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Abstract: Ecological surveys of coral reefs mostly rely on visual data collected by human observers.
Although new monitoring tools are emerging, their specific advantages should be identified to
optimise their simultaneous use. Based on the goodness-of-fit of linear models, we compared the
potential of passive acoustics and environmental data for predicting the structure of coral reef fish
assemblages in different environmental and biogeographic settings. Both data types complemented
each other. Globally, the acoustic data showed relatively low added value in predicting fish assem-
blage structures. The predictions were best for the distribution of fish abundance among functional
entities (i.e., proxies for fish functional groups, grouping species that share similar eco-morphological
traits), for the simplest functional entities (i.e., combining two eco-morphological traits), and when
considering diet and the level in the water column of the species. Our study demonstrates that
Passive Acoustic Monitoring (PAM) improves fish assemblage assessment when used in tandem
with environmental data compared to using environmental data alone. Such combinations can
help with responding to the current conservation challenge by improving our surveying capacities
at increased spatial and temporal scales, facilitating the identification and monitoring of priority
management areas.

Keywords: coral reefs; fish assemblages; remote sensing; Passive Acoustic Monitoring (PAM);
ecoacoustic indices; conservation

1. Introduction

Human activities impact the state and functioning of coral reefs through local and
global disturbances to the extent that the majority of these ecosystems will suffer unprece-
dented changes over the next 30 years, raising concerns about their persistence in the
future [1–4]. To counteract this trend, a coordinated global coral reef conservation strategy
is necessary to determine priorities and policies and permanently readjust them to meet
the challenges of “rebuilding marine life” [3,5,6]. Such conservation efforts require efficient
monitoring networks providing frequent and standardised information from local to global
scales [2,3].

Current monitoring networks (e.g., Global Coral Reef Monitoring Network-GCRMN)
target the assessment of Essential Ocean Variables (EOVs) in various degrees of detail
(see [7]). They mostly rely on visual surveys performed by highly trained divers. Time
and cost-intensive, these surveys will not be able to respond to the speed and scale of the
expected changes. In addition, Obura et al. [7] indicate that the comparison of diver-based
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data is reliable over large areas (i.e., region, ocean) only for coarser levels of benthic EOVs
(e.g., total hard coral cover). Since such levels can be assessed using airborne remote sensing
tools (i.e., satellite and aerial, e.g., [8–10]), these tools could bring frequent and standardized
information at a global scale, whereas human efforts in the field could be better used to
grasp the nuances of reef state and functioning and/or focus on key areas [7,11]. For coral
reef fishes, standardised diver-based evaluations and comparisons over large areas are even
more difficult and, in some cases, impossible [12] including for coarse EOVs (e.g., species
richness) due to large differences in the fish taxa monitored and to the biases resulting from
the abundance and size estimates provided by numerous observers. Hence, integrating
complementary remote sensing into current monitoring networks could considerably
improve their efficiency and spatio-temporal resolution.

A panel of tools (e.g., airborne sensing, Passive Acoustic Monitoring—PAM—, environ-
mental DNA—eDNA—metabarcoding) can provide complementary information to in situ
visual surveys [13–15]. Nonetheless, their capacity to reliably monitor species, habitats, and
the ecological state and functioning of ecosystems still needs to be specified [16]. Also, the
specific advantages of each tool should be identified in order to optimise their simultaneous
use [7]. For coral reef ecosystems, a first step was provided by Wedding et al. [17], who
demonstrated the benefits of coupling habitat maps with LIDAR to enhance the prediction
of fish assemblage structures. To our knowledge, such an approach integrating PAM is still
lacking for coral reefs (see [18] for terrestrial environments).

Airborne remote sensing and Geographic Information System (GIS)-derived data
provide environmental information over large areas (including coral cover, reef slope,
habitat complexity, wave exposure, reef area, management status, and indicators of hu-
man pressure; [8–10,17,19,20]). These environmental data enable the prediction of reef
fish assemblage structures [17,19,21–23], which is of utmost importance since reef fishes
provide tens of millions of people with incomes and food [24,25]. However, inferring fish
assemblage structures from airborne remotely sensed data alone is not sufficient under
ongoing rapid changes (e.g., [26]).

PAM is an emerging complementary tool for the non-invasive and standardised as-
sessment of coral reef fish assemblages. By using either snapshots or long-term continuous
recordings, it captures the sounds produced by fishes both intentionally (e.g., choruses,
reproductive and communicative signals) and non-intentionally (e.g., sounds associated
with feeding, moving, escaping predators, etc.). Beyond fish sounds, PAM captures the
whole soundscape (i.e., ambient sound). As such, it can also be used to monitor the
cryptobiome [27,28] or to measure noise pollution [29]. In comparison with diver-based
methods, PAM is cost-effective and can be deployed in a wide variety of situations. Further-
more, crude data can be stored and re-analysed when needed. Nonetheless, building an
exhaustive global library of underwater biological sounds will probably take a substantial
amount of time (see [30]). Thus, methods such as eDNA metabarcoding are currently more
efficient for species inventories. Moreover, several limits need to be addressed before a
systematic use of PAM for coral reef monitoring can be envisioned. These include test-
ing the validity of snapshot approaches by using long-term datasets and evaluating the
detectability of reef organisms [31].

