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Abstract: Floods threaten the sustainable development of areas with a high probability of hazard.
A typical analytic hierarchy process (pixel-based AHP) based flood hazard estimation method may
ignore the similar threat caused by neighborhood cells at the sub-watershed scale. This study pro-
posed an extended watershed-based Zonal Statistical AHP for flood hazard estimation: Constraining
converging related indicators by the sub-watersheds (WZSAHP-RC) model to improve this gap.
Before calculating the flood hazard index, the proposed model uses the sub-watershed derived by
the multiple flow direction method as a based unit to calculate the maximum zonal statistical value
of runoff converging indicators. Moreover, taking the Chaohu basin of Anhui in China as the case
study, the validation flooding ground-truthing was constructed from GF-3, and Landsat OLI images
of the flood event from 20 July to 24 July 2020, which is the biggest flood recorded by the Zhongmiao
station, which recorded a new water level, 0.82 m higher than the historical record. Compared with
the validation, the results indicated the proposed method could improve the correct ratio by 38%
(from 22% to 60%) and the fit ratio by 17% (from 18% to 35%) when considering the predicted flood
hazard levels of “High” and “Very High” as flooded areas. Moreover, the flood hazard map derived
by WZSAHP-RC demonstrated greater consistency in the flooded districts filtered by Baidu News
than the pixel-based AHP. It revealed that considering two- or even multi-dimensional homogeneity
may help to improve the accuracy of flood hazard maps on a catchment scale.

Keywords: flood; analytic hierarchy process (AHP); GF-3; Chaohu; watershed; Baidu News

1. Introduction

Flooding is a common phenomenon occurring worldwide, related to climatic condi-
tions, geography, the environment, human activities, and other factors. Flooding is a natural
event with great destructive power and a common challenge for human society [1,2]. The
underlying surface is a formation environment for floods, and it is also the leading site for
human activity. As economic development and urbanization are promoted, more surfaces
that were previously natural are being replaced by impermeable surfaces. The increase
in impervious surfaces may cause an increase in the surface runoff and a decrease in the
time between the start of a flood and the flood peak [3]. These adverse hydrological effects
may cause an increase in extreme rainstorm events in the future. Continuous excessive
rainfall will cause the water level of rivers, lakes and reservoirs to rise sharply, bringing
severe threats to flood-prone areas [4].

China is one of the countries frequently disturbed by flood and waterlogging events.
It was reported that 641 out of 654 Chinese cities were exposed to frequent floods [5].
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Taking China’s third largest catchment—the Yangtze River, as an example, the areas in the
middle and lower reaches of this estuary experience plum floods every spring. In 2020,
there were five floods whose discharge or water level reached the flood warning level for
the Yangtze River. In the flood season of July 2020, seven floods occurred across several
provinces. According to the Ministry of Emergency Management of China, as of 13 August
2020, the floods had affected 63.46 million people and caused a direct economic loss of
178.96 billion CNY [6]. Different human settlements might experience an extra loss level in
the same hazard [7]. The combination of climate change and increasing urbanization brings
tremendous challenges to planning and managing cities for sustainability [4]. Meanwhile,
the feedback loop of flood protection and awareness in communities affects their planning
and development in the long term [8]. To mitigate urban floods, accurate flood hazard
estimation corresponding to patterns of urbanization is a policy objective.

Flood hazard distribution is the dominant factor in flood risk estimation. Compared
with the aim of flood risk mapping to identify the exposures of communities and socio-
economic places in extreme rainfall events, flood hazard maps focus on the flooded area dis-
tribution determined by natural features, such as flow converging, geological permeation,
and under-lying surface storage space. AHP is a typical multi-objective-decision-making
method widely used in flood hazard estimation. Models, such as analytic hierarchy process
(AHP) [9], Bayesian models [10], fuzzy comprehensive evaluation [11,12], and hybrid mod-
els between bivariate statistical [13], artificial neural networks and boosting algorithms [14]
have been deployed in flood hazard estimation. Bayesian models need measurements and
statistical data from historical flood events. Fuzzy methods and swarm intelligence can
be supervised classifications, but need samples from historical flood events. Flood hazard
estimation via the AHP method does not rely directly on historical records, and it has the
advantage of being easy to use and accurate.

