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Abstract: In this paper, we introduce a refined three-stage inversion algorithm (TSIA) for forest
height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR). Specifically,
the iterative extraction of the boundary of the coherence region (IEBCR) and iterative look-up table
(ILUT) are proposed to improve the efficiency of traditional TSIA. A class of refined TSIA utilizes
the boundary of the coherence region (BCR) to alleviate the underestimation phenomenon in forest
height estimation. Given many eigendecompositions in the extraction of BCR (EBCR), we analyze
the relationship of eigenvectors between the adjacent points on the BCR and propose the IEBCR
utilizing the power methods. In the final inversion stage of TSIA, the look-up table (LUT) uses the
exhaustive search method to minimize the loss function in the 2-D grid with defined step sizes and
thus costs high computational complexity. To alleviate the deficiency, we define the random volume
over ground (RVoG) function based on the RVoG model and prove its monotonicity and convergence
from the analytical and numerical points of view. After analyzing the relationship between the RVoG
function and the loss function, we propose the ILUT for the inversion stage. The simulation and
experiments based on the BioSAR 2008 campaign data illustrate that the IEBCR and ILUT greatly
improve the computational efficiency almost without compromising on accuracy.

Keywords: forest height inversion; polarimetric interferometric synthetic aperture radar (PolInSAR);
three-stage inversion algorithm; coherence region; look-up table

1. Introduction

Forest height is a pivotal parameter in biomass estimation which plays an essential
role in forest management, biodiversity, global carbon storage, and climate modeling [1–4].
Remote sensing technologies can provide a means for large-scale forest height measurement.
There are mainly three forest height inversion methods in remote sensing technologies.

The first method is Light Detection and Ranging (LiDAR). LiDAR can measure the
three-dimensional physical distribution of the forest canopy directly, thus providing the
most accurate estimates of forest height compared with other remote sensing techniques [5].
Therefore, the LiDAR-derived height is often used to validate the reliability of other remote
sensing techniques. However, the large-scale tree height retrieval based on LiDAR is limited
by the high acquisition cost [6].

The second approach is the model-based inversion. In recent decades, the PolInSAR
technology has shown great potential in forest height inversion. Extensive research has
demonstrated that the forest height can be estimated from PolInSAR data at X-, C-, L-,
and P-bands [7–20].
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The third method is based on machine learning, including decision trees ensemble
methods and support vector machine [21,22]. In the model-based methods, the relationship
between the observations and the forest structure parameters is complex and nonlinear.
More parameters describing the scattering process usually generate a better inversion result.
However, the nonlinear models are often ill-posed [23,24]. Therefore, some scholars have
tried to use machine learning methods to estimate the forest height [6,25–27]. However,
the performance of these algorithms highly depends on the training samples [6]. Moreover,
the training process requires lots of PolInSAR and LiDAR data, which limits the application
of this method.

In this paper, we mainly focus on the model-based inversion methods. This study
estimates the forest heights from the PolInSAR data according to the inversion methods.
The LiDAR canopy heights are used for comparison and validation of inverted forest
heights. RVoG model is one of the most widely used models among these methods [28–30].
The model assumes that the canopy is a uniform particles layer with random directions.
The observed coherence is modeled in terms of four physical parameters: the forest height,
which denotes the thickness of the canopy; the mean extinction coefficient, which indicates
the attenuation of the electromagnetic waves through the canopy; the ground phase relating
to the underlying topography; and the ground-to-volume amplitude ratio (GVR), which
varies with the polarization channels.

The three-stage inversion algorithm (TSIA) was proposed based on the geometrical char-
acteristics of the RVoG model [31]. The geometrical characteristic avoids the six-dimensional
nonlinear optimization problem and reduces the computational complexity [7,31]. Concretely,
a coherence line is firstly fitted by the least squares using the observed coherences. Combining
the NGVR hypothesis, the ground phase is estimated for each pixel in the second stage. Finally,
the look-up table is established for the remaining parameters, height, and extinction.

The traditional TSIA has two limitations. On the one hand, the TSIA uses several
observed coherences to fit the coherence line and estimate the ground phase. However,
the observed coherences can be influenced by various parameters, including temporal
or spatial baseline, frequency, and systematic errors. Therefore, the coherence line is not
robust enough and cannot fully reflect the characteristics of the entire coherence region.
On the other hand, the TSIA approximates the volume coherence with HV polarization
coherence resulting in the underestimation phenomenon.

Based on the boundary of the coherence region (BCR) [32], some coherence optimization
algorithms have been proposed, including the phase diversity algorithm [33], magnitude
difference algorithm [34], numerical radius algorithm [35], and principal component analysis
of coherence region [36]. In addition, some refined three-stage inversion algorithms [36,37]
have been proposed using these coherence optimization algorithms. In the direction of the
fitted coherence line, the boundary points are regarded as the coherences with the largest and
smallest GVR. The coherence with minimum GVR is the best candidate for the volume-only
coherence. Two computational burdens make these refined algorithms a time-consuming
process that is intolerable in practice. For one thing, the computation is enormous, as many
eigendecompositions need to be solved for each pixel in the EBCR. For another thing, in the final
inversion stage, the look-up table (LUT) uses the exhaustive search method to minimize the loss
function in the 2-D grid with defined step sizes and thus costs high computational complexity.

In this paper, we try to enhance the efficiency of the refined TSIA. To achieve this, we
study the eigenvectors of the adjacent points and utilize the power methods to improve the
computational efficiency, which avoids the eigendecompositions. Moreover, we define the
RVoG function based on the RVoG model. Then, we prove its monotonicity and convergence
from the analytical and numerical points of view. After analyzing the relationship between
the RVoG function and the loss function, we propose an iterative LUT (ILUT) for the
inversion problem.

This article is organized as follows. Section 2 presents the basic processing flow of
the model-based PolInSAR inversion. Section 3 introduces the proposed iterative methods.
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Section 4 concerns the experimental results. Section 5 presents the discussion on the further
analysis of the iterative methods. Finally, conclusions are given in Section 6.

2. Model-Based Pol-InSAR Inversion

The basic flow of PolInSAR inversion can be divided into three parts, namely PolInSAR
observation, modeling, and inversion [11].

2.1. Observation

The PolInSAR data is obtained from two separate antennas in different positions
or times. For a single-baseline PolInSAR system, the Pauli scattering vectors of the two
registered images are [23]

k1 =
1√
2
[ shh1 + svv1 shh1 − svv1 2shv1

]T

k2 =
1√
2
[ shh2 + svv2 shh2 − svv2 2shv2 ]T

(1)

where k1, k2 are the Pauli scattering vectors from the pixel of two images assuming target
reciprocity (shvi

= svhi
), the subscripts 1, 2 denote master and slave, respectively, the su-

perscript (·)T denotes the transpose, shhi
, svvi , shvi

, i = 1, 2 are the backscatter coefficient
from different polarization channels, and the subscripts h and v indicate the horizontal
polarization and vertical polarization, respectively.

The coherence matrix and polarimetric interferometric matrix are computed from

Ti =
1
2
〈kiki

H〉, i = 1, 2

Ω =
1
2
〈k1k2

H〉
(2)

where T1, T2 are the Hermitian coherence matrix, the superscript (·)H denotes the conjugate
transpose, 〈·〉 indicates the ensemble average in order to reduce bias [38], and Ω is the
polarimetric interferometric matrix.

Complex coherence can be introduced according to the unitary complex projection
vectors [30,32]

γ(w) =
wHΩw
wHTw

(3)

where T = 1
2 (T11 + T22) and γ is the interferometric coherence relating to the projection

vectors w. In real data processing, T1 and T2 are close. Adding up the two matrices is
reasonable because the assumption of polarization stability is valid in most cases [23,32].

2.2. RVoG Model

The purpose of modeling is to link the observed coherences with the physical parame-
ters. The complex coherence γg,v(w) [23] in the RVoG model is

γg,v(w) =
µ

µ + 1
ejkzz0 +

1
µ + 1

γv (4)

where the subscripts g, v mean two contributions from the ground surface and the canopy
(often referred to as volume), z0 is the ground height, µ presents the GVR, w indicates the
unitary complex projection vector relating to the polarization, j illustrates the imaginary
unit, γv denotes the pure volume coherence, and the vertical wavenumber kz. kz and
γv [23,31] are defined as follows

kz =
4π∆θ

λ sin θ
(5)
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γv(hv, ke) = ejϕg
p1

p2

ep2hv − 1
ep1hv − 1

(6)

where hv is the forest height, ke indicates the mean wave extinction coefficient, θ presents
the mean angle of incidence, ∆θ indicates the difference of θ between antennas, and the
wavelength λ. p1, p2 are defined as follows for convenience

p1 =
2ke

cos θ
, p2 = p1 + jkz (7)

According to the normalization in Equation (3), the complex coherence is located in
the unit circle of the 2-D complex plane. Equation (4) indicates that the complex coherence
is the convex combination of ground coherence ejkzz0 and volume coherence γv. Therefore,
the complex coherence is located on the line segment that links ejkzz0 and γv.

2.3. Refined Three-Stage Inversion Scheme

Figure 1 presents the basic PolInSAR flow. The observation in PolInSAR is the coher-
ence that is obtained after a series of preprocessing. The RVoG model is the bridge linking
observation and inversion. To estimate the forest height from the PolInSAR observation
and RVoG model, the inversion scheme is divided into three stages, namely coherence line
fitting according to the IEBCR method, volume coherence and ground phase estimation,
and height and extinction estimation in the ILUT method.

Figure 1. The PolInSAR flow. The figure in Part 2 depicts the geometrical interpretation of the RVoG
model in the unit circle. The orange ellipse is the locus of BCR. The green, purple, blue, and red points
are volume coherence, HV polarization coherence, HH+VV polarization coherence, and ground
coherence, respectively. The black points denote two candidates of the volume coherence with the
largest and smallest GVR, respectively. The blue dotted line linking γv and ejkzzg is the theoretical
distribution of coherence based on the RVoG model. The solid line over the blue dotted line is the
visible segment. The black triangle is the invalid intersection.

2.3.1. Coherence Line Fitting

The IEBCR method is first implemented to generate the boundary coherence. As shown
in Figure 1, in the principal direction of the BCR, the boundary points γ1, γ2 are regarded
as the coherence with the largest and smallest GVR [36,39]. Therefore, the line passing
through these two points is the optimal coherence line.

2.3.2. Volume Coherence and Ground Phase Estimation

In the complex plain, the ground coherence is one of the intersections between the
coherence line and the unit circle. The HH+VV polarization γHH+VV generally has a higher
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GVR than the HV polarization γHV [31]. Therefore, the criterion to determine the volume
coherence is as follows [31,36]

(γh, γl) =

{
(γ1, γ2), if |γ1 − γHV | < |γ1 − γHH+VV |
(γ2, γ1), otherwise.

(8)

With the volume coherence, the ground phase can be estimated from the two intersec-
tions in return

φ0 =

{
φ1, if |ejφ1 − γl | < |ejφ1 − γh|
φ2, otherwise.

(9)

where φ0 indicates the groud phase, ejφ1 , ejφ2 are the two intersections between the coherence
line and the unit circle, and | · | denotes the Euclidean distance.

2.3.3. Height and Extinction Estimation

Assuming that the estimated γh satisfies the NGVR assumption, the height and extinc-
tion can be estimated according to the 2-D LUT, which is based on Equation (6) [31]

h̃v = arg min
hv ,ke

|γh − γv(hv, ke)| (10)

where h̃v denotes the estimated height and hv, ke vary in the 2-D solution space. As shown
in Figure 1, the ILUT is applied to solve the optimization problem.

3. Methods
3.1. IEBCR

The maximum and minimum real part of γ correspond to the generalized Rayleigh
quotient problem, which can be transformed to the following eigendecomposition prob-
lems [40]

Akw = λTw

Ak =
1
2

(
Ωeiφk + ΩHe−iφk

)
φk = 2kπ/N, 1 ≤ k ≤ N/2

(11)

where Ak and T are 3× 3 Hermitian matrices, φk denotes the angle of phase rotation, and N
is the number of the boundary points. For each φk, the eigendecomposition yields two
extreme values of the real part of γ, which correspond to the maximum and minimum
eigenvalues. A pair of coherences can be estimated using the corresponding eigenvectors
according to Equation (3). The accuracy of EBCR depends on the step of the sampled angle.
As long as the phase spacing is small enough, the EBCR is accurate.

To extract the BCR, a series of eigendecompositions for each pixel in Equation (11) is a
time-consuming task. The problem can be arranged as follows

T−1 Akwk = λkwk

T−1 Ak+1wk+1 = λk+1wk+1
(12)

The relationship between eigenvectors is the key to calculating the coherence

wk+1 = f (wk, ∆φ) (13)

where the angle ∆φ is the phase spacing. Since the matrix multiplication corresponds to the
linear transformation, we can focus on the relation between Ak and Ak+1. In some particular
cases, there are some good properties on the eigendecomposition problem between a matrix
and its Hermitian part [41,42]. The difficulties of finding the analytical form arise from Ω
which does not provide the special properties. Therefore, we attempt to use the numerical
relation instead.
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Multiplying a matrix by the term ejφ corresponds to the rotation. After rotating,
the eigenvectors of matrix Ω become the eigenvectors of the matrix ejφΩ. Because the angle
∆φ is small, the change from Ω to ejφΩ is rather small. As we mentioned before, Ak is the
Hermitian part of Ω, and Ak+1 is the Hermitian part of ejφΩ. We infer that the eigenvectors
of Ak and Ak+1 are close.

Figure 2 presents the relationship between the eigenvectors. The figure illustrates that
the eigenvectors corresponding to the similar eigenvalue are close. To avoid the eigende-
compositions, we use the relation in power methods to compute the eigenvectors [43].

Figure 2. The example of the eigenvectors. U is the eigenvector matrix of T−1 Ak and V is the
eigenvector matrix of T−1 Ak+1. The eigenvectors are the columns of U and V. The arrows denote the
eigenvectors in the 3-D plot.

Assuming the matrix B ∈ Cn×n has n linearly independent eigenvectors
vi, i = 1, 2, . . . n and eigenvalues λi, i = 1, 2, . . . n

Bvi = λivi, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|

The power method starts from a vector b0, which can be a random vector or an
approximation of the dominant eigenvector of the matrix. The method can be written as
follows [43]

bk+1 = Bbk (14)

The vector bk is multiplyed by B at each iteration. These linearly independent eigen-
vectors form a basis of n-dimensional space. Therefore, b0 can be written as a linear
combination of the n eigenvectors

b0 =
n

∑
i=1

αivi (15)

Thus b1 = Bb0 =
n
∑

i=1
αiλivi. Generally

bk+1 = Bbk =
n

∑
i=1

αiλ
k
i vi = λk

1

n

∑
i=1

αi

(
λi
λ1

)k
vi (16)

For sufficiently large k, ∣∣∣∣ λi
λ1

∣∣∣∣k → 0

So, we have
bk+1 ≈ λk

1α1v1
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The eigenvalue and eigenvector can be computed from

λ1 ≈ bk+1
(1)/bk

(1), v1 ≈ bk+1 (17)

Taking the arithmetic overflow into consideration, the normalization is usually per-
formed in actural calculation. Thus, the iteration can be writen as

bk+1 =
Bbk
‖Bbk‖

(18)

The power method converges to the eigenvector corresponding to the eigenvalue with
the largest amplitude. The least eigenvalue in amplitude can be obtained by the inverse
power method.

In our problem, the eigenvalue must be real because T, Ak are Hermitian matrices.
The boundary points on the BCR correspond to the largest and smallest eigenvalues.
However, the power methods can only obtain the largest and least eigenvalues in amplitude.
As the eigenvalues are sorted differently, the eigenvectors are not always identical. Figure 3
illustrates two cases in eigenvalue sorting. In the first case, the eigendecomposition and the
power methods get the same eigenpairs. However, in Case 2, they are different. To solve
this problem, we use a theorem as follows

Figure 3. The different sorting cases of eigenvalues.

Theorem 1 ([44] ). Let p(t) be a given polynomial of degree k. If (λ, x) is an eigenvalue–eigenvector
pair of B ∈ Cn×n, then (p(λ), x) is an eigenvalue–eigenvector pair of p(B).

Therefore, a proper identity matrix can be added to change the eigenvalues while the
eigenvectors remain unchanged

B̃ = B + θ I (19)

Note that the coefficient θ is of importance. On the one hand, θ should ensure that
all the eigenvalues of B̃ are positive. On the other hand, the identity matrix should not
change the relationship between Ak and Ak+1. For example, if θ is large enough, the matrix
B̃ becomes a diagonally dominant matrix leading to the failure of the phase rotations
algorithm. The spectral radius of a square matrix is the largest absolute value of its
eigenvalues [44]

ρ(B) = max |λB| (20)

ρ(B) precisely satisfies the requirement of θ. However, computing the spectral radius is
also an eigendecomposition work. The spectral radius is the lower bound of any norm of
matrix [44], so we use the 2-norm.

After a series of transformations, the orders of eigenvalues are consistent. To keep
notation light, we rewrite the problem

B0 = T−1(Ω + ΩH)

Bk = T−1(ejφk Ω + e−jφk ΩH)

Since the eigenvectors of B and B̃ are close, the eigenvectors of Bk are set as the initial
vector of power methods in solving eigenvectors of Bk+1. The power methods can reach
high accuracy after several iterations. The IEBCR is summarized in Algorithm 1.
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Algorithm 1 IEBCR.

1: Input: The polarimetric interferometric matrix Ω, the coherence matrix T, the phase
step φ

2: Output: The boundary coherence vector γ ∈ C2n

% main precedure: %
3: Eigendecomposition of B0 = T−1(Ω + ΩH)
4: Sort the eigenvalues, λ1 > λ2 > λ3, with eigenvectors v1, v2, v3. Calculate γ1, γ2

according to Equation (3) using v1, v2.
5: Calculate the spectral norm of B0, θ = ‖B0‖2.
6: % main loop: %
7: for k = 2 : n do
8: Bk = T−1(ejkφΩ + e−jkφΩH)
9: B̃k = Bk + θ I

10: v1 = Power Method (v1,B̃k)
11: v3 = Inverse Power Method (v3,B̃k)
12: γ2k−1 = v1

HΩv1/v1
HTv1

13: γ2k = v3
HΩv3/v3

HTv3
14: k = k + 1
15: end loop

In the algorithm, the 2-norm is not calculated in each iteration. First, calculating the
2-norm in each iteration is time-consuming. More importantly, using the norm of B0 is
feasible in actual calculations.

3.2. ILUT

In the final stage of TSIA, the exhaustive search strategy to get the optimal parameters
in the defined step sizes brings high computational complexity. To explore the property of
loss function in Equation (10), we define the RVoG function as follows

f =

∣∣∣∣∣ p1

p2

ep2hv − 1
ep1hv − 1

∣∣∣∣∣
2

(21)

From the function plots in Figure 4, the function seems to have the following characteristics.

1. For a fixed ke, the function converges to a value as the tree height increases. Moreover,
the value increases with the increase of ke.

2. In the direction of hv, the function is monotonically decreasing in a specific interval.
3. In the direction of ke, the function is monotonically increasing.

Figure 4. The RVoG function with θ = π/4, kz = 0.12 m−1.

In the following text, we will attempt to prove these properties from analytic and
numerical points of view.
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3.2.1. Convergence Properties

The linear relationship between p1 and ke does not influence the characteristics of
the function. For convenience, we use p1 to represent ke in proving text. To illustrate the
convergence, we simplify f using Euler’s formula as follows

f =

∣∣∣∣ p1

p1 + jkz

∣∣∣∣2
∣∣∣∣∣ ep1hv ejkzhv − 1

ep1hv − 1

∣∣∣∣∣
2

=
p1

2

p1
2 + kz

2

(
1 + 2

ep1hv(
ep1hv − 1

)2 (1− cos(kzhv))

) (22)

The first part is independent of hv. When hv is sufficiently large, we have

= lim
hv→∞

p1
2

p1
2 + kz

2

(
1 + 2

ep1hv(
ep1hv − 1

)2 (1− cos(kzhv))

)

=
p1

2

p1
2 + kz

2

(23)

The above expression is monotonically increasing with p1. Moreover, as p1 operates
on the exponential term, the curve converges faster when p1 is larger.

We next prove that the minimum value of the function is the convergence value.
The second part of f has a concise geometric interpretation as shown in Figure 5.

According to the triangle inequality, the difference between any two sides of a triangle
must less than the length of the third side. So, the length of the orange vector is larger than
that of the green vector. So, we have∣∣∣∣∣ ep1hv+jkzhv − 1

ep1hv − 1

∣∣∣∣∣ > 1⇒ f >
p1

2

p1
2 + kz

2 (24)

Moreover,

f
(

2nπ

kz

)
=

p1
2

p1
2 + kz

2 , n = 1, 2, . . . (25)

where 2nπ
/

kz is the ambiguity height. It demonstrates that the inversion capability of
the RVoG model is [0, 2π/kz]. Therefore, we infer that the monotonic interval in the hv
direction is [0, 2π/kz]. Next, we will prove the monotoncity of f in both directions.

Figure 5. Geometric interpretation of the second part of the RVoG function. The blue vector denotes
ep1hv . After rotating a angle of kzhv, ep1hv becomes ep1hv+jkzhv denoted by the black vector. The red
vector is −1. The green vector presents ep1hv − 1. The orange vector denotes ep1hv+jkzhv − 1, which is
the vector sum of ep1hv+jkzhv and −1.
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3.2.2. Monotoncity

The partial derivative of the RVoG function with respect to hv is

∂ f
∂hv

=
p1

2ep1hv(
p1

2 + kz
2
)(

ep1hv − 1
)3

{
kz sin(kzhv)

(
ep1hv − 1

)
− p1[1− cos(kzhv)]

(
ep1hv + 1

)}
(26)

Apparently, the ambiguity heights are the stationary points that satisfy the follow-
ing equation

∂ f
∂hv

(
2nπ

kz

)
= 0, n = 1, 2, . . . (27)

It is challenging to determine whether there are other stationary points because of the
exponential and trigonometric terms. For a fixed hv, the derivative changes with p1 and kz,
and we can judge its sign according to the numerical computation. However, we can not
exhaust all hv in the range of [0, 2π/kz] to prove the monotoncity. To achieve this goal, we
carry out the following transformation

t = p1/kz, x = kzhv, 0 < x < 2π (28)

With the transformation, the derivative function has two variables left and can be
written as

∂ f
∂x
∼ t2

t2 + 1
etx

(etx − 1)3

[(
etx − 1

)
sin x− t(1− cos x)

(
etx + 1

)]
(29)

Figure 6a provides the contour map of the derivative function. The derivative function
is always negative, which means the function f is monotonically decreasing in [0, 2π/kz].

(a) (b)

Figure 6. The contour of the partial derivative of the RVoG function. ke ranges between 0 and
1 dB/m [14], and kz > 0.01 m−1, θ = π/4. (a) Direction of hv. (b) Direction of p1.

The partial derivative of the RVoG function with respect to p1 can be written as follows

∂ f
∂p1

=
p1

p1
2 + kz

2

[
2kz

2

p1
2 + kz

2 +
2(1− cos(kzhv))ep1hv(

ep1hv − 1
)2 ·

(
2kz

2

p1
2 + kz

2 − p1hv
ep1hv + 1
ep1hv − 1

)]
(30)

Similarly, in order to explain the sign of the derivative more conveniently, we apply
the following transformation

x = p1hv, t = kzhv, 0 < t < 2π (31)
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So, the derivative becomes

∂ f
∂x
∼ 2xt2

(x2 + t2)
2

[
1 +

2ex

(ex − 1)2 (1− cos t)

]
− 2(1− cos t)x2

x2 + t2
ex(ex + 1)

(ex − 1)3 (32)

Figure 6b presents the contour of the derivative. The positive derivative demonstrates
that f is monotonically increasing in the p1 direction.

3.2.3. ILUT

The RVoG function and loss function have different geometric interpretations despite
similar forms. In the 2-D complex plane, the loss function denotes the Euclidean distance
between the calculated coherence and the observed coherence. The RVoG function denotes
the Euclidean distance between the thetical coherence and the origin.

Figure 7 shows the geometrical representation and the contour of the loss function.
The black rectangles indicate the neighborhood near the optimal solution. In the complex
space, the neighborhood has a rather small distance that corresponds to the blue band areas
in the contour map. After analysis, the optimization problem does not exhibit particularly
irregular properties. Therefore, as long as the neighborhood of the optimal solution can
be found in the initial search, a new grid can be established locally to get a better solution.
Figure 7 inspires us that the iterative LUT (ILUT) can be established in the inversion process.
Specifically, a coarse grid is first established to search the neighborhood near the optimal
solution, then a series of refined grids can be established in the neighborhood for the
optimal solution. Algorithm 2 provides the details of ILUT.

Moreover, the loss function is more sensitive in the direction of hv than that of ke.
Therefore, in the contour map, blue band areas appear near the optimal solution in the
direction of ke. Thus, a fixed extinction coefficient, assuming 0.4 dB/m, can still achieve
reasonable inversion results despite the loss of accuracy. Some scholars have tried this
during the inversion process [8,37], and our analysis verifies the rationality of this approach.

(a) (b)

Figure 7. Different representation of the loss function with θ = π/4, kz = 0.12 m−1. The red asterisks
denote the location of the observed coherence which is also the optimal solution. The black rectangles
indicate the neighborhood near the optimal solution. (a) Geometrical representation of the loss
function. The area enclosed by the green line is the solution space where the coherences are calculated
by Equation (6). The blue line denotes the direction of hv. The red line presents the direction of ke.
(b) The contour of the loss function.
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Algorithm 2 ILUT.

1: Input: The candidate of volume coherence γ̃v, the range of ke: kemax, kemin, the range of
hv: hvmax, hvmin, the precision ∆ke and ∆hv.

2: Output: The inversion height h̃v, k̃e and the loss function value loss
% main precedure: %

3: The initial step ∆hvi, ∆kei, the ratio of step m
4: % main loop: LUT inversion: hbest, kebest, loss %
5: while ∆hvi > ∆hv
6: hvmin = hbest − ∆hvi, hvmax = hbest + ∆hvi
7: kemin = kbest − ∆kei, kemax = kbest + ∆kei
8: ∆hvi = ∆hvi/m
9: ∆kei = ∆kei/m

10: end loop

4. Results
4.1. Data Description

This paper uses European Space Agency (ESA) BioSAR 2008 data [45] to verify the
effectiveness of the proposed algorithms. The data were acquired by the German Aerospace
Center (DLR) E-SAR system in Northern Sweden. The test site is mainly confined within
the Krycklan River catchment (KCS). The KCS is 6790 ha in area and comprises a mosaic
of instrumented and well-studied forests, agriculture, wetlands, and lakes, all drained
and connected by a network of streams and rivers [46]. Mixed coniferous forest is the
dominating forest type, primarily between 0–35 m in height. The data contains airborne
SAR data and the LiDAR H100 data. The SAR images are Single Look Complex (SLC)
format with four polarization channels: HH, HV, VH and VV. The SAR data were acquired
in two different flight directions with various spatial baselines. First flight direction is
313◦ with a southwest radar look direction. The other flight direction is 133◦ with the
northeast radar look direction. Table 1 provides some details of the PolInSAR data. In
this paper, the researched data is 6 m baseline at L-band and 24 m baseline at P-band.
The reference height for validation is the LiDAR H100, which is defined as the mean height
of the 100 highest trees per hectare [47]. Previous works have well demonstrated that the
LiDAR H100 can provide precise measurement for forest canopy height [6,47].

Table 1. Characteristics of PolInSAR data.

Band L P

Centre Frequency 1.300 GHz 0.349 GHz
Spatial Baseline 6, 12, 18, 24, 30 m 8, 16, 24, 32, 40 m
Flight Direction 133◦ and 313◦

Easting size 9561
Northing size 9821

Easting Range 437,061–446,881 m
Northing Range 7,119,733–7,129,293 m

Geocoded Resolution 1 m × 1 m
The coordinate system is the UTM Zone 34 coordinate.

Figure 8a shows the Pauli-basis polarimetric composite image. Figure 8b provides the
LiDAR H100 forest height map. It is worth noting that the resolution of the LiDAR map
and geocoded SAR images is 10 m × 10 m, 1 m × 1 m, respectively.
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(a) (b)

Figure 8. The Pauli-basis color composite map and LiDAR H100 height map. Both maps are defined
in the UTM Zone 34 coordinate. (a) The Pauli-basis color composite map. (b) The LiDAR H100 height
map. The polygons are used in the forest height validation. The color ramp ranges from 0 to 35 m.

4.2. Evaluation Indicator

The valuation indicators used to evaluate the results are: mean error m, root mean
square error (RMSE) r, correlation coefficient ρ, and accuracy α. The indicators are defined
as follows

m =
1
K

K

∑
k=1

h̃k − hk (33)

r =

√√√√ 1
K

K

∑
k=1

(h̃k − hk)2 (34)

ρ =
Cov(h̃, h)√

Var(h̃)Var(h)
(35)

α =
1
K

K

∑
k=1

I|h̃k−hk |<σ (36)

where Cov is the covariance function and Var is the variance function. I|h̃k−hk |<σ is the
indicative function defined as flows

I|h̃k−hk |<σ =

{
1, if |h̃k − hk| < σ

0, otherwise.
(37)

4.3. Forest Height Inversion

Part 1 in Figure 1 illustrates the processing flowchart. The preprocessing includes coreg-
istration, flat-ground phase removal, geocoding, and coherence estimation. The coregistration
has been performed by DLR [45]. The flat-ground phase removal can be completed according
to the flat-ground phase files. After the flat-ground phase removal, the coregistered image
can be converted into geocoded geometry using conversion matrices, which are included in
the master products. The coherences are calculated using a boxcar filtering, with a sliding
window size of 7 × 7. The boxcar filtering can reduce the speckle noise of SAR images and
the output pixel value is an average of pixels in the sliding window.

Since the resolution of the LiDAR data is different from that of the PolInSAR forest
map, an interpolation is processed on LiDAR data to better compare the inversion results.
The bicubic interpolation [48] is performed to generate a more reasonable interpolation
result. Specifically, the output pixel value is a weighted average of pixels in the nearest
4 × 4 neighborhood. If there is no particular illustration in the following text, the LiDAR
H100 has been interpolated.
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To facilitate the further analysis of the two iterative algorithms, four sets of comparative
experiments are implemented at both bands, respectively. Concretely, the experimental
configurations are carried out, i.e., (a) TSIA + EBCR + LUT, (b) TSIA + IEBCR + ILUT,
(c) TSIA + EBCR + ILUT, and (d) TSIA + IEBCR + LUT. Note that all the configurations
follow the same processing flow shown in Figure 1. The difference between IEBCR and
EBCR is whether using the relationship between the eigenvectors of adjacent points on
the boundary. Moreover, the power methods are used to obtain the eigenvector in the
extraction of BCR, and the termination condition of the power methods is identical. At the
same time, the step size of height and extinction in the ILUT and LUT is the same.

4.4. Forest Height Validation

As shown in Figure 8b, 105 polygons over the entire test site are selected from the
original LiDAR H100 to provide validation for the estimated height. To reduce the influence
of topographic variation, each individual polygon is selected only from the homogenous
areas. For better validation, all the estimated heights were transformed from slant range
geometry to the UTM Zone 34 coordinate.

4.4.1. P-Band

Figure 9 provides the inversion height maps from P-band data. All the color ramps
range from 0 to 35 m for convenient comparisons with the LiDAR H100. The influence of
IEBCR and ILUT on the inversion accuracy can be obtained from the following comparisons.
Concretely, the difference between IEBCR and EBCR can be obtained from Figure 9a,d.
The difference between ILUT and LUT can be acquired from Figure 9a,c. The total influence
of IEBCR and ILUT can be seen from Figure 9a,b. The estimated heights of the four sets
of experiments are almost the same in terms of visual effects. It demonstrates that the
proposed iterative algorithms almost have no deterioration on the inversion results. To
further evaluate the estimated heights, the mean value of each polygon is calculated from
the LIDAR H100 and the Pol-InSAR estimated height separately. The correlation plots and
the evaluation indicators in 105 polygons are shown in Figure 10. As shown in Figure 10a,
the inversion heights from TSIA + EBCR + LUT reach the mean error of −2.08 m, the RMSE
of 4.92 m, the correlation coefficient of 0.58, and the accuracy of 61.54%. Figure 10b–d show
the similar indicators.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. The forest height inversion results of P-band in different configurations. The color ramps
ranges from 0 to 35 m. (a) TSIA + EBCR + LUT. (b) TSIA + IEBCR + ILUT. (c) TSIA + EBCR + ILUT.
(d) TSIA + IEBCR + LUT.

(a) (b)

(c) (d)

Figure 10. The correlation plots of P-band in different configurations. (a) TSIA + EBCR + LUT.
(b) TSIA + IEBCR + ILUT. (c) TSIA + EBCR + ILUT. (d) TSIA + IEBCR + LUT.

4.4.2. L-Band

Figure 11 shows the inversion height maps from L-band data and Figure 12 presents
the comparisons and the evaluation indicators in polygons. The similar inversion results
in Figure 11a–d indicates that the iterative methods are also valid at L-band. As shown
in Figure 12a, the inversion heights from TSIA + EBCR + LUT reach the mean error of
0.99 m, the RMSE of 4.22 m, the correlation coefficient of 0.73, and the accuracy of 78.10%.
Figure 12b–d show the similar indicators.
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(a) (b)

(c) (d)

Figure 11. The single baseline inversion results of L-band in different configurations. The color
ramps = [0, 35] m. (a) TSIA + EBCR + LUT. (b) TSIA + IEBCR + ILUT. (c) TSIA + EBCR + ILUT. (d) TSIA +
IEBCR + LUT.

(a) (b)

(c) (d)

Figure 12. The correlation plots of L-band in different configurations. (a) TSIA + EBCR + LUT.
(b) TSIA + IEBCR + ILUT. (c) TSIA + EBCR + ILUT. (d) TSIA + IEBCR + LUT.
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5. Discussion
5.1. Quality of Forest Height Estimation

For both bands, the indicators of the estimated height maps from different experimen-
tal configurations are quite similar. The L-band inverted heights correlated better with
LiDAR H100 than that of the P-band. As shown in Figures 10 and 12, the height estimates
at P-band suffer a more serious underestimation than L-band. The main reason may be
interpreted from the stronger penetration from P-band. First, the ground contribution in
all polarimetric channels makes the estimation of the volume-only coherence a challenge.
Although γh is regarded as the best candidate for volume-only coherence, the GVR still
cannot be neglected. Second, the strong penetration introduces more uncertainty in the
sorting of GVR at different polarization channels, which makes Equation (8) fail, resulting
in the wrong choice of γh and ground phase.

5.2. Analysis of IEBCR
5.2.1. Analysis of the Accuracy

To better evaluate the accuracy of the IEBCR, we compare the inversion results from
different experiment configurations. Specifically, we analyzed the results from TSIA +
IEBCR + ILUT and TSIA + EBCR + ILUT. Figure 13 presents their absolute difference of
estimated heights. As shown in Figure 13c, most areas show a difference smaller than 1 m
at both bands. In the valid areas, the difference is equal to 0 in 63% of the pixels at P-band
and 75% at L-band. The comparisons illustrate that the IEBCR achieves almost the same
inversion results.

(a) (b)

(c)

Figure 13. The absoulte difference of estimated height between TSIA + IEBCR + ILUT and TSIA +
EBCR + ILUT. The color ramps range from 0 to 1.2 m. (a) P-band. (b). L-band. (c). The distribution of
the absoulte difference.

5.2.2. Analysis of Efficiency

The relationship of eigenvectors between adjacent boundary points is changing with
the phase spacing. Specifically, the smaller the phase spacing, the closer the eigenvectors.



Remote Sens. 2022, 14, 2438 18 of 23

Furthermore, the closer the eigenvectors, the faster convergence. Therefore, the efficiency
should be changed with the number of points on BCR.

To evaluate the efficiency, we performed the Monte Carlo experiments in ERCR and
IEBCR methods. In the tested area, the power methods are applied to calculate the BCR
for each pixel. We set N in the range of [10, 60] with a spacing of 10. For each N, the BCR
of 1000 pixels is extracted. Figure 14 depicts the average number of iterations in ERCR
and IEBCR and the improved curve on efficiency. As shown in the figure, the number
of iterations in ERCR is almost not varied with N. However, the number of iterations in
IEBCR is decreased with the increase of N. Thus, the improved efficiency rise with the
increase of N. It is consistent with our above analysis. Taking N = 30 in practice provides
a good trade-off between accuracy and efficiency.

Figure 14. The average number of iterations in ERCR and IEBCR and the improved curve in efficiency.

5.3. Analysis of ILUT
5.3.1. Analysis of the Accuracy

To better evaluate the accuracy of the ILUT, we compare the inversion results from
different experiment configurations. Concretely, we analyzed the results from TSIA +
IEBCR + ILUT and TSIA + IEBCR + LUT. Figure 15 illustrates the absolute difference of loss
between them. The difference is less than 0.01 in more than 99% of the area at both bands.
In the numerical calculation, the difference is negligible. The main reason for the error is
the height-extinction ambiguity in the interpretation of the interferometric coherence. High
forest with a high extinction coefficient generates the same loss function as a low forest
with a lower extinction coefficient [28,29].

(a) (b)

Figure 15. Cont.
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(c)

Figure 15. The absoulte difference of loss function between TSIA + IEBCR + ILUT and TSIA + IEBCR
+ LUT. (a) P-band. (b). L-band. (c). The distribution of the absoulte error.

5.3.2. Analysis of the Efficiency

Assuming that the range of hv is (0, hvm), the range of ke is (0, kem), and the precisions
are ∆hv, ∆ke, respectively. The number of the grid points in LUT and ILUT is respectively

NLUT =
hvm

∆hv
· kem

∆ke
(38)

NILUT =
hvm

∆hv1
· kem

∆ke1
+ (q− 1) · (2m + 1)2 (39)

where ∆hv1 and ∆ke1 is the precision in the first search grid of ILUT, q represents the
total number of iterations, (2m + 1)2 is the number of the grid points in the second and
subsequent iterations.

In the inversion process, the consumed time to calculate the coherence based on the
model and to search the minima in the grid are linearly dependent on the number of grid
points. Therefore, the ratio of the computational complexity can be written approximately as

β =
NLUT
NILUT

=

hv
∆hv
· ke

∆ke
hv

∆hv1
· ke

∆ke1
+ (q− 1) · (2m + 1)2 (40)

We carry out two sets of experiments to verify the above theoretical analysis. In the
first experimental configuration, we set ∆hv = 0.01 m, ∆ke = 0.01 dB/m, ∆hv1 = 1 m,
∆ke1 = 0.1 dB/m, q = 3 and kem = 1dB/m. In the second case, we set ∆hv = 0.1 m,
∆ke = 0.01 dB/m, ∆hv1 = 1 m, ∆ke1 = 0.1 dB/m, q = 2, and kem = 1dB/m. With these
fixed parameters, the ratio of computational complexity relies on the hvm. We set hvm in the
range of 20–50 m with a spacing of 5 m. For each value of hvm, 1000 observed coherences
are calculated by Equation (6), where the height and extinction are randomly sampled in
their respective ranges. Then, we apply LUT and ILUT respectively and record the ratio of
consumed time.

Figure 16 provides the theoretical and simulated complexity ratio. Although there are
differences between them, the trends of the curves demonstrate a good correspondence.
In programming, the vectorized and parallel strategies may affect the actual ratio of
consumed time, but the theoretical analysis ensures that the ILUT significantly improves
the computational efficiency.
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(a) (b)

Figure 16. Comparison of the ratio of complexity between theoretical analysis and simulation. (a) First
experimental configuration. (b) Second experimental configuration.

5.4. Limitations of the Proposed Methods

From the results discussed above, even if IEBCR improves the efficiency by around
40% (N = 30), the efficiency still needs to be further improved in practice for large-scale
forest height estimation. The main reason is that the analytical form in Equation (13) is not
derived. The relationship of the eigenvectors is complex and needs further study.

6. Conclusions

This study set out to enhance the computational efficiency of EBCR and LUT in
the TSIA. The IEBCR and ILUT iterative methods are introduced and analyzed. Given
many eigendecompositions in the EBCR, we analyzed the relationship of eigenvectors
of the adjacent points on the BCR. The analysis manifests the eigenvectors are close in
the Euclidean space. Therefore, we proposed the IEBCR utilizing the relationship of
eigenvectors. In the final stage, we define the RVoG function and prove its monotonicity
and convergence from the analytical and numerical points of view. The proof indicates that
the loss function in the LUT does not exhibit extreme irregular properties. Therefore, we
propose the iterative LUT (ILUT) for the inversion stage.

The experiments are carried out to verify the effectiveness of the proposed algorithms
based on the BioSAR 2008 PolInSAR data at P- and L-bands. The results demonstrate that

1. The two iterative methods are effective at P- and L-bands in single-baseline forest
height inversion.

2. The iterative methods can significantly improve the computational efficiency without
compromising on the accuracy and are applicable to various algorithms for retrieval
of forest vertical structure based on the RVoG model.

Author Contributions: Conceptualization, Z.H.; methodology, Z.H.; software, Z.H.; validation, Z.H.
and X.L.; formal analysis, Z.H.; investigation, Z.H.,Y.Y., X.L. and H.C.; resources, Z.H., Y.Y., H.C. and
X.L.; data curation, Z.H. and H.C.; writing—original draft preparation, Z.H.; writing—review and
editing, Z.H. and X.L.; visualization, Z.H., Y.Y., X.L. and H.C.; supervision, Z.H., Y.Y., H.C. and X.L.;
project administration, X.L., Y.Y. and H.C.; funding acquisition, X.L. and Y.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 41801356 and in part by the LuTan-1 L-Band Spaceborne Bistatic SAR data processing
program under Grant E0H2080702.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The BioSAR 2008 campaign data is available on https://earth.esa.
int/eogateway/campaigns/biosar-2 (accessed on 18 May 2022) via FTP upon submission of a data
access request.

https://earth.esa.int/eogateway/campaigns/biosar-2
https://earth.esa.int/eogateway/campaigns/biosar-2


Remote Sens. 2022, 14, 2438 21 of 23

Acknowledgments: The authors would like to thank the European Space Agency(ESA) for providing
the BioSAR 2008 dataset (ESA EO Project Campaign ID 69499).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RVoG Random Volume over Ground
TSIA three-stage inversion algorithm
LiDAR Light Detection And Ranging
PolInSAR Polarimetric Interferometric Synthetic Aperture Radar
GVR ground-to-volume amplitude ratio
NGVR null ground-to-volume amplitude ratio
RMoG Random-Motion-over-Ground
VTD volume temporal decorrelation
BCR boundary of the coherence region
EBCR extraction of the boundary of the coherence region
IEBCR iterative extraction of the boundary of the coherence region
LUT look-up table
ILUT iterative look-up table
RMSE root mean square error
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