A panel of acoustic measures (e.g., amplitude, complexity of the signal, temporal
variability) calculated from soundscape recordings were shown to correlate with reef fish
species richness and abundance (e.g., [14,32,33].) and with the abundance and biomass
of several key functional groups of fishes [34]. Although they still need validation [31],
these ecoacoustic indices offer an interesting complementarity to other methods for the
assessment of fish-related EOVs.

In this study, we constructed predictive models for different descriptors of fish assem-
blages. The predictions were based on environmental data (including GIS-derived variables
and coarse habitat variables visually collected in situ) and acoustic data to disentangle via
variance partitioning the unique and combined contributions of these data in explaining
various aspects of fish assemblages. The fish assemblages were assessed through visual
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and video surveys. Our goals were (1) to test if the acoustic data could offer added value in
predicting fish assemblage characteristics compared to the predictions based on the envi-
ronmental data alone; and (2) to identify the fish assemblage characteristics best predicted
by the acoustic data.

2. Materials and Methods
2.1. Study Sites

The study was conducted at 31 outer reef slope sites located between 10 and 18 m depth
around three Indo-Pacific islands (Figure 1). Four sites were sampled in Reunion Island and
nine sites in Europa Island, both located in the South-West Indian Ocean. The 18 other sites
were sampled around New Caledonia in the South-West Pacific Ocean. Reunion Island
reefs are exposed to strong anthropogenic pressures from a population of approximately
850,000 inhabitants and 500,000 visiting tourists annually, those of Europa Island are
virtually pristine with strong protection implemented for decades and no people living
within a 300 km radius around the island. New Caledonia is inhabited by approximately
270,000 inhabitants, of which 180,000 live in or near the capital Noumea. Twelve sites
were located within a 30 km radius around Noumea, with six sites inside the Aboré
Marine Protected Area and six sites outside. The remaining six sites were virtually pristine
reefs (Great Northern Lagoon and d’Entrecasteaux reefs) located over 450 km away from
Noumea. Reunion Island sites were sampled in October 2016, New Caledonia sites in July
2017, and Europa Island sites in April 2018.
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Figure 1. Location of the 31 study sites.
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2.2. Evaluation of Reef Fish Assemblage Characteristics

Video footage was used to evaluate reef fish assemblages at Europa Island and New
Caledonia sites (e.g., [35]). Calibrated stereo-cameras (two GoPro cameras, San Mateo, CA,
USA) affixed 50 cm above the substrate filmed for 90 min an area covering approximately
150 m2. Cameras were oriented so that footage captured half the substrate and half the
water column above. We identified individual fish and estimated an index of abundance
and biomass for each species using the software EventMeasure (SeaGIS, Bacchus Marsh,
Australia). The maximum abundance “MaxN” for a species was calculated as the maximum
number of individuals of this species that can be observed on a single frame of the footage.
Size of these individuals was measured and their biomass evaluated to calculate the
maximum biomass “MaxB” of the species. The coefficients “a” and “b” which define
the relationship between fish length and weight for each species were extracted from
FishBase [36].

Video footage was not performed at the four Reunion Island sites. At each of these
sites, reef fish assemblages were visually evaluated using Underwater Visual Census (UVC;
e.g., [37]) along three 5 × 30 m belt transects. During each census, a diver swam 1 m above
the transect line identifying, counting, and evaluating the sizes (to the nearest cm) of all
fishes within 2.5 m on either side of the central line. Highly mobile and wary species were
enumerated on the first pass as the transect line was laid and all the remaining species
during the second pass. Transects encompassed half of the water column. As for video
footage, the vast majority of individuals were found within a few meters above the seafloor.
All detected fishes were recorded.

To homogenise the results of visual censuses and video footage and thus combine
visual and video data in the modelling step, visual observations were averaged among the
three transects at each Reunion site (e.g., for a given site, abundance of species “s” was the
mean abundance of this species among the three transects, etc.). Indeed, a single 30 m belt
transect covers approximately a 150 m2 area, equivalent to the coverage of video footage.

For each species recorded in the study, eco-morphological traits were compiled from
FishBase [36] according to the classification used in recent articles (e.g., [38]). Five traits
were considered: diet, species size class, schooling, mobility, and level in the water column.
Three to six levels were considered for each trait (Table 1).

Table 1. Levels considered within each of the five eco-morphological traits.

Diet Species Size
Class Schooling Mobility Level in the Water

Column

H: herbivores S1: <7 cm Sol: solitary species Sed: sedentary species Bottom: species staying on
the bottom

OM: omnivores S2: 7–15 cm Pairs: species living in
pairs

Mob: species staying within
the same reef for several days

Demersal: species hovering
just above the bottom

SI: sessile
invertebrate feeders S3: 16–30 cm SmallG: 3–20 fish on

average in a group

VMob: constantly moving
around and usually changing

reefs within a day

Pelagic: species hovering
high above the reef

MI: mobile
invertebrate feeders S4: 31–50 cm MedG: 20–50 fish on

average in a group

PK: plankton feeders S5: 51–80 cm LargeG: >50 fish on
average in a group

FC: piscivores S6: >80 cm

Species sharing similar eco-morphological traits were grouped into “Functional en-
tities” (annotated “FE”). Each FE was considered as a proxy for the ecological function
performed by a group of species following an approach increasingly used over the past
decade (see [39]).
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We estimated five taxonomic descriptors of fish assemblages: species richness, total
abundance, total biomass, and two Shannon indices, one calculated on species abundance
and another on species biomass (i.e., taxonomic distribution of abundance and biomass).

Functional descriptors were based on functional entities (FEs) rather than species.
Four kinds of descriptors were calculated: functional richness (i.e., number of FEs) and
three Shannon indices calculated on the distribution of species richness, abundance, or
biomass among FEs (henceforth called functional distribution of richness, abundance, and
biomass respectively). We considered FEs of increasing levels of complexity (i.e., from
two to five eco-morphological traits), with all possible combinations of traits for each
level (Table 2). The simplest FEs combined two eco-morphological traits (e.g., diet-size or
diet-schooling), resulting in 10 types of 2-trait FEs. Similarly, we considered ten types of
3-trait FEs, five types of 4-trait FEs, and one type of 5-trait FEs. In total 26 types of FEs
were considered in the study. Thus, a total of 104 functional descriptors was computed
(four kinds of descriptors * 26 types of FEs). Biomass was log-transformed prior to the
calculation of biomass-related descriptors.

Table 2. Composition of the 26 types of FEs considered in the study.

2-Trait FEs 3-Trait FEs 4-Trait FEs 5-Trait FEs

diet-size diet-size-school diet-size-school-mobility diet-size-mobility-
school-lwater

diet-schooling diet-size-mobility diet-size-mobility-lwater

diet-mobility diet-size-lwater diet-size-school-lwater

diet-lwater diet-school-mobility diet-mobility-school-lwater

size-school diet-mobility-lwater size-mobility-school-lwater

size- mobility diet-school-lwater

size-lwater size-mobility-school

mobility-school size-mobility-lwater

mobility-lwater size-school-lwater

school-lwater mobility-school-lwater

2.3. Environmental Variables

Eight environmental characteristics were considered at each site, comprising reef
habitat features and human pressure. The eight variables were selected on the condition
that they could be easily retrieved over large areas.

Four environmental variables were computed using open-source GIS layers available
at world scale. Exposure to waves was determined as being between 1 (low) and 3 (high),
based on site orientation and knowledge of dominant swells, using the layer of the global
distribution of warm-water coral reefs [40]. The same layer was used to compute coral reef
area within a 12 km radius around each site. Gravity (i.e., human disturbance based on
population size surrounding a reef site and travel time to the nearest population centre)
was evaluated using the layer of gravity estimates within 500 km [19]. These three variables
were computed using QGIS [41]. Based on the World Database on Protected Area [42],
three management statuses were considered: (1) Fished, (2) Marine Protected Area, and
(3) Pristine Area.

The other four environmental variables represented coarse habitat features that could
have been estimated using airborne remote sensing tools. Indeed, reef slope and habi-
tat complexity can be evaluated using airborne LIDAR (e.g., [17]), live coral cover using
airborne hyperspectral imagery (e.g., [10]), and soft bottom cover using satellite imagery
(e.g., [9]). Unfortunately, such airborne remotely sensed data were not simultaneously
available for the three localities in our study and datasets of habitat features available at
world scale (e.g., Allen Coral Atlas) are only qualitative at this time (e.g., “coral/algae”
benthic map class does not differentiate between 5 and 50% of coral cover). To approxi-
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mate the precision that could have been obtained using airborne remote sensing tools, we
visually estimated these four variables during a short dive at each of the 31 sites using semi-
quantitative scales. At each site, we determined an area representative of the site habitat
(~150 m2) and visually estimated the four habitat variables as follows. Habitat complexity
ranged from 0 (flat landscapes) to 5 (exceptionally complex habitats with numerous caves
and overhangs; see [43]) as illustrated in the Supplementary Materials of Darling et al. [22].
Live coral cover was divided into five semi-quantitative categories (see [44]): 1 (0–20%);
2 (20–30%); 3 (30–40%); 4 (40–50%), and 5 (>50%). Similarly, five semi-quantitative cate-
gories for soft bottom cover were defined: 1 (0–5%); 2 (5–10%); 3 (10–20%); 4 (20–30%), and
5 (>30%). Slope was evaluated as being between 1 (gentle) and 3 (steep).

2.4. Soundscape Recordings and Acoustic Metrics

At each site, soundscapes were continuously recorded between 9:30 am and
3:30 pm simultaneously with video footage recorded at Europa Island (April 2018) and
New Caledonia (July 2017), and the day before the underwater visual census at Reunion
Island (April 2016).

Two identical recording systems were alternatively used. Systems were affixed to the
substrate to prevent movement during recordings. Each system was composed of a TC
4014–5 omnidirectional hydrophone (RESON, Slangerup, Denmark) fixed approximately
1.5 m above the substrate at the top of an aluminium tripod and connected to an acquisition
chain designed by NORTEKMED S.A.S (Toulon, France). Sensitivity of the whole recording
system was −166 dB re 1 V µPa−1. Calibration of the systems was regularly checked during
the study with a Brüel & Kjaer 4229 hydrophone calibrator (Nærum, Denmark). Systems
were programmed to record continuously at 100 kHz and 16 bits, providing an analysis
range of 0–50 kHz.

Samples containing wave or boat noise, or noise of animals probing the hydrophone
were eliminated in order to keep 24 “clean” 5 min sound samples from each site. This
recording protocol was found to be well-suited to acoustically discriminate coral reef
sites [45]. Although this snapshot approach fails to capture the vast spatio-temporal
variabilities in reef soundscapes [31], here the aim was to test if it could provide information
about the structure of the reef fish assemblage present at the moment of the recording.

For each sound sample, six acoustic metrics were calculated on five frequency bands
(0.1–0.5 kHz; 0.5–1 kHz; 1–2 kHz; 2–7 kHz; 0.1–50 kHz): amplitude (Sound Pressure
Level; SPL), Bioacoustics Index (BI), spectral entropy (sh), temporal entropy (th), acoustic
entropy index (H), and Acoustic Complexity Index (ACI). In addition, the Normalised
Difference Soundscape Index (NDSI) was calculated to evaluate the ratio of high-frequency
(2–7 kHz) to low-frequency (0.1–1 kHz) acoustic components (see Supplementary Materials
ESM 1 for details on acoustic metrics and their calculation). Both the acoustic metrics and
frequency bands were selected following the results previously obtained on coral reefs
(e.g., [14,33,34,45]).

After removing the most-correlated metrics [H (0.5–1 kHz), H (2–7 kHz), BI (2–7 kHz),
sh (2–7 kHz), and th (2–7 kHz)], 26 acoustic metrics were retained for each sound sample.
The mean value of each metric was computed for each site.

2.5. Statistical Analyses
2.5.1. Reduction of Environmental Data and Acoustic Data

To summarise the information provided by environmental and acoustic variables and
avoid model over-fitting, we performed a Principal Component Analysis on both sets of
explanatory variables prior to modelling and retained the first three axes of each (annotated
env1, env2, env3 and acous1, acous2, acous3).

2.5.2. Test of the Added Value of Acoustic data in Predicting Fish Assemblage Characteristics

We first used linear models to evaluate the performance of combined environmental
and acoustic data in predicting each of the 109 fish descriptors (104 functional descriptors
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and 5 taxonomic descriptors). When models were significant, we followed the same
approach using environmental data and then using acoustic data. Hence, three linear
models were built for each of the 109 fish descriptors, theoretically representing 327 models.
Among these, 16 were expected to be statistically significant just by chance at an alpha level
of 0.05, which must be considered in results interpretation. Models were built as follows:

(combined) Fish ~ env1 + env2 + env3 + acous1 + acous2 + acous3 + ocean

(environment) Fish ~ env1 + env2 + env3 + ocean

(acoustics) Fish ~ acous1 + acous2 + acous3 + ocean

When ocean effect was not significant in the combined model, it was removed from
the analyses.

Adjusted coefficients of determination (i.e., adjusted R2) were examined for the three
models. We used variation partitioning ([46]; Figure 2) to quantify the unique fractions
of variation in each of the 109 fish descriptors explained by environmental variables, by
acoustic variables (i.e., the added value of using acoustic variables), as well as the fraction
explained by both (i.e., common fraction).

Adj R² [combined model]
= R²(1)

Adj R² [environmental model]
= R²(2)

Adj R² [acoustic model]
= R²(3)

Common fraction
= R²(2) + R²(3) - R²(1)

Fraction [only environment]
= R²(1) - R²(3)

Fraction [only acoustics]
= R²(1) - R²(2)

Figure 2. Venn diagrams representing the partition of the variation of a response variable (i.e., a
descriptor of fish assemblage structure) between the two sets of explanatory variables (i.e., envi-
ronment and acoustics). The rectangle represents 100% of the variation in the response variable.
Common fraction is the intersection (not the interaction) of the variation explained by linear models
of environment and acoustics.

2.5.3. Identification of the Fish Assemblage Characteristics Best Predicted by Acoustic Data

To better understand the information provided by acoustic variables, we used linear
models to examine how the adjusted R2 of acoustic models (or the fraction only explained
by acoustic variables) was influenced by the number of traits considered in the FE and
by the identity (e.g., diet, size class) of those traits. For each kind of functional descriptor
(i.e., functional richness, functional distribution of richness, etc.), the effect of considering a
particular trait (diet, species size class, schooling, mobility, and level in the water column)
in the FEs was tested. This represented 20 tests on adjusted R2 of the acoustic models and
20 tests on fractions [only acoustics].

The whole methodological approach that was followed from sampling to data analysis is
synthetised in Figure 3. All datasets are available in Supplementary Materials (ESM 2 to 8).
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For each species, 
compilation of 5 eco-
morphological traits

Grouping species in “Functional entities” 
(FE) depending on shared traits ‡
In total 26 types of FEs are considered in 
the study (see table 2).

For each of the 26 types of FEs, 4 kinds of 
functional descriptors are computed
+ 5 additional taxonomic descriptors
= 109 fish descriptors (i.e., 109 « Fish Y »)

Fish data 

Video (NC and EUR)
Visual census (RUN)

Environmental data 

Visual evaluation of 4 
proxies for airborne
remotely sensed
variables 

Acoustic data 

Diurnal soundscape
recording (consecutive 5 
min samples)

For  each of the 109 « Fish Y », the combined
model is computed :

Fish Y ~ env1 + env2 + env3 
+ acous1 + acous2 + acous3 + ocean

Only significant models are considered for 
the following step (86 models over 109)

Corresponding environmental and acoustic
models are also computed : 

Fish Y ~ env1 + env2 + env3 + ocean
Fish Y ~ acous1 + acous2 + acous3 + ocean

Fractions [only acous], [only env], [common] 
are computed 

4 additional
environmental variables 
are computed using GIS

‡ e.g. Epibulus insidiator and Lethrinus laticaudis are both piscivores (Diet : FC) with a maximum recorded length between 51 and 80 cm (Size Class : S5). Thus, both belong to the same 2-traits FE « Diet – Size ». 
Nonetheless, the other 3 eco-morphological traits are different for these two species; Thus they do not belong to the same FE for any other of the 25 remaining types of FEs

Samples containing wave or boat 
noise, or noise of animals probing 
the hydrophone are eliminated. 
24 “clean” 5 min sound samples 
from each site are considered in 
the next step.

For each sample, 6 acoustic metrics
are computed on 5 frequency bands 
(see ESM 1). NDSI is also computed. 
The mean value of each of these 31 
metrics is calculated for each site.

A PCA is performed on the 8 
environmental variables. Values of the 
first 3 axes are retained for modelling

After removing the 5 most correlated 
metrics, a PCA is performed on the 26 
acoustic variables. Values of the first 
three axes are retained for modelling

FIELD
SAMPLING

DATA
HANDLING

MODELLING

Figure 3. Flowchart summarising the methodological approach from sampling to data analysis
(see Table 2).

3. Results
3.1. Reduction of Environmental Data and Acoustic Data

The first three axes of the Principal Component Analysis performed on the envi-
ronmental variables explained 79% of the variance among the sites. For the Principal
Component Analysis performed on the acoustic variables, the first three axes explained
70% of the variance (Figure 4).
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Figure 4. Principal Component Analyses showing the variance among sites when considering
alternatively (a) the eight environmental variables (see variables meaning in Section 2.3); and (b) the
twenty-six acoustic metrics (see variables meaning in Section 2.4) considered in this study. NC: New
Caledonia; RUN: Reunion Island; EUR: Europa Island.
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3.2. Test of the Added Value of Acoustic Data in Predicting Fish Assemblage Characteristics

Of the 109 combined models, 86 were significant. Depending on the fish descrip-
tor considered, the adjusted R2 ranged from 0.14 to 0.60 for the environmental models
[mean value (±sd) = 0.35 ± 0.09], from 0 to 0.47 for the acoustic models [mean value (±sd)
= 0.14 ± 0.15], and from 0.21 to 0.58 for the combined models [mean value (±sd) = 0.39 ± 0.09]
(Figure 5a,c).
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Figure 5. Relationships between (a) fraction [only acoustics] and adjusted R2 of the combined model;
(b) fraction [only acoustics] and fraction [only environment]; and (c) adjusted R2 of the acoustic
model and fraction [only environment]. Fraction [only acoustics]: proportion of the variance of the
combined model explained only by acoustic variables; Fraction [only environment]: proportion of
the variance of the combined model explained only by environmental variables. Negative values of
fractions are interpreted as zeros; they correspond to cases where the explanatory variables explain
less variation than random normal variables would (see [46]). Results are shown for the 86 significant
combined models (each point represents a fish descriptor).
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The contribution of the acoustic variables to the variance explained by the com-
bined models, i.e., fraction [only acoustics], varied greatly. It ranged from −0.05 to 0.22
[mean value (±sd) = 0.04 ± 0.05] (Figure 5a). This contribution was positive for 69% of the
fish descriptors tested (59 descriptors over 86) and negative for the remaining 31%, reveal-
ing that the acoustic data did not bring additional explicative power to the environmental
models for these 27 descriptors (Figure 5a). These latter descriptors reflected the total
abundance, the taxonomic distribution of biomass, and several descriptors of the functional
richness, functional distribution of richness, and functional distribution of biomass.

The explicative power of the combined models significantly increased with the fraction
of variation only explained by acoustics (Pearson’ρ = 0.27, p < 0.05) (i.e., when fraction
[acoustics] was high, adjusted R2 of the combined model was also high, Figure 5a), re-
vealing that, overall, the acoustic data significantly enhanced the explicative power of the
environmental models.

We found no significant relationship between the fraction only explained by the
acoustic variables and the fraction only explained by the environmental variables
(Pearson’ρ = −0.19, p = 0.08) (Figure 5b), or between the fraction only explained by the
acoustic variables and the common fraction (Pearson’ρ = 0, p = 0.94). This absence of signif-
icant relationships shows that the information only provided by the acoustic data, albeit
limited (i.e., maximum value = 0.22), is independent of the information provided by the
environmental data. In other words, a low fraction (either acoustic or environmental) does
not imply that the other fraction is low, which highlights the complementarity between
both datasets in explaining the structures of reef fish assemblages. Nonetheless, the fraction
only explained by the environmental variables was greater than the fraction only explained
by the acoustic variables in a majority of cases (i.e., most of the points are below the
y = x line; Figure 5b).

The fractions only explained by the environmental variables reached the highest
values for a number of descriptors of functional richness and functional distribution of
biomass (Figure 5a,c). For other descriptors, particularly those reflecting the functional
distribution of abundance, the fraction only explained by the environmental variables was
lower than the fraction only explained by the acoustic variables (Figure 5b). As such, with
this larger contribution of acoustic variables where environmental variables performed
poorly (Figure 5c), the combined models were found to predict a wide range of descriptors
of the fish assemblage structure. The Ocean basin was significant in 34% of combined
models including all the models of the functional distribution of abundances.

To sum up, the acoustic data globally enhanced the predictions of fish assemblage
characteristics with respect to the predictions only based on the environmental data. Albeit
limited (i.e., mean value = 0.04 and maximum value = 0.22), the contribution of the acoustic
data was positive for 69% of the fish descriptors tested and was globally not correlated to
the contribution of the environmental data, which highlights that the information provided
by both data types is different. In addition, the contribution of the acoustic data was higher
than the contribution of the environmental data for predicting the functional distribution
of fish abundance.

3.3. Identification of the Fish Assemblage Characteristics Best Predicted by the Acoustic Data

Concerning functional descriptors, the adjusted R2 for the acoustic models were
significantly affected by the type of functional descriptor (ANOVA, F = 26.22, df = 3,
p < 10−10) and by the number of traits considered to construct the FEs (ANOVA, F = 21.79,
df = 1, p < 10−4); these effects were independent (interaction term, F = 1.29, df = 3, p = 0.28)
(Table 3).

The adjusted R2 of the acoustic models was significantly higher for the functional distri-
butions of abundance than for the other functional descriptors (all p < 10−6,
Table 4 and Figure 6) and significantly decreased with increasing functional resolution (i.e.,
an increasing number of traits considered to construct the FEs) (slope = −0.06, t = −4.641,
p < 10−4).
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Table 3. Results of the ANOVA performed on the linear model. Adjusted R2 [acoustic model] ~ type
of functional descriptor x Nb of traits.

Df Sum Sq Mean Sq F Value Pr(>F)

Type of functional descriptor 3 0.7586 0.2529 26.2160 1.293 × 10−11

Nb of traits 1 0.2102 0.2102 21.7897 1.349 × 10−5

Type of descriptor x Nb of traits 3 0.0374 0.0125 1.2921 0.2836
Residuals 73 0.7041 0.0096

Table 4. Results of the ANCOVA performed on the linear model. Adjusted R2 [acoustic model] ~
type of functional descriptor + Nb of traits.

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 0.48706 0.04572 10.652 <2 × 10−16

Shannon index [FE biomass] −0.23275 0.03019 −7.709 3.97 × 10−11

Functional Richness −0.23399 0.02918 −8.019 1.01 × 10−11

Shannon index [FE richness] −0.18337 0.03419 −5.363 8.52 × 10−7

Nb of traits −0.06185 0.01333 −4.641 1.42 × 10−5
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Figure 6. Boxplots representing the dispersion of values for the adjusted R2 of the acoustic models
for each kind of functional descriptor considered in this study. Letters indicate results of Tukey HSD
post hoc test. For each kind of descriptor, sample size is indicated.

The number and identity of traits influenced the models. When the level in the water
column was considered in the 2-trait FEs, the adjusted R2 of the acoustic models was
significantly higher than when this trait was not considered for functional richness and
for the functional distributions of biomass (Figure 7a,b). Nonetheless, this trait was not
significantly influential when considering the fraction only explained by the acoustics.



Remote Sens. 2022, 14, 2394 12 of 18

This suggests that the predictions by the acoustic and environmental data were partially
redundant when the FEs included the level in the water column.
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Figure 7. Boxplots representing the effects of the number and identity of traits (considered in FEs
construction) on the adjusted R2 of the acoustic models (or on the fraction only explained by acoustic
variables). Over the 40 tests (i.e., 20 tests on adjusted R2 of the acoustic models and 20 tests on
fractions [only acoustics]), we only present the results of the tests for which trait presence effect
was significant at p < 0.01. Boxes are darker when trait is present. For example, in Figure 7a under
2 traits, the lightest boxplot represents the dispersion of values for adjusted R2 of the acoustic models
in the cases where 2-trait FEs do not include the level in the water column (i.e., diet-schooling, diet-
mobility, size-mobility, mobility-school). On the contrary, the darkest boxplot represents the cases
where 2-trait FEs include the level in the water column (i.e., diet-lwater; size-lwater; mobility-lwater;
school-lwater).

When diet was considered in the FE composition, the fraction only explained by the
acoustic variables was significantly enhanced for the functional distribution of biomass
(Figure 7c), revealing the particular added value of the acoustic variables in predicting
diet-related biomass. On the contrary, considering size class and schooling in the FE
composition significantly dropped the adjusted R2 of the acoustic models for the functional
distribution of richness and abundance, respectively (Figure 7d,e).

4. Discussion

Tropical coral reefs are extremely different from one region to another, but they
also notably vary at local scales (e.g., [47]). Adding that the intensity of human distur-
bances strongly differs between localities, the response of coral reef ecosystems to ongoing
changes is highly spatialized and hard to predict and may rapidly change in a given
locality [2–4,48]. Therefore, long-term adaptive management needs efficient monitoring
networks able to track changes both within and across regions identified as conservation pri-
orities [3]. Since this fundamentally requires frequent and standardised information across
scales, the capacity of observer-based in situ monitoring to respond to this challenge may
be limited [7]. Concurrently, remote sensing is considerably augmenting our monitoring
capacities with the recent emergence and diversification of affordable tools [7,49,50] com-
bined with the increasing possibilities of automated handling through machine learning
(e.g., [51–54]). Although remote sensing offers opportunities to solve numerous monitoring
challenges (i.e., standardised information from a local to a global scale, frequent assess-



Remote Sens. 2022, 14, 2394 13 of 18

ments), its optimisation for conservation requires addressing several barriers [7,31,50].
Among these, the ecological significance of remotely sensed data still needs to be specified,
as well as the capacity of these data to reliably inform EOVs [7,50]. Also, the complementar-
ity among remote sensing tools must be understood in order to optimise their simultaneous
implementation (e.g., [17,55–57]).

Consistent with the results of previous studies (e.g., [17,19,23]), we found that coarse
environmental data (i.e., variables that could have been estimated using airborne remote
sensing tools and variables extracted from GIS layers) could provide sufficient information
to delineate multiple aspects of the structure of reef fish assemblages across the Indo-Pacific
region. The novelty of our study was to demonstrate that PAM data could improve these
predictions. Indeed, the acoustic data significantly enhanced the explicative power of the
environmental models. Also, the acoustic variables performed better than the environ-
mental variables for predicting the functional distribution of fish abundance. Although
the magnitude of improvements was low, our results revealed that the acoustics metrics
could supply different, and thus complementary, information to the airborne remotely
sensed data.

This was not the case, however, for the prediction of the taxonomic descriptors.
This contrasts with previous findings on coral reefs where several acoustic metrics were
correlated with fish species’ richness and abundance (i.e., SPL and ACI in the lower
frequencies; e.g., [14,32,33]). Two elements may explain this discrepancy. First, in this study
we considered the synthetic information from a panel of 26 acoustic metrics (i.e., values of
the first three axes of a PCA on these metrics) rather than the individual metrics examined
in previous studies. Second, the taxonomic structures of fish assemblages were strongly
different among our study sites as they were located in different biogeographic contexts.
This may have interfered with the capacity of the acoustic metrics to reflect the taxonomic
descriptors between distant localities. The lack of performance of PAM for predicting
the taxonomic descriptors at this scale illustrates that other remote sensing tools, such
as eDNA metabarcoding surveys (e.g., [15]), could better complement airborne tools for
taxonomic assessments.

Although the predictions of functional descriptors were also affected by biogeographic
effects (significant in 34% of the models), PAM alone explained the different levels of
variation in the distribution of richness, abundance, and biomass across the FEs and in the
functional richness of coral reef fish assemblages. The contribution of PAM was particu-
larly important for predicting the functional distribution of abundance, as environmental
variables were less performant regarding this aspect. These results illustrate that simultane-
ously using several remote sensing tools could generate more comprehensive evaluations
of coral reef fish assemblages.

Furthermore, our approach allowed for the identification of the functional aspects for
which the prediction by PAM offered a significant added value. The best predictions were
obtained for coarse functional classifications (i.e., 2-trait FEs), whereas increasing the func-
tional resolution resulted in poorer descriptions. These results suggest that the distribution
of ecological functions among fish species, when considered at a relatively coarse level, is
reflected in the soundscape composition. Different fish species ensuring a similar ecological
function may produce similar acoustic patterns through feeding, movements, and defense,
for example. This is consistent with the results of a previous study where the abundance
and biomass of several simple fish FEs were found to significantly correlate with various
acoustic metrics [34].

In addition, the PAM predictions were significantly enhanced when considering diet
and the level in the water column in the FE composition. Numerous acoustic signals are
linked with feeding, such as predation, escape, and parrotfish scraping (see review by
Lobel et al. [58]), partially explaining why this trait emerged from the analysis. Furthermore,
the level in the water column occupied by a species is linked to its detectability by the
hydrophone (i.e., hydrophone range to the fish), which could explain at least partially why
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this trait also emerged. Moreover, this could be related to differences in the prevalence of
soniferous fish among demersal, semi-demersal, and pelagic categories.

Surprisingly, considering size class (and to a lesser extent schooling) reduced the
predictive capacity of PAM, whereas these traits are usually important features structuring
sound production by fishes (e.g., [59]). Beyond the question of which functional infor-
mation is conveyed through soundscapes, these results suggest that considering local
specificities is crucial when defining the functional role of individuals. Indeed, there were
important differences between the theoretical and the actual observed size class/schooling
classifications of species depending on the study sites (e.g., for some species in Reunion
Island, the observed maximum size was much lower than the theoretical maximum size).
This could explain the poorer results when considering these traits across sites.

A limit of the study was the discrepancy between fish survey methods, which may
have introduced some biases, especially in the evaluation of cryptic species. Although
numerous studies have evaluated the implications of using different survey methods (e.g.,
UVC, Baited Remote Underwater stereo-Videos, Diver Operated stereo-Videos, Rotating
Videos) on the assessment of coral reef fish assemblages (e.g., [60–63]), we did not find any
study considering a video protocol similar to that used in the present study (i.e., 90 min
video footage using UnBaited Remote Underwater stereo-Videos, UBRUV). However, in
their study of tropical seagrass meadows, Zarco-Perello and Enríquez [64] found that UVC
provided lower estimations of fish diversity and abundance when compared to UBRUV,
especially for herbivorous and piscivorous fishes [64]. Since we used similar UVC and
UBRUV protocols, our evaluation of the fish assemblage structure could have been biased
at Reunion Island.

PAM is an emerging approach for ecosystem monitoring, which will rapidly gain
in performance with upcoming developments. For example, in this study, we made a
subjective selection of acoustic variables to discriminate among soundscapes, whereas
the development of data-driven approaches (e.g., convolutional neural networks) allows
for a more exhaustive and objective selection of the acoustic features able to discriminate
among soundscapes (see e.g., [54]). Also, most studies, including the present one, still
refer to a known referential (here the visual assessment of fish assemblages) to evaluate
PAM capacities. Alternative approaches (e.g., automated classification and quantification
of biological signals using machine learning algorithms) will probably bring out the best in
the PAM applications. Although deployments of acoustic devices only last a few minutes,
they still require in situ human presence. We may expect that Automated Underwater (or
Surface) Vehicles will be able to replace humans in this task in a few years. By integrating
onboard data handling, analysis, and transmission, they could considerably improve coral
reef PAM over ever larger areas.

5. Conclusions

This study represents the first test of the complementarity between coarse environ-
mental data (including data which could have been collected using airborne remote sensing
tools) and PAM for coral reef fish assemblage assessment. Although our results highlight
a relatively low added value of combining PAM with environmental data, they should
be considered as an incentive to develop more robust studies. The latter could at least
include more sites and rely on a single standardised method (e.g., video footage) for estab-
lishing a “reference” assessment for fish assemblages. They could also widely benefit from
integrating the perspectives cited above.

Despite its weaknesses, our study showed that acoustic data could be more relevant
than environmental data for predicting certain aspects of the fish assemblages (i.e., func-
tional distribution of abundance). In addition, the significant improvements obtained when
considering diet and the level in the water column in the FE composition strongly suggest
the potential of PAM for assessing various aspects of fish assemblage functional structure.
Moreover, as acoustic data were collected over a few hours, our results highlight that PAM
can deliver useful in situ snapshot information.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14102394/s1. ESM1: calculation of acoustic metrics: ESM2:
values of acoustic metrics on each site; ESM3: values of environmental variables on each site; ESM4:
values of fish taxonomic variables on each site; ESM5: value of fish functional richness on each site;
ESM6: value of functional distribution of fish species richness on each site; ESM7: value of functional
distribution of fish abundance on each site; ESM8: value of functional distribution of fish biomass on
each site. References [65–74] are cited in the Supplementary Material ESM1.
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