The essential flood hazard estimation via AHP describes the individual heterogeneity
features of under-lying surface areas [15,16]. As the geology information system (GIS)
develops, flood hazard estimation can detail flood hazards involving pixel-scale indicators.
For example, Abdouli et al. [17] adopted AHP to map the flooding potential on the Arabian
Gulf coast using data that include land use, soil type and antecedent moisture. Wu et al. [18]
estimated flood vulnerability via AHP using rainfall intensity and duration, elevation,
slope, land use, and population density. However, these pixel-based AHP are difficult,
considering terrain connectivity thus leading to the possibility of ignoring flood hazard
consistency caused by neighborhood pixels.

A watershed is a natural terrain edge of water converging through the terrain. Sub-
watershed reflects a group of pixels with common flow paths to combine rainwater to the
same outlet (e.g., rivers, lakes, and wetlands). As in the hydrology and hydrodynamic
model, a sub-watershed was usually considered a basic unit, such as SWAT, SWMM, etc.
However, these models always rely on detailed input parameters (e.g., rainfall, evapora-
tion, topography, soil, river, and drainage information), are computationally demanding,
often simulate the specific rainfall-flood process, and are widely used in flood forecasting.
For flood hazard estimation, especially in data-scarce or large-scale areas, the detailed
parameters of the hydrology/hydrodynamic model desired cannot be satisfied.

During a flood event, the continuous rainwater converging along the flow path can be
considered source flooding, bringing similar threats to pixels at sub-watershed scales [3].
The flood hazard of cells is more dependent on the maximum risk level of neighborhood
cells on a sub-watershed scale rather than the individual terrain features or hydrological
characteristics of each cell [19]. Therefore, using sub-watershed as a basic unit to estimate
flood hazards may consider the hydrological influence introduced by adjacent pixels. Thus,
it may increase the estimation accuracy of the flood hazard map.

This study aims to present a new flood hazard estimation method of using the sub-
watershed as a constrain unit to express the homogeneity of flood hazards introduced
by a group of converging pixels. The proposed model, termed WZSAHP-RC, adopts
multiple flow directions (MFD) derived sub-watershed [20] as a basic unit to constrain



Remote Sens. 2022, 14, 2465 3 of 34

runoff, converging related indicators by the maximum zonal statistical method, while other
hydrological-formation indicators are also calculated by pixels. Taking the Chaohu basin
of Anhui, China, as an example, the flood hazard maps derived from the proposed model
were validated by the flooded areas extracted from remote sensing images captured during
a real-world flood event in July 2020. Furthermore, the influences of using single flow
direction and multiple flow direction algorithms to delimitate a sub-watershed and the
adopting minimum area threshold for a sub-watershed were also discussed.

This paper is organized as follows: In Section 2, the primary data sources and the
methodology will be described. Subsequently, the results and the significant findings are
presented in Section 3. Then, the influence of sub-watershed delimitation methods and
function constraining factors of the proposed model will be discussed in Section 4. At last,
some conclusions and the limitations of this study are provided in Section 5.

2. Materials and Methods
2.1. Study Area

The Chaohu basin is in the range of Anhui province, China. It is located at the inter-
section of the Yangtze River catchment and Huaihe River catchment, draining rainwater
from the upstream Huaihe River to Chaohu and finally flowing into the Yangtze River.
This study selected 11 counties surrounding Chaohu Lake to analyze the flood hazard
distribution (Figure 1). These chosen districts implemented a 10-km buffer analysis to
avoid the many small-scale sub-watersheds occurring at the edge of specific areas. The
boundary was considered the range of the study area.
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Figure 1. The geographical location of the study area and the DEM of the study area (according to
the China basic geographic information, 2008 version).

The terrain surrounding the Chaohu basin is characterized as a “butterfly” pattern,
which leads to most areas along with the water system of the Chaohu basin having a high
possibility of flooding every flood period. The terrain of the Chaohu basin contains five
major terrain types: low mountains, hilly land, hill land, plains (lakeside and wavy plains)
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and water areas. The elevation in the northwest and southeast is higher than in other
areas of the study area; the middle region has a relatively lower elevation than other areas.
Lujiang city and Wuwei city are at relatively lower elevations. Therefore, they are exposed
to a high risk of flooding. Improving the accuracy of flood hazard estimation in the Chaohu
basin will support future flood risk management and thus help protect the local economy.

2.2. Materials

Primary data sources and their detailed information are presented in Table 1. The
geographic information system (GIS) vector map of specific and hydrological information
was used in this study. The digital elevation model (DEM) data were used to divide
sub-watersheds and calculate slopes. The impermeable surface products were used to
extract land-used type and hydrological infiltration information. The images include the
SAR (synthetic aperture radar) image of the GF-3 and the optical image of the Landsat 8
OLI image. The GF-3 captured on 24 July 2020, was used to extract flooded areas. The
Landsat 8 OLI image shot on 20 July 2020, was used to extract former flood areas. Moreover,
the flooding information searched in Baidu News was used to construct the validation of
flooded towns and villages. The final used tiles of impervious surface production and the
validation dataset were described as in Appendix A.

Table 1. The main data materials used in this study.

Data Sources Used Data Detailed Information

Geographic information
(1:1 million)

District The county and town level districts were used. Hydrological layers
were utilized to constrain DEM. They were downloaded from the

China Science and Technology resources sharing network, Available
online: http://www.geodata.cn/data/datadetails.html?dataguid=

113730965998632 (accessed on 20 July 2020).
River and lake

ASTER GDEM V2 (30 m) DEM
The DEM divides watersheds and classifies the slope and elevation

indicators. The DEM was downloaded from Available online:
http://www.gscloud.cn (accessed on 20 July 2020).

China’s impermeable surface
product (2 m)

Land-use type
Following [21], the water, vegetation, soil, building and road layers
were used to classify land use and hydrological indicators. China’s

impermeable surface production (2 m) dataset is not published on the
website. In this study, the involving land use type vector collected

from this product can be downloaded according to the detailed
description in the Supplementary Material section.

Hydrological characteristics

Images for extracting
flooding areas Water bodies

The Landsat 8 OLI on 20 July 2020 and GF-3 on 24 July 2020 were
used to extract flooding areas. The Landsat 8 OLI was downloaded
from Available online: https://www.usgs.gov (accessed on 20 July

2020). The GaoFen center of Hubei province supports the GF-3 data,
and it also can download from the China Science and Technology

resources sharing network: Available online:
http://39.106.90.21/datashare/newsatelliteset2.html (accessed on 20

July 2020).

Flooding information in
Baidu News Flooding and dam breaks by towns Baidu News, as a validation source, was searched from Available

online: http://news.baidu.com (accessed on 20 July 2020).

1. GIS Vector maps—Geographic information. This study used the vectorized county and
town boundaries released in 2008. The administrative districts served as geographic
constraints to filter Baidu News flood reports. The hydrological layers, including
rivers, streams, and lakes (levels 1 to 5), were compared with water bodies classified
from images.

2. DEM—ASTER GDEM V2 dataset. The DEM dataset adopted is ASTER GDEM V2. This
study area covers a total of nine scenes. The horizon resolution of the DEM dataset is
30 m, and the vertical resolution is 1 m. The projection is WGS_1984_UTM_Zone_50N.
As shown in Figure 1, the range of elevation was −204~1807 m, and they were the
original value of DEM in the study area.

http://www.geodata.cn/data/datadetails.html?dataguid=113730965998632
http://www.geodata.cn/data/datadetails.html?dataguid=113730965998632
http://www.gscloud.cn
https://www.usgs.gov
http://39.106.90.21/datashare/newsatelliteset2.html
http://news.baidu.com
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3. GRID of Remote sensing production—Land information. This study adopted China’s
impermeable surface grid product (2 m) [21]. The 18 tiles for Hefei, Luan, Anqing,
Wuhu, Maanshan, Chuzhou, and Huainan cities were used to prepare the land use
and hydrological indicators.

4. Images—Extracting flooded area. As remote sensing develops, more and more im-
ages of multiple spatial resolutions, considerable time, multiple angles, and multiple
carrying platforms can be used for urban underlying surface observation [22]. The
flooded areas extracted from remote sensing images can construct the flood hazard
ground-truthing dataset. This study collected the used optical image of Landsat 8 OLI
of 30 m resolution shot on 20 July 2020, and the SAR of GF-3 Fine Stripmap II (FSII)
model of 10 m resolution shot on 24 July 2020. The pre-processing of Landsat 8 OLI
was performed in ENVI 5.3, and included radiometric calibration, and atmosphere
correction; the water bodies were extracted by the maximum likelihood method.
The pre-processing of the GF-3 SAR image was implemented in PolSAR Pro 5.2 and
GAMMA and included speckle filtering, radiometric calibration, terrain correction
and geocoding. The water bodies in GF-3 were classified basing the threshold segmen-
tation method corresponding to the water bodies in Landsat 8 OLI. The validation
experiments were constructed to establish the intersecting area’s ground truth range
considering the temporal differences between these two images. The permanent water
bodies extracted from China’s impermeable surface product were excluded from the
final validation ground truth of the flood areas.

5. Baidu News—Filtering flood and dike rupture information. The damage information
from floods and dikes of flood events in July 2020 was used to verify the accuracy of the
flood hazard estimation in the Chaohu basin. We used an internet context searching
and capturing tool named “Octopus” (Available online: https://www.bazhuayu.com
(accessed on 20 July 2020)) to collect information from the Baidu News website
(Available online: https://news.baidu.com (accessed on 20 July 2020)). The keywords
were used to filter Baidu News, including “flood” and “waterlogging”, combined
with the names of the county in the range of the study area.

2.3. Methods

The technical workflow used in this study is illustrated in Figure 2. After the primary
data sources were pre-processed, the flood hazard criteria were constructed. Moreover, the
flood hazard involving indicators grouped by the rainfall-runoff production and the flow
converging related indicators were prepared. According to the proposed WZSAHP-RC
model, the maximum zonal statistical method will constrain the converging associated
indicators. Then, the pixel-based AHP flood hazard index and the sub-watershed-based
WZSAHP-RC flood hazard index will be calculated. Then, the two kinds of flood hazard
maps will be classified as five levels according to the Nature Break slice method in terms of
flood hazard indexes. Finally, the validation process will be implemented.

https://www.bazhuayu.com
https://news.baidu.com


Remote Sens. 2022, 14, 2465 6 of 34
Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 35 
 

 

Rating flood hazard estimation 

involving indicators

The maximum type of zonal statistical 

method constrained indicators

Slope Elevation
Distance 

to Streams 
Land Use 

Type

Hydro-lithological 

Formation

Constructing flood hazard estimation criteria Delaminating sub-watersheds

 Calculating flood hazard index (AHP)
Calculating flood hazard index  

(WSZAHP-RC)

Flood hazard mapping (AHP) Flood hazard mapping (WSZAHP-RC)

Converge indicatorsRunoff  Production indicators

R_Slope R_Elevation
R_Distance 

to Streams 

Converge indicators

Rating flood hazard estimation 

involving indicators

Constraining sub-watershed to 

Converge indicators

Geographic 

information

ASTER GDEM 

V2

The main data sources

China s impervious 

surface product

Images for extracting 

flooding areas

Pre-processing (transforming, projecting, mosaicking and clipping)

Flooding information 

in Baidu News

Validating by flood areas extracted from remote sensing images and flooded distinct filtered by Baidu News

 

Figure 2. The overall workflow of our study. 

The primary data sources and the pre-processing processes were described in Section 

2.2. The proposed watershed-based zonal statistic AHP model will be introduced in Sec-

tion 2.3. Moreover, to further detail the multiple flow direction algorithm and the single 

flow direction algorithm influence, the sub-watershed division method based on the D8 

and MFD algorithms will be introduced in Section 2.4. Finally, the flood hazard validating 

approach will be supplied in Section 2.5. 

2.3.1. Flood Risk Estimating Method 

A sub-watershed is a physical range, and it indicates rainwater converging along a 

section of a digital stream flowing out through the same outlet. The sub-watershed pixels 

reflect the same runoff outlet along the common converging path. Moreover, the pixels in 

a sub-watershed can be considered to share the same storage of surface runoff rainwater 

at the sub-watershed scale. Therefore, in this study, the sub-watershed was adopted as a 

basic unit to constrain runoff converging related indicators by the maximum zonal statis-

tical method to consider that the spatial connectivity brought similar flood hazards at the 

sub-watershed scale. The structure of traditional AHP (Figure 3a) and the flood hazard 

estimation process among pixel-based AHP (Figure 3b) and the proposed WZSAHP-RC 

(Figure 3c) are shown in Figure 3. 

Figure 2. The overall workflow of our study.

The primary data sources and the pre-processing processes were described in Section 2.2.
The proposed watershed-based zonal statistic AHP model will be introduced in Section 2.3.
Moreover, to further detail the multiple flow direction algorithm and the single flow
direction algorithm influence, the sub-watershed division method based on the D8 and
MFD algorithms will be introduced in Section 2.4. Finally, the flood hazard validating
approach will be supplied in Section 2.5.

2.3.1. Flood Risk Estimating Method

A sub-watershed is a physical range, and it indicates rainwater converging along
a section of a digital stream flowing out through the same outlet. The sub-watershed
pixels reflect the same runoff outlet along the common converging path. Moreover, the
pixels in a sub-watershed can be considered to share the same storage of surface runoff
rainwater at the sub-watershed scale. Therefore, in this study, the sub-watershed was
adopted as a basic unit to constrain runoff converging related indicators by the maximum
zonal statistical method to consider that the spatial connectivity brought similar flood
hazards at the sub-watershed scale. The structure of traditional AHP (Figure 3a) and the
flood hazard estimation process among pixel-based AHP (Figure 3b) and the proposed
WZSAHP-RC (Figure 3c) are shown in Figure 3.
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Figure 3a shows the structure diagram of the AHP method, its estimation target is
recorded as “object”, and its criteria are C = {C1, C2, . . . , Cx}, and the criterion can be
constructed in multiple layers as needed. The estimating index can determine its final
alternative set A = {a1, a2, . . .}. The AHP model is widely used in flood hazard estimation
to integrate a Geographic Information System (GIS) and remote sensing. AHP is composed
of three levels: target, criteria, and alternatives. The target layer refers to the evaluation
unit; the criteria (with single or multiple layers) consist of several clusters that reflect
different aspects of the target; the alternative is composed of the estimation results set. The
AHP-based flood hazard estimation model can be defined as follows:

P =


p11 p12 . . . p1n
p21 p22 . . . p2n
. . . . . . . . . . . .
pm1 pm2 . . . pmn

, C =


C1
C2
. . .
Cx

, Cx =


c11 c12 . . . c1n
c21 c22 . . . c2n
. . . . . . . . . . . .
cm1 cm2 . . . cmn


x

(1)
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where matrix P represents the pixels in the study area, with a size of m× n, C is the flood
hazard estimation indicators, and each of the indicators cx is a raster layer, with a size of
m× n.

A comparative matrix of criteria and calculated weights is constructed. According
to the AHP model, the positive pairwise comparison matrix usage value 1 to 9 indicates
the relative importance of the two indices. Its largest eigenvalue and corresponding
eigenvectors can be used as weight vectors to represent the established hierarchic evaluation
structure [23]. The hierarchic evaluation structure can be calculated as follows:

J =


j11 j12 . . . j1x
j21 j22 . . . j2x
. . . . . . . . . . . .
jx1 jx2 . . . jxx


x×x

, J•X = λmax•X → ωi =
xi

∑x
j=1 xj

, ω =


ω1
ω2
. . .
ωx

 (2)

where the comparison matrix J, with a size of x× x, is used to determine the importance
order among criteria C (in Equation (1)). X is the eigenvector corresponding to the largest
eigenvalue λmax of J, ω is the weight vector corresponding to the normalization value of
the eigenvector X.

The consistency ratio was calculated in Equation (3) to calculate the judgment matrix
criteria as logically consistent [23]. The pairwise comparison matrix can be accepted if its
consistency ratio is less than 0.1 (a consistency ratio of 0 indicates that the judgment matrix
is entirely consistent).

CI = λmax − n/n− 1, CR =
CI
RI

(3)

where CR is the consistency ratio, CI is the consistency index, RI is a statistic random index,
the average CI of randomly generated pairwise comparison matrix of similar size, λmax is
the largest eigenvalue of the comparison matrix, and n is the number of indicators used
in criteria.

Figure 3b shows that the common AHP model adopts the pixel as a basic unit. The
final estimation index can be calculated by accumulating the pairwise cumulative indices
and weights.

Figure 3c is a diagram of the proposed WZSAHP-RC model. The constrain runoff
converging related indices, such as Slope, Elevation, and Distance from streams, can
constrain sub-watersheds and thus help identify neighborhood hazards using the following
formulas:

S =


. . .

Sk Sk
Sk

. . .


m×n

(4)

F(S, cx) = zonalStatistic(S, cx, Method) (5)

where S is the sub-watershed division raster, F(S, cx) is the constraint sub-watershed as
a statistical zonal unit, to update the corresponding indicator cx. The size of F(S, cx) is
also m× n; zonalStatistic is calculated using the descriptive statistics of indicator cx for
each sub-watershed S, Method is the statistical method including the majority, maximum
and median.

The final flood hazard index is calculated using the pairwise cumulative criteria and
weights following Equation (6). As the Natural Break method can maintain slight variance
within groups and significant variance among indexes, it is widely used to partition the
final flood hazard map [15,16,24–26]. Therefore, the final flood hazard map can be derived
by classifying the flood hazard index into {“very low”, “low”, “moderate”, “high”, and
“very high”} by the Nature Break method.

FRI = ω•C = ∑i=m
i=1 ωi•F(S, ci) + ∑j=x

j=m+1 ω
j
•cj, (0 ≤ m ≤ x) (6)
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where FRI is the flood hazard index, calculated by the cumulative sum of criteria C and
its corresponding weight ω. The criteria can be grouped as the sub-watershed constraint
indices F(S, ci) and the original indices cj.

2.3.2. Constructing Flood Hazard Estimation Criteria

This study adopted five indices C = {C1, C2, C3, C4, C5}, where C1 = Slope, C2 = Elevation,
C3 = Distance from streams, C4 = Hydro-lithological formations, C5 = Land use type, referring
to [25] to construct flood hazard estimation criteria. The former three indicators, the “Slope”,
“Elevation”, and “Streams”, affect the path of rainwater runoff convergence. They reflect the
geological flood hazard factors. The “Hydro-lithological formations” and the “Land-use type”
affect infiltrability and the roughness of the underlying surface. Thus, the “Hydro-lithological
formations” and the “Land-use type” are grouped as runoff production indicators. As in
AHP-based flood risk estimation, the weighting definition would influence the accuracy
of the final flood hazard distribution. Ekmekcioğlu and Koc et al. [11,12,27] adopted the
fuzzy-AHP to increase the reasonable weighting definition. The comparison matrix defined,
referred to [25], as shown in Table 2.

Table 2. The judgment matrix of criteria. C1 = Slope, C2 = Elevation, C3 = Distance from streams,
C4 = Hydro-lithological formations, C5 = Land use type.

Flood Hazard Potential C1 C2 C3 C4 C5

C1 1 4 1/2 3 1/2
C2 1/4 1 1/3 1/2 1/4
C3 2 3 1 3 1
C4 1/3 2 1/3 1 1/3
C5 2 4 1 3 1

In the judgment matrix, the maximum eigenvalue is λmax = 5.133. As the criteria
number is 5, the obtain random index value is as RI = 1.12 from a lookup table. Thus, the
consistency index of the judgment matrix is: CI = λmax−n

n−1 = 5.133−5
4 = 0.03325. Therefore,

the final consistency ratio can be calculated as CR = CI
RI = 0.03325

1.12 ≈ 0.030. Since the value
CR is less than 0.1, the judgment matrix used to derive the weight matrix can be accepted.
The process of weighting criteria is calculated as:

C =


C1
C2
C3
C4
C5

 =


FRSlope

FRElevation
FRDistance_ f rom_streams

FRHydro_lithological_ f ormations
FRLand_use_type

, A =


1 4 1/2 3 1/2

1/4 1 1/3 1/2 1/4

2 3 1 3 1
1/3 2 1/3 1 1/3

2 4 1 3 1

 (7)

λmax = 5.133, ω =
[

0.214 0.068 0.302 0.100 0.315
]

where C is the matrix of used flood hazard estimation criteria. The corresponding indicators are:{
FRSlope, FRElevation, FRDistance_ f rom_streams, FRHydro_lithological_ f ormations, FRLand_use_type

}τ
,

FRI is the flood risk index, A is the judgment matrix comparing between two indica-
tors, and the weight vector ω is calculated according to Equation (2).

As in the WZSAHP-RC model, the descriptive statistics were calculated based on
the value of runoff converging indices, including “Slope”, “Elevation”, and “Distance from
streams”. Moreover, the flood hazard index can be expressed as:

FRI = ω1•F(S, C1)+ω2•F(S, C2) + ω3•F(S, C3) + ω4•C4 + ω5•C5 (8)

where FRI is the flood risk index, ω is weight, C is the criteria as defined according to
Equation (7), F(S, Ci) is the criterion Ci calculated using the descriptive statistics values of
the sub-watershed S, according to Equation (5).
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2.3.3. Rating Flood Hazard Estimation Involving Indicators

The original flood hazard estimation involving indicators needs to be rated uniformly.
The values of “Slope” and “Elevation” are numeric, with a natural pattern distribution.
Therefore, the natural break method reclassified these two indicators into uniform classes.
The value of “Land-use type” and “Hydro-lithological formation” are category words. They
were ranked according to the infiltration and rainfall-runoff production ability correspond-
ing with levels of 1–5. The “Distance from streams” adopted specific ranges of Euclidean
distance from streams to represent flood hazard levels. The ranked flood hazard estimation
indicators are listed in Table 3.

Table 3. The classes and rating of factors in flood hazard estimation.

Factors Classes Rating Factors Classes Rating

Slope (◦)

0 5

Land use
types

Water 5
0–2 4 Road 4
2–6 3 Building 3
6–12 2 Soil 2

12–20 1 Vegetation 1
>20 0

Elevation (m)

−204–12 5
Hydro

lithological
formations

Water 4
12–23 4 Impermeable surface 3
23–46 3 Pervious surface 1
46–152 2
>152 1

Factors Classes Rating

Distance from
streams (m)

Rivers, lakes and reservoirs 5

Level 1 Level 2 Level 3 Level 4 Level 5

0–1000 4
0–500 0–1000 1000–2000 3

0–500 500–1000 1000–2000 2000–4000 2
0–500 500–1000 1000–1500 2000–3000 4000–6000 1
>500 >1000 >1500 >3000 >6000 0

1. Slope. The slope is the main factor influencing the rainwater flow path. The slope
range is 0◦–81◦, classified as six classes by the Natural Break method, the angles (◦)
of “0”, “0–2”, “2–6”, “6–12”, “12–20”, and “>20” were labeled as 5, 4, 3, 2, 1 and 0,
respectively.

2. Elevation. The elevation influences flood risk distribution. It seems that cells with low
elevation are highly likely to suffer flood hazards. The elevation range is−204–1490 m,
they were classified into five types by the Natural Break method, the elevations (m) of
“−204–12”, “12–23”, “23–46”, “46–152”, and “>152” were labeled as 5, 4, 3, 2 and 1,
respectively.

3. Distance from streams. Streams are the source of flood risks. The distance from
streams reveals the potential risk. In this study, the streams were extracted using the
D8 algorithm, and the stream levels were labeled by the STRAHLER method. For
specific streams, far away cells had lower flood risks than nearby cells. According to
Table 3, six types of distance from streams were defined, including the water bodies
ranked into five classes, and the distance from streams of levels 1–5 were classified as
0–4.

4. Land use types. The land-use types determine the rainfall-runoff production. The
ranked vegetation, soil, building, road and water were 1, 2, 3, 4 and 5, respectively.

5. Hydro-lithological formations. The hydro-lithological formations influence the infil-
tration performed by rainfall-runoff production. Hydro-lithological formations were
grouped by water, impervious surface, and permeable surface, and they were rated as
4, 3, and 1, respectively.
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2.4. Watershed Delaminating
2.4.1. Pre-Processing DEM for Watershed Division

A DEM was the primary data used to derive the watersheds but needed to be enriched
with hydrological information before delaminating the sub-watersheds. Kenny et al. [28]
found that integrating hydrological streams with a DEM can improve the accuracy of
extracting digital drainage. Zhang et al. [29] pointed out that delimiting a watershed and
constraining a DEM by water bodies can reduce the uncertainty created when calculating
water flow direction. Thus, hydrological features, including streams, rivers, and lakes, were
used to update the elevation in a corresponding cell of a DEM.

Hydrological features can be recognized by their shapes. Constructed water bodies,
such as rice paddies and ponds always have regular symmetrical shapes. Naturally occur-
ring hydrological elements, such as lakes and even artificial elements, such as reservoirs,
always extend along a terrain. The bodies of these hydrological elements are irregular
and with long perimeters. Other hydrological features, such as streams, rivers and ditches
always have long flow paths, so their shapes appear as long and narrow rectangles. There-
fore, the defined natural water body index termed Steady Water Index (SWI) is expressed
as Equation (9) to identify hydrological features. For example, since their shapes are like
long and narrow rectangles, and river and stream elements, when the value SWI is 200,
the ratio of the longer edge and the shorter edge is approximately 10,000. This ratio can
represent most rivers and streams.

SWI =
Shape_Length√

Shape_Area
(9)

where SWI is the steady water index. The Shape_Length and Shape_Area are the perimeter
and area of the water bodies, respectively. Referring to the study area, it suggests the value
of SWI should be set as between 6 to 200. At the same time, the water area threshold is also
used to identify hydrological features. As the minimum area of lakes in the study area is
about 70,000 m2, the water polygons with a spatial coverage larger than 78 cells (as pixel
resolution is 30 m, this is about 70,200 m2) were regarded as natural water elements.

2.4.2. Delaminating Sub-Watershed by D8 Algorithm

The D8 algorithm is a typical single flow direction (SFD) method in the watershed
division. It is termed via its theory of using the maximum drop of elevation from the
neighborhood of eight pixels to obtain the candidate flow outlet of central pixels. Then,
the flow accumulation can be determined through the single flow path. Moreover, the
sub-watershed was divided by the minimum area threshold according to the accumulation
value of flowing pixels.

The hydrology tool in ArcGIS 10.3 is based on the D8 algorithm and was used to
segment sub-watersheds in this study. The area threshold of the sub-watershed is a vital
parameter in defining watershed schemes. According to Baidu News, the threshold was
determined according to the area of flooded parcels. The threshold of 200 hectares (ha)
was marked according to the report from the network of China Radio [30], “The Wuwei
county released flood water to village parcels with the area of smaller than 30,000 mu
(~200 hectares) along dikes”. The threshold of 667 ha came from Xinhua news [31], “Hefei
city flooded nine village parcels with the area of larger than 100,000 mu (~667 hectares)
along dikes”. There were six area thresholds defined in the sub-watershed division, as
shown in Table 4:

As shown in Table 4, four kinds of area thresholds were defined according to the area
threshold of 667. Two types of area thresholds were determined according to 200.
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Table 4. Area threshold used in delimitation watersheds via D8 algorithm.

Basic Area Unit (1) (2) (3) (4) (5) (6)

667
ha 66.7 667.0 3333.0 6667.0
mu ~10,000 ~100,000 ~500,000 ~1,000,000

200
ha 200.0 2000.0
mu ~30,000 ~300,000

2.4.3. Delaminating Sub-Watershed by MFD Algorithm

The multiple flow direction (MFD) algorithm was also used to divide sub-watersheds.
Thus, the influence of flood hazard estimation introduced by sub-watershed division
derived by SFD and MFD can be compared.

MFD determines the flow direction according to elevation drops between a target cell
and adjacent cells. If there are several alternative outflow directions, MFD will choose them
as the outlets and distribute the flow accumulation by calculating the average water value
of the central cell. The MFD algorithm may reduce the randomness when setting the flow
direction as one of the potential outlets in flat areas. The MFD algorithm calculates flow
direction as Equation (10) and derives sub-watershed by tracing the flow-in cells.

Dir f low+ =

{
2i, i f (Z0 − Zi) > 0
0, i f (Z0 − Zi) ≤ 0

, (0 ≤ i ≤ 8) (10)

where Dir f low is the flow direction of the current cell, it records the potential flow directions
in a continuous value between 1–255 by accumulating the potential flow directions; i is
the index of the eight adjacent cells, starting from the east, southeast, west, and so on, in a
clockwise order; Z0 is the elevation of the central cell; Zi is the elevation of the adjacent cells.

The MFD algorithm traces the connected flat cells and sets them as the seed of a new sub-
watershed. Searching the seeds from the sink areas, all the pixels flowing into the seed cells
will be defined as belonging to the same sub-watershed. The scope of a certain sub-watershed
will grow until the size is larger than the area threshold, and then the cells will be recorded
as a new sub-watershed. Thus, the algorithm can keep the connected flat cells in the same
sub-watershed, while the area threshold will determine the sub-watershed of the in-flowing
neighborhood cells. The MFD algorithm was programmed by C#, and the sub-watershed
delimitation result by the MFD algorithm is submitted as in Supplementary Materials.

2.5. Flood Risk Validating Method

In this study, the accuracy of flood hazard estimation results derived from the proposed
model was quantitatively evaluated by flooded areas extracted from the GF-3 and Landsat
8 OLI images. The flood hazard estimation is always a five classify issue. Each pixel in the
study area is ranked as one of the elements in the level set {“very low“, “low”, “moderate”,
“high“, and “very high”}. Then, the five flood hazard levels were classified into two groups:
the positive and the negative groups. Moreover, for each pixel where its flood hazard
belongs to the positive group; it will be considered as a predicted flooded pixel. Otherwise,
it is regarded as a predicted dry pixel. Following the former literature [32,33], the correct
and fit ratios were used to assess flood hazard estimation accuