constant suspended sediment load of
1204 kg/s [6]. Another study found that a sediment mass flux of up to 421 kg/s can be
attributed to ice rafting during anchor ice release events, accounting for up to 3.3% of the
total annual suspended sediment transported assuming 30 anchor ice release events in a
year [7]. The same study also noted that during an anchor ice release event, the anchor
ice rafting may account for up to 40% of average suspended max. flux. With estimates of
the sediment concentration within anchor ice pans [8], meaningful contributions can be
made to the annual sediment budget by efficiently imaging and segmenting anchor ice
pans during anchor ice release events.

One means of collecting imagery of anchor ice is through the use of an unmanned
aerial vehicles (UAVs) [1,4,9–11]. Due to the limited hardware aboard many UAVs, data-
intensive processes, such as deep learning algorithms, which require large computing and
memory resources, are difficult to implement in real time. When operating on UAV data in
real time, the information collected on the UAV can be sent to a remote processing device;
however, this requires a wireless link with high bandwidth, minimal latency, and ultra-
reliable connection [12]; therefore, it may not be possible in remote regions. Alternatively,
data can be processed on the UAV itself, although depending on the model of the UAV this
would involve a low/middle grade GPU [13] or no GPU at all. This computation obstacle
is also present in other domains such as forest fire detection [14], crop phenology [15],
and sea ice segmentation [16] where computation limitations hinder operational sea ice
prediction [17].

Promising results have been achieved by applying deep learning to the task of river
ice segmentation, particularly for discriminating between frazil and anchor ice, where
convolutional neural networks (CNNs) greatly outperformed previously used support
vector machines (SVMs) [1,4]. One downfall of these deep learning methods lies in their
ability to generalize to data that differs from the training domain [1]. Additionally, little
focus has been put on the efficiency of these networks in both training and inference.
Although deep learning has shown promise for the task of river ice segmentation, it bears
the question of if these favourable results can be attained when inference data differs
significantly from training data and when training and inference happen in real time.
As there is an inherent trade-off between performance and latency in the field of deep
learning, we aim to build a network architecture that preserves performance while doing
so efficiently, enabling more convenient river ice segmentation on edge devices such as
a UAV.

2. Background
2.1. River Ice Segmentation

Various techniques have been used for river ice segmentation, including traditional im-
age processing [18], machine learning models [4,9,19,20], and deep learning solutions [1,10,11].
Recent studies hlhave chosen to utilize deep learning models over other image processing
and machine learning techniques as deep learning solutions have been proven to perform
better, especially when tasks become more complicated [4]. Specifically, for a dataset with
both frazil and anchor ice, an SVM performed well in differentiating ice from water, but
when attempting the more difficult task of segmenting frazil ice, anchor ice, and water,
the SVM achieved low segmentation accuracy [4]. On the same task of segmenting frazil
ice, anchor ice, and water, a suite of deep learning models outperformed the SVM [1]. The
authors found that two neural network architectures, DeepLabV3+ [21] and UNet [22],
outperformed the SVM for all three classes. They found that although DeepLabV3+ out-
performed UNet with regards to quantitative metrics on a labelled test set, DeepLabV3+
showed poor generalization ability upon visual inspection of model results on unlabelled
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data. The authors concluded that UNet provided the best trade-off between quantitative
scores on a labelled test set and qualitative results on unlabelled data.

2.2. Depthwise Separable Convolution

Depthwise separable convolutions (DSCs) are key components of modern efficient
networks. Many efficient networks replace standard convolution operations in common
network architectures with DSCs, resulting in a significant increase in efficiency while
minimizing performance losses [23–27].

If we let h and w be the height and width of a feature map, cin and cout be the number of
input and output channels of a convolution, and k be the kernel size, a standard convolution
takes an input of size h× w× cin and gives an output of size h× w× cout assuming the
input and output feature maps have the same spatial dimensions. The kernel of a standard
convolution is of size k× k× cin × cout, meaning there are cout filters of size k× k× cin [23].

DSCs split standard convolution operations into two parts, a depthwise convolution
and a pointwise convolution. The depthwise convolution occurs first and is similar to a
standard convolution; however, it only applies a single unique k× k filter to each channel of
the input image or feature map. Using the same variables as defined previously, this means
that the depthwise convolution has cin filters of size k× k× 1. The depthwise convolution is
followed by the pointwise convolution, which is a 1× 1 convolution across depth, allowing
for a change in the number of channels of the output feature map if desired.

Again using the same variables as defined previously, the computational cost of a
standard convolution operation is therefore

h · w · cin · cout · k2, (1)

while the computational cost of a DSC is

h · w · cin(k2 + cout), (2)

as calculated by adding the cost of the depthwise and pointwise parts of the convolu-
tion [26].

As a result, DSCs reduce computational cost by a factor of (k2cout)/(k2 + cout) or ap-
proximately k2 when cout � k. Therefore, when using a kernel size of 3× 3, computational
cost is reduced by 8 to 9 times by using DSCs. The trade-off in performance was found to
be minimal in a study where a network was built with DSCs had an ImageNet accuracy of
70.6% and 569M Mult-Adds, while an identical network with standard convolutions had
an ImageNet accuracy of 71.7% and 4866M Mult-Adds [23].

2.3. Local Binary Convolution

Local binary convolutions (LBCs) are another alternative to a standard convolution
that significantly reduces the number of trainable parameters [28]. LBCs are inspired by
local binary patterns (LBPs), which are texture pattern descriptors used to characterize local
texture patterns in an image based on a neighbourhood of pixels [29]. Based on contrasting
pixels in a neighbourhood, a string of bits is calculated and converted to a base 2 decimal
number which is used as the feature to the central pixel. An LBP for a 3× 3 window can be
calculated as follows,

LBP(xc, yc) =
N−1

∑
n=0

g(in − ic)2n, (3)

g(z) =

{
1, z ≥ 0
0, z < 0

, (4)

where ic is the intensity of the centre pixel at location xc, yc, and in is the the intensity of the
nth neighbouring pixel out of N total neighbours. LBPs are illumination invariant as they
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focus on contrasting pixels which describe texture. As a result, they have become a popular
image descriptor for facial recognition tasks, among others [30].

Similar to DSCs, LBCs also operate in two stages; first a spatial convolution, and second
a 1× 1 channel-wise convolution. The first stage, s1, modifies a standard convolution such
that the kernel weights Ws1 , which are still of size k× k× cin × cout (recall that this is in
contrast to the depthwise stage of a DSC, where weights are of size k× k× cin × 1, or a
single unique k× k filter is applied to each channel of the input. The first stage in a LBC
applies multiple filters to each channel of the input similar to a standard convolution), are
non-trainable and randomly initialized such that Ws1 ∈ {−1, 0, 1}. More specifically, to
determine the arrangement of −1, 0, and 1 in Ws1 , a sparsity proportion, sp, is set which
determines the amount of non-zero values in Ws1 . This involves setting (100− sp)% of
Ws1 to zero according to a random uniform distribution (note that we follow the same
convention as the LBCNN authors where the sparsity percentage refers to the percentage of
non-zero elements i.e., sparsity = 100% corresponds to a dense weight tensor [28]). Then, the
remaining non-zero values are randomly assigned to −1 or 1 with equal probability using
a Bernoulli distribution. The output of s1 is then passed through an activation function
(sigmoid or ReLU), and used as an input to the second stage, s2. Again similar to DSCs,
s2 consists of a 1× 1 convolution that acts only on the channels of the feature maps and
contains the only trainable parameters in LBCs.

Using the same variable definitions in Section 2.2, a standard convolution operation
has cin · cout · k2 trainable parameters, while a LBC operation only has cin · cout trainable
parameters since k = 1 in the 1× 1 convolution (note that this calculation assumes that s1
outputs the same number of channels as are in the input to s1).

2.4. Efficient Networks

Since the introduction of DSCs for efficient networks, various architectures have been
developed, including the suite of MobileNets (V1, V2, V3) [23,26,27], MnasNet [31], and
others. The latest of the aforementioned networks, MobileNetV3, borrows various as-
pects from other networks as well as introduces advancements of its own. MobileNetV3
uses DSCs from MobileNetV1, a linear bottleneck and inverted residual structure from
MobileNetV2, and lightweight attention modules based on squeeze and excitation from
MnasNet. Novel contributions of MobileNetV3 include a hardware-aware network archi-
tecture search, the h-swish nonlinearity, and rearrangement of computationally expensive
layers at the beginning and end of the network [27].

For the task of semantic segmentation, MobileNetV3 can be used as a backbone
feature extractor in a segmentation network such as DeepLabV3 [32]. The authors of
MobileNetV2 designed a reduced Atrous Spatial Pyramid Pooling module [33] that was
found to outperform the standard DeepLabV3. MobileNetV3 designed a Lite Reduced
Atrous Spatial Pyramid Pooling module (LR-ASPP) which made further improvements by
deploying global-average pooling similar to the Squeeze-and-Excitation module [34].

Various other efficient models have been developed specifically for segmentation
including ENet [35], BiSeNet [36], and DFANet [37]. Additionally, various network archi-
tecture search algorithms have been developed specifically for segmentation including
FasterSeg [38]. Other methods exist for improving network efficiency such as quantiza-
tion [39,40], pruning [41], and knowledge distillation [42]; however, the scope of this project
is focused on the network architecture. As the aforementioned techniques can be applied
to any architecture, we choose to focus on getting the best performance-latency trade-off
out of the architecture alone, allowing for these techniques to be brought in later on if
so desired.

2.5. Dataset

The Alberta River Ice Segmentation Dataset contains 50 1280× 1080 RGB images
collected from the Peace River and North Saskatchewan River using a Blade Chroma
UAV [43]. Each image has an associated manually labelled segmentation mask detailing
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the locations of frazil ice pans, anchor ice pans, and open water. Of all the labelled images
in the dataset, 61.4% of the pixels are labelled water, 16.4% of the pixels are labeled anchor
ice, and 22.2% of the pixels are labelled frazil ice. The labelled images were captured during
clear conditions while it was not snowing; however, the dataset provides unlabelled videos
captured while it was snowing, showing a realistic scenario where natural noise could
contaminate the data. No information regarding scale or altitude of the UAV is publicly
provided in the Alberta River Ice Segmentation Dataset, however, ice pans in the Peace
River and North Saskatchewan River have been observed to be as large as 30 m in diameter,
but often fall in the range of 1 to 10 m [4].

For our experiments, the 50 images were randomly split such that 30 images are used
for training, 10 images are used for validation during training, and 10 hold-out images are
used for testing. The images were down-sampled by a factor of 3.125 and cropped to a size
of 320× 320 for more efficient usage on hardware with limited memory. Down-sampling
was achieved using local averaging which can result in a slightly smoothed or blurred
image where fine texture may be removed. The impacts of down-sampling are investigated
in Section 4.2. As mentioned in Section 2.1, in a previous study this dataset was used to
train a suite of deep learning models where UNet [22] was determined to have the best
trade-off between performance and generalization ability [1].

3. Methodology
3.1. Architecture

We propose a novel convolutional DSC LBC block that melds DSCs and LBCs in order
to reduce the number of operations and trainable parameters. This operation is illustrated
in Figure 1 and operates similar to a DSC in that there is first a depthwise convolution,
followed by a pointwise convolution. Similar to a DSC, the depthwise convolution stage of
a DSC LBC block has cin filters of size k× k× 1, where a single unique filter is applied to
each input channel. The DSC LBC block, however, differs from a DSC in that the depthwise
convolution stage uses non-trainable kernels with values initialized from the set {−1, 0, 1},
similar to a LBC. This adds sparsity and reduces the total trainable parameters of the DSC
LBC block, in contrast to a DSC which uses trainable kernels in the depthwise stage. The
initialization of the depthwise kernels in a DSC LBC block occurs in the same manner as
described in Section 2.3. When initializing the non-trainable kernels, we use a sparsity of
80% (note that we follow the same convention as the LBCNN authors where the sparsity
percentage refers to the percentage of non-zero elements, i.e., sparsity = 100% corresponds
to a dense weight tensor [28]) as this level of sparsity achieved the best performance in
previous experiments [28]. Finally, the only trainable parameters in a DSC LBC block exist
in the 1× 1 pointwise convolution. As a result of this DSC LBC block architecture, we
achieve the same computational cost as a DSC of h · w · cin(k2 + cout), while using the same
number of trainable parameters as a LBC, specifically cin · cout.

A UNet was chosen as a baseline model due to its simplicity in implementation,
widespread use, intuitive interpretation, and success in both performance and general-
ization ability in previous work [1]. Figure 2a shows the full architecture of a standard
UNet as it was originally proposed [22]. For the sake of comparison, various versions of
the UNet architecture were created, each with a different convolution operation. Here, the
term UNet simply refers to a standard UNet with standard convolution operations, while a
DSC UNet replaces standard convolutions with DSCs, and a LBC UNet replaces standard
convolutions with LBCs. Finally, we compare these UNet variations to a DSC LBC UNet
which replaces standard convolution operations in a UNet with our DSC LBC convolution
block. All UNet variations use the same kernel size of 3× 3.
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Figure 1. DSC LBC convolution block used to replace a standard convolution. A given convolution
operation can be considered to have X filters of size K × K × Y where X is the number of output
channels, Y is the number of input channels divided by the number of convolution groups, and K
is the width and the height the kernel. A DSC LBC convolution replaces the trainable depthwise
filters of a depthwise separable convolution [24] with sparse, non-trainable filters inspired by local
binary patterns [28]. Note that there is only one distinct non-trainable binary filter convolved with
each input channel in the first stage of the DSC LBC convolution block.
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Figure 2. Original UNet architecture shown in (a) [22], and smaller UNet architecture shown in
(b) with only two down-sampling stages. If the Conv operation in the blue boxes is a standard
convolution, the networks are referred to as Full and Small UNets. If the Conv operation is a DSC
operation, the networks are referred to as Full and Small DSC UNets. If the Conv operation is a LBC
operation, the networks are referred to as Full and Small LBC UNets. If the Conv operation is a DSC
LBC operation (Figure 1), the networks are referred to as Full and Small DSC LBC UNets.

Previous research has suggested that shallower networks perform better than deeper
networks when the dataset of interest is small [44,45]. As the Alberta River Ice Segmentation
Dataset is considerably small with only 50 images, we experiment with the size of the UNet
with regards to the number of down-sampling and up-sampling layers. The aforementioned
UNet variations, which we will now refer to as Full UNets, have four down-sampling
and up-sampling layers. We have created similar UNets with only two down-sampling
and up-sampling layers and will refer to these as Small UNets (Figure 2b). The Small
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UNets also differ from the Full UNets in the number of embedding dimensions, or channels
used in the intermediate layers. The first two layers of the Full UNets contain 64 and 128
embedding dimensions respectively, while the first two layers of the Small UNets contain
32 and 64 dimensions respectively. This further reduces the memory requirements of these
small networks with the goal to improve training and inference efficiency. Finalizing our
terminology, the Small UNet uses standard convolutions, while the Small DSC UNet, Small
LBC UNet, and Small DSC LBC UNet use DSCs, LBCs, and DSC LBC blocks respectively.

Finally, as we are exploring the performance–latency trade-off for river ice segmenta-
tion, we compare the UNet approaches to state-of-the-art MobileNets which are optimized
for CPU usage on mobile devises [27]. These networks are built to be fast and efficient,
while minimizing any drop in performance. We elect to use use both DeepLabV3 and and
the more modern Lite R-ASPP (LR-ASPP) models with a MobileNetV3 backbone. Both
these networks have a performance–latency trade-off associated with an output stride; the
ratio of the input image size to the output feature map size [26]. A default output stride of
16 was used for DeepLabV3, while a combination of an output stride 8 and 16 was used
for low and high level features in the LR-ASPP. These two networks will be referred to as
MobileNetV3 (DeepLabV3) and MobileNetV3 (LR-ASPP), respectively.

3.2. Experiments

We run a series of experiments to compare the suite of Full Unets, Small UNets, and
MobileNets. The PyTorch library [46] was used to train all models until a stopping criterion
had been satisfied. Training was stopped after 30 consecutive training epochs occurred
where the validation loss had not reached a new low. After this stopping criterion is
triggered, we roll back to the 30th last training epoch where validation loss was at its
lowest. This was done in order to mitigate any overfitting that may have occurred during
the 30 epochs where validation loss did not decrease. We chose 30 epochs for the stopping
criterion as there was significant variation in the validation loss during training due to a
small validation set of only 10 images. A batch size of one was used for all experiments
in order to maintain consistency and satisfy hardware limitation for the more memory-
intensive models. A learning rate of 1× 10−4 was used along with a standard cross entropy
loss function,

LCE = −
n

∑
i=1

yi log(ŷi), (5)

where yi and ŷi are the ground-truth and network output for the ith class of n total classes.
We use an RMSprop optimizer with a weight decay of 1 × 10−8 and a momentum of

0.9 [47]. Training was conducted on both a GPU and CPU, specifically a Nvidia GeForce
GTX 1060 and AMD Ryzen 5 2600 Six-Core Processor respectively. After every three training
iterations, a validation step is performed in where the loss function and other evaluation
metrics are evaluated for all 10 validation images. This procedure allows for further insight
regarding over-fitting and how fast the loss function of validation predictions decreases
during training.

After the suite of UNets and MobileNets have been compared on the Alberta River Ice
Segmentation Dataset, we explore the ability of these networks to generalize by adding
synthetic snow to a varying number of images in the training and test sets. We evaluate the
results of these tests with the non-contaminated ground truth to obtain quantitative results
to supplement the qualitative results mentioned in previous work [1]. The synthetic snow
was designed by observing UAV footage obtained during a real snowfall [43] (Figure 3a),
and was added using the OpenCV library [48] (Figure 3c). The snow observed in the UAV
footage has either a point-like or streak-like appearance, as seen in Figure 3a. As a result,
a line in OpenCV was used to simulate snow where the length and the width of the lines
were sampled from a gamma distribution. If the length and width of the line are similar,
the snow appears point-like, while if the length is larger than the width, the snow appears
streak-like (Figure 3d,e). A gamma distribution was chosen since the majority of snowflakes
are far from the camera and therefore appear smaller, while there are fewer snowflakes
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near the camera that appear larger. The distribution for the length of the line was sampled
from a gamma distribution with a slightly higher mean and standard deviation than the
distribution used to sample the width of the line resulting in some streak-like snow. The
slant and the colour of the line was chosen from a uniform distribution, where the red, green,
and blue colour channels were sampled in the range of 190 to 210 to give the snowflakes a
varying greyish white colour.

Figure 3. Examples from the Alberta River Ice Segmentation Dataset [43] taken while it is snowing (a),
while it is not snowing (b), and with synthetic snow added to an image which originally had no
snow (c). An example of a synthetic streak-like snowflake is shown with its length and width sampled
from gamma distributions for length (d) and width (e). The distribution for length (d) can be seen to
have a larger mean and standard deviation than the distribution for width, forcing some streak-like
snow as shown in the zoomed in square. Note that snow can be seen better when zoomed in.

Finally, we attempt to obtain a better understanding of how model factors such as
trainable parameters, multiply–add operations, and memory usage in a model affect the
latency during training and inference. We first measure training time over three training
epochs for all models on a GPU and CPU to see how fast the various architectures train.
Then, the best models from this analysis are compared with respect to the time required to
reach a specific metric threshold. This comparison will give a more practical idea of which
model is most appropriate to achieve good results when training in a resource and time
constrained setting. Then, we finish by measuring the inference time over 10 images for all
models on a GPU and a CPU to see how fast river ice images can be evaluated in practice
once a model in trained.

4. Results and Discussion
4.1. Metrics

Mean Pixel Accuracy (mPA) and Mean Intersect over Union (mIoU) are the two metrics
used to evaluate the performance of the segmentation models.

• Mean Pixel Accuracy is simply the ratio of correctly classified pixels to total labelled
pixels per class, averaged over the total number of classes. For k classes, Mean Pixel
Accuracy can be calculated by

mPA =
1
k

k

∑
j=1

pjj

tj
, (6)
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where pjj is the total number of pixels both classified and labelled as class j, and tj is
the total number of pixels labelled as class j.

• Mean Intersect over Union is the ratio of the intersection of the predicted segmen-
tation with the ground truth to the union of the predicted segmentation with the
ground truth.

mIoU =
1
k

k

∑
j=1

pjj

pij + pji + pjj
, i 6= j (7)

where k is the number of classes, pjj is the total number of pixels both classified and
labelled as class j, pij is the number of pixels labelled as class i but classified as class j,
and pji is the total number of pixels labelled as class j but classified as class i.

Both mPA and mIoU can be expressed as a percentage from 0 to 100, where higher
numbers indicate better performance.

4.2. Model Comparison

Table 1 shows a comparison of the various models tested with respect to the evaluation
metrics on the test set, the number of total and trainable parameters in the model, the
number of multiply–add operations in a pass of the model, and the memory usage of the
model. The metrics were calculated by training three instances of each model, saving the
respective model weights at the stopping epoch determined during training (Section 3.2),
evaluating the models on the test set, and averaging the three results for each model.
Memory usage and Mult-Add operations were calculated according to one 320× 320× 3
image passed through the model. Note that it is not expected for the number of parameters
and the memory usage of the various models to necessarily correlate. The memory required
by the model is a function of both the number of parameters as well as the size of the
feature maps at each layer. For a more direct comparison to previous results of UNet on
the Alberta River Ice Segmentation Dataset, see the Appendix A. Due to our experiment
structure we elect to use a validation and test set, rather than a single test set, as well as
more general metric reporting.

When comparing the models within Table 1, the first observation that can be made
with respect to evaluation metrics is that the Small UNet variants outperform their Full
UNet equivalents. For example, Small UNet outperforms Full UNet, Small DSC UNet
outperforms Full DSC UNet, and so on. This gives credibility to the notion that shallower
networks outperform deeper networks on smaller datasets.

The Small UNet achieved the highest mIoU and mPA results, while the Small DSC
LBC UNet used the lowest number of trainable parameters and Mult-Add operations.
The Small DSC LBC UNet also had the second smallest memory footprint, second only
to MobileNetV3 (LR-ASPP). When comparing the Small DSC LBC UNet to the Full UNet,
the Small DSC LBC UNet has a mIoU that is virtually the same, only 0.6% higher, but
with 99.9% less trainable parameters, 99.0% less Mult-Add operations, and 69.8% less
memory usage. When comparing the Small DSC LBC UNet to the best performing Small
UNet, the Small DSC LBC UNet has a mIoU that is 1.5% lower; however, is still has 94.9%
less trainable parameters, 92.3% less Mult-Add operations, and 25.1% less memory usage.
Finally, when comparing the Small DSC LBC UNet to MobileNetV3 (LR-ASPP), although
the Small DSC LBC UNet uses 51.8% more memory, it uses 23% less Mult-Adds, has 99.6%
less trainable parameters, and has a mIoU that is 7.7% higher.
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Table 1. Metrics, number of parameters, number of multiply–add operations and memory usage in
the tested networks. Metrics were calculated by training three instances of each model, evaluating
them on an external test set using weights saved at the stopping criterion, and averaging the three
results. Memory and Mult-Adds were calculated using an input size of 320× 320× 3. Numbers in
bold represent the highest metric or lowest number of parameters/operations/memory of the models
tested. Small DSC LBC UNet is in bold as it shows a healthy trade-off between high performance
metrics and low parameters/operations/memory.

Model mIoU mPA Total Params Trainable Params Mult-Adds Memory

Full UNet 69.7 82.7 17,267,523 17,267,523 62,764 M 1542 MB
Full DSC UNet 69.7 82.9 1,983,713 1,983,713 7717 M 2242 MB
Full LBC UNet 67.7 82.2 16,498,842 794,697 71,048 M 1164 MB
Full DSC LBC UNet 69.1 82.7 821,220 794,697 3402 M 1104 MB

Small UNet 71.2 85.0 260,451 260,451 8237 M 622 MB
Small DSC UNet 70.4 84.3 35,777 35,777 1123 M 936 MB
Small LBC UNet 69.7 83.8 253,050 13,353 9479 M 468 MB
Small DSC LBC UNet 70.1 83.5 16,260 13,353 637 M 466 MB

MobileNetV3 (DeepLabV3) 63.7 78.5 11,020,851 11,020,851 3898 M 589 MB
MobileNetV3 (LR-ASPP) 65.1 80.0 3,218,478 3,218,478 826 M 307 MB

The metrics reported in Table 1 were compared to metrics calculated using models
trained with data augmentation; specifically random 320× 320 crops from a full-resolution
image with random vertical and horizontal flipping. This allows for the exploration of two
concepts, namely the effect of the relatively small size of the Alberta River Ice Segmentation
Dataset, and the effect of the reduction in resolution from the down-sampling of the main
training set. It was found that the data augmentation did not meaningfully improve
the results, indicating two things. First, the size of the training set is sufficient without
augmentation, likely due to the simple nature of the dataset, in that few images are required
to encapsulate the limited variation of the river ice classes. Second, although the down-
sampling described in Section 2.5 likely removes fine texture, this fine texture is not critical
in discrimination between frazil ice, anchor ice, and water.

Figure 4 shows model predictions on three test images using model weights saved at
the stopping epoch determined during training. When looking at the predicted segmenta-
tion outputs, an obvious observation is that the MobileNets have a blobby nature to their
segmentation predictions where edges do not have fine detail and smaller ice pans are
unnoticed or combined into larger predictions. This nature of MobileNets is acknowledged
by the authors and is attributed a larger output stride which allows for parameter saving
but reduces the resolution of the predicted masks [26].

Another observation can be made regarding the LBC portion of the networks which
can be seen most clearly in the Small LBC UNet of Figure 4 and even more so in the
Small LBC UNet of Figure 5. The LBC component of the networks results in a noisy
pixelated appearance of the predicted masks, especially around the boarders of ice pans.
The pixilated artifacts are still present, but to lesser extent, in the Small DSC LBC UNet
and appear to be reduced with more training. These artifacts are likely due to the sparse
binary nature of the LBP filters that propagate through the 1× 1 convolutions early in
training. As training progresses, the 1× 1 convolutions are able to account for the sparsity
and reduce the pixelated appearance of the predictions. Additionally, this artifact is not
as obvious in the Full LBC UNet likely due to the deeper architecture, allowing for more
superposition and smoothing of the sparse kernels, limiting the ability for the sparsity to
propagate to the predictions early in training. In order to avoid this noise in shallower LBC
networks, various post processing techniques could be done including simple smoothing
using a Gaussian filter, or the use of a conditional random field (CRF) with an emphasis
on pixel proximity to smooth the prediction within an ice pan [49]. Similarly, CRF post-
processing could also be applied to the other models including the MobileNets, though for
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the MobileNets it would be beneficial for the CRF to have an emphasis on pixel intensity to
sharpen the smooth edges of the predictions.

Full UNets Small UNets MobileNets

Data

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Sample 1 Sample 2 Sample 3

Sample 1 Sample 2 Sample 3

Figure 4. Segmentation results on three images from the test set. Model weights for the various
models were chosen based on a stopping criterion during training (see Section 3.2). The original
image and ground-truth are shown at the top, the Full UNet variations are shown on the left, the
Small UNet variations are shown in the centre, and the two MobileNet variations are shown on the
right. Water, anchor ice, and frazil ice are coloured in black, gray, and white, respectively. Note that
details in the images and segmentation predictions can be best seen when zoomed in.

(a) Image (b) Ground Truth (c) Small UNet

(d) Small DSC UNet (e) Small LBC UNet (e) Small LBC UNet

Figure 5. Comparison of predictions after one epoch of training on the suite of Small UNets. The
mean IoU for the Small UNet, Small DSC UNet, Small LBC UNet and Small DSC LBC UNet are 65.9,
67.2, 56.7, and 78.7, respectively. The mean pixel accuracy for the Small UNet, Small DSC UNet, Small
LBC UNet and Small DSC LBC UNet are 75.0, 76.0, 69.2, and 88.8 respectively. Note that detail can be
more easily observed when zoomed in.
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Finally, a comparison can be made between the predictions of the Full and Small
UNet variations. The Small UNets appear to contain more noise within individual ice
pans, while the Full UNets have little variation in class prediction within an individual
pan. This can be attributed to the increased down-sampling that occurs within the Full
UNets. As down-sampling continues, noise within feature maps get smoothed out and the
network learns to value the up-sampled feature maps where the noise is no longer present.
Although the smooth predictions appear more realistic, the actual class prediction of the
smooth masks are not always correct, which is reflected in the mIoU and mPA scores.

4.3. Training Curves and Generalization Ability

Analyzing the mIoU and cross entropy loss of the validation set during training
can give insight into the speed of training on an epoch-per-epoch basis, as well as any
overfitting that may be occurring. Figure 6 shows the mIoU and cross entropy loss of the
validation set during 80 epochs of training. It can be seen in Figure 6a,b, that certain models
require a fewer number of training iterations in order to reach a given mIoU value. In
particular, the Small DSC LBC UNet requires the lowest number of training iterations to
reach high scores, with the Full DSC LBC UNet, Small DSC UNet, and Small LBC UNet also
reaching higher scores considerably sooner than the other models. When comparing these
results to Table 1, models with a low number of trainable parameters seem to be the ones
that require few iterations to reach high scores. Even still, the combination of DSCs and
LBCs, regardless of if the network is small or large, appears to result in high performance
early in training.
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(d) Loss: Small UNets

Small UNet
Small DSC UNet
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Small DSC LBC UNet
MobileNetV3 (DeepLabV3)
MobileNetV3 (LR-ASPP)

Figure 6. Mean IoU of the validation set after 80 training epochs is shown for the Full UNets (a)
and Small UNets (b). Cross entropy loss for the validation set is also shown over 80 epochs for
the Full UNets (c) and Small UNets (d). Note that the MobileNets are shown in all chats for the
sake of comparison. The data in all of the charts has an exponential moving average applied with a
smoothing factor or 0.95 to filter noise caused by a small validation set.

Figure 5 shows the predictions of the Small UNets on one image of the test set after
one epoch of training. The predictions made by the Small DSC LBC UNet are visually much
more consistent with the ground truth than the other models at this early stage of training,
showing consistency with the training curves of Figure 6. Taking a closer look at Figure 5,
there is a key difference between how the Small UNet, Small DSC UNet, and Small LBC
UNet learn early in training. The Small UNet and Small DSC UNet are similar in that they
appear to focus on pixel intensity in the early stages of training. The upturned bright edges
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of the anchor ice often often mistaken for the light frazil ice, and the dark interior of the
anchor ice is often mistaken for water. On the other hand, the Small LBC UNet tends to
focus more on texture in the early stages of training. The rough upturned edges of either
ice class are categorized to be anchor ice, while the smooth interiors of the ice pans of either
class are categorized as frazil ice. This behaviour of the Small LBC UNet to focus on texture
is understandable as the local binary patterns in the kernels are designed to be texture
descriptors. The contrasting behaviours of the Small DSC and LBC UNets likely aids in the
performance of the Small DSC LBC UNet early in training as it does not appear to make
either of the early-training mistakes of the DSC or LBC networks previously mentioned.

It is also important to mention the behaviour of the cross entropy loss of the validation
set during training. It can be seen in Figure 6c that validation loss of the Full UNets and
MobileNets eventually increases later in training: a sign of overfitting. When contrasting
Figure 6a,c, we see that although cross entropy loss increases significantly, the mIoU values
decrease only very slightly if at all. This discrepancy is attributed to the discrepancy
between the softmax output that is used to calculate cross entropy and the argmax output
that is used to calculate mIoU and mPA. As training proceeds, results are worsening from
the perspective of the loss function due to less confident pixel predictions expressed by
lowering softmax values. Due to the logarithmic nature of the cross entropy function,
changes in smaller softmax values have a larger effect than changes in larger softmax
values. However, once an argmax is applied to the softmax, as long as the lowered softmax
values are still larger than those of the other classes, the argmax will still have the same
result as when the softmax values were more confident. This leads to similar segmentation
predictions and no significant decrease in mIoU and mPA scores. Although this disconnect
between mIoU and cross entropy loss has not caused any negative effects over 80 epochs,
over longer training we can expect the errors in the softmax output to leak into the argmax
and therefore the visual quality of the predicted masks. Looking at Figure 6d, we see that
the Small UNets experience this overfitting effect to a much smaller scale. This effect is
almost completely non-existent in the Small DSC LBC UNet, allowing for more training to
be done before early stopping is triggered. These results are consistent with beliefs that
highly complex networks are prone to overfitting when limited data is available [50].

As this overfitting effect does not appear to visually degrade results over the measured
epochs, the practical ability for these networks to generalize is still unclear. To obtain more
clarity on this topic, and meaningfully test generalization ability as it relates to river ice, we
can reference Table 2 which shows the results of the various networks trained on data with
no snow but evaluated on data with synthetic snow. We first notice that the general trend
of Full UNets outperforming MobileNets, and Small UNets outperforming Full UNets to be
consistent with experiments on non-snowy data (Table 1). The results of Table 2, however,
differ from Table 1 as the best performing Small network is now the Small DSC LBC UNet
and the best performing Full network is the Full DSC LBC UNet, the two of which perform
virtually the same. In a perhaps more realistic scenario, some training and testing images
may have snow while others do not. Figure 7 shows a variety of scenarios where different
amounts of snow are present in the training and testing sets and the associated mIoU for
three models of interest; the Full UNet, Small DSC LBC UNet, and MobileNetV3 (LR-ASPP).
It can be seen that the results of MobileNetV3 (LR-ASPP) under-perform the Full UNet
and are highly correlated. The Small DSC LBC UNet performs relatively similar to the Full
UNet when the test set has a snow image proportion of 1

3 or 2
3 ; however, the Small DSC

LBC UNet outperforms the Full UNet significantly in edge cases. These edge cases include
high snow during training and no snow during testing, high snow during training and
half snow during testing, no snow during training and high snow during testing, and high
snow during both training and testing. These results suggest that the DSC LBC convolution
mechanism improves a network’s ability to generalize to and from snowy environments;
an important feature for a network used in regions where snow is common.
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Figure 7. mIoU results for a Full UNet, Small DSC LBC UNet, and MobileNetV3 (LR-ASPP) for
varying numbers of images with snow in the training and test sets. Training sets had either 0/30,
10/30, 20/30, or 30/30 of the images containing snow, while the test set had either 0/10 (a), 5/10 (b),
or 10/10 (c) of the images containing snow. Three instances of each model were trained under each
scenario and their mean value was used with the standard deviation shown by the error bar.

Table 2. mIoU and mPA scores on the test set corrupted with snow noise. Models were trained on the
training set without snow noise. Numbers in bold highlight the best scores while the Small DSC LBC
UNet is in bold as it is the model of interest.

Model mIoU mPA

Full UNet 58.1 71.0
Full DSC UNet 57.6 72.0
Full LBC UNet 56.5 70.5
Full DSC LBC UNet 62.9 76.8

Small UNet 58.9 71.0
Small DSC UNet 59.1 71.1
Small LBC UNet 57.0 71.7
Small DSC LBC UNet 62.4 76.1

MobileNetV3 (DeepLabV3) 49.7 62.3
MobileNetV3 (LR-ASPP) 53.0 62.8

4.4. Performance-Latency Trade-Off

A significant factor affecting the latency of a model is the number of multiply-add
operations and memory usage of the model. As seen in Table 1, a trade-off is made between
performance, the number of Mult-Add operations and memory usage. The Small UNet
has high performance, a high number of Mult-Adds and relatively high memory usage,
while MobileNetV3 (LR-ASPP) has slightly lower metric performance but significantly less
Mult-Adds and memory requirements. This introduces a performance–latency trade-off
where a model can train in much less time but sacrifices some performance. The Small DSC
LBC UNet can be considered a good compromise between the performance of the Small
UNet and the resource requirements of MobileNetV3 (LR-ASPP).

Table 3 compares both inference frames-per-second (FPS) averaged over the test set and
training FPS averaged over three training epochs for the various models on a GPU and CPU.
An initial observation reveals that the Small DSC LBC UNet had the fastest training and
inference on the GPU, while MobileNetV3 (LR-ASPP) had the fastest training and inference
on the CPU. The low number of trainable parameters of the Small DSC LBC UNet may have
attributed to its success while training on the GPU, while the CPU specific modifications
made to MobileNetV3 (LR-ASPP) can be attributed to its success during CPU training
and inference. These CPU-centric modifications, including a hardware-aware network
architecture search, exists for MobileNetV3s but not the UNets [27]. Although the Small
DSC LBC UNet did not run the fastest on a CPU, it still trained and inferenced significantly
faster than the other UNet variations, and considering the performance differences between
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the Small DSC LBC UNet and MobileNetV3 (LR-ASPP), these results can be considered a
favourable trade-off between performance and latency for the Small DSC LBC UNet. On
the other hand, although the Small DSC LBC UNet trained the fastest on a GPU, there was
no significant improvement over the other models, with an improvement of only 1.59 FPS
on average over the worst performing MobileNetV3 (DeepLabV3).

Table 3. Training and inference runtime measured in frames-per-second (FPS) on a Nvidia GeForce
GTX 1060 GPU and AMD Ryzen 5 2600 Six-Core CPU. Images of size 320× 320× 3 were used during
training and inference where the training FPS was averaged over three epochs and the inference FPS
was averaged over the test set of 10 images. Bold numbers indicate the fastest runtime, while the
Small DSC LBC UNet is in bold as it is the model of interest.

Model GPU Train (FPS) GPU Inference (FPS) CPU Train (FPS) CPU Inference (FPS)

Full UNet 10.59 21.69 0.72 1.29
Full DSC UNet 10.25 21.79 1.36 2.30
Full LBC UNet 11.17 21.83 0.92 1.18
Full DSC LBC UNet 16.07 21.98 2.23 2.99

Small UNet 18.82 21.88 3.21 4.83
Small DSC UNet 18.00 21.93 3.71 5.62
Small LBC UNet 19.35 22.07 3.94 4.69
Small DSC LBC UNet 19.57 22.47 5.78 6.54

MobileNetV3 (DeepLabV3) 13.27 20.88 3.27 8.00
MobileNetV3 (LR-ASPP) 15.54 21.19 6.32 12.35

Although it takes MobileNetV3 (LR-ASPP) less time than the Small DSC LBC UNet
to complete a training epoch on a CPU, we saw from Figure 6b that the Small DSC LBC
UNet requires very few training iterations to achieve good performance. We can therefore
frame the idea of run-time slightly differently to make a more fair and practical comparison.
Rather than looking at the time to complete n number of training epochs, we can look at
the time required to achieve some threshold of performance. Recall from Figure 6 that
the training curves are smoothed using an exponential moving average with a smoothing
factor of 0.95. When looking at the time to reach a mIoU threshold, we also look at a smooth
curve as to not stop at an unsustainably high mIoU value that is primarily caused by noise.

Table 4 shows the time for the Small DSC LBC UNet and MobileNetV3 (LR-ASPP)
to reach various mIoU thresholds. We see that the Small DSC LBC UNet outperforms
MobileNetV3 (LR-ASPP) for all mIoU thresholds. Notably, the largest discrepancy between
runtimes occurs at a low (≤48%) mIoU and a high (≥64%) mIoU, showing that Small
DSC LBC UNet is most effective when aiming for either very quick results or very high-
performing results. If we consider a mIoU of 56% to be satisfactory and a mIoU of 64%
to be good, then the Small DSC LBC UNet achieves satisfactory results 36% faster than
MobileNetV3 (LR-ASPP), and achieves good results 91% faster than MobileNetV3 (LR-
ASPP) when trained on a CPU.

Table 4. Time in seconds for Small DSC LBC UNet and MobineNetV3 (LR-ASPP) to reach various
mIoU thresholds on an AMD Ryzen 5 2600 Six-Core CPU.

mIoU Threshold Small DSC LBC UNet Time MobileNetV3 (LR-ASPP) Time

48 2.16 s 18.05 s
52 15.57 s 24.70 s
56 20.24 s 31.83 s
60 27.51 s 43.70 s
64 43.08 s 481.17 s
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5. Conclusions

In this paper we balance the trade-off between performance and latency for the task of
river ice segmentation on the Peace River and North Saskatchewan River. We introduce
a new convolutional block, the DSC LBC block, and use it to construct a shallow UNet
style architecture. The DSC LBC block combines the benefits of depthwise separable
convolutions and local binary convolutions to minimize both the number of operations and
the number of trainable parameters in a convolution. We find that the DSC LBC convolution
adds efficiency and improves a network’s ability to generalize to other domains such as
a snowy environment. Our novel architecture has performance on par with UNet, but
with 99.9% less trainable parameters, 99% less multiply–add operations, and 69.8% less
memory usage, resulting in significantly faster training and inference. When compared to
state-of-the-art efficient networks such as LR-ASPP MobleNetV3, our architecture not only
achieves a mIoU value that is 7.7% higher over extended training, it can achieve satisfactory
results (mIoU of 56) 36% faster than LR-ASPP MobleNetV3, a good result (mIoU of 64) 91%
faster than LR-ASPP MobleNetV3 on a CPU, and even more impressive results on a GPU.
This success attributed to the shallow nature of the architecture, the lightweight nature
of DSC LBC convolutions, and the ability for the DSC LBC convolution to focus on both
texture and pixel intensity, allowing for better performance early in the training process.
These results give promise to real time river ice segmentation in remote regions where
limited hardware and computation power is available and winter weather conditions can
affect image quality. This can allow for rapid and frequent estimates of mass flux caused by
anchor ice rafting, leading to more accurate estimates of annual sediment budgets.
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Appendix A. Direct Comparison to Previous Work

We compare our results directly to previous work [1] on the Alberta River Ice Seg-
mentation Dataset. We use the same metrics used in previous work and use the same
implementation as was shown in the publicly available code [51]. These metrics are
pixel accuracy, pA, mean pixel accuracy mPA, mean intersect over union, mIoU, and fre-
quency weighted intersect over union, f wIoU. mPA and mIoU are calculated the same as
Equations (6) and (7) respectively, while pA and f wIoU are calculated as follows,

pA =
∑j pjj

∑j tj
, (A1)

f wIoU =

(
∑

j
tj

)−1

∑
j

tj pjj

tj + ∑i pij − pjj
, (A2)

where pjj is the total number of pixels both classified and labelled as class j, pij is the
number of pixels labelled as class i but classified as class j, and tj is the total number of
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pixels labelled class j. Note that we follow the notation of the previous author by referring
to pA and f wIoU as recall and precision respectively.

Table A1 shows the Small DSC LBC UNet outperforms the previously tested UNet [1],
while MobileNetV3 (LR-ASPP) underperforms relative to the previously tested UNet [1]
using the same training and testing set. The training set contains 32 images while the test
set contains 18 images. These trends are similar to those observed in Table 1.

Table A1. Metric comparison of the Small DSC LBC UNet and MobileNetV3 (LR-ASPP) with the
UNet tested in previous work using the same training and testing split. Recall and precision for the
two ice types correspond to class specific pA and f wIoU. Ice + Water recall and precision correspond
to mPA and mIoU respectively for all classes. The frequency weighted (fw) equivalents for Ice + Water
recall and precision correspond to pA and f wIoU respectively for all classes.

Model Anchor Ice Recall Frazil Ice Recall Ice + Water Recall Ice + Water Recall (fw)

Previous UNet [1] 73.75 84.27 85.13 88.69
Small DSC LBC UNet 74.18 87.28 86.84 90.57
MobileNetV3 (LR-ASPP) 77.35 80.22 84.32 86.99

Model Anchor Ice Precision Frazil Ice Precision Ice + Water Precision Ice + Water Precision (fw)

Previous UNet [1] 54.89 71.17 73.19 81.73
Small DSC LBC UNet 56.59 73.17 74.78 84.70
MobileNetV3 (LR-ASPP) 48.50 65.82 68.29 79.54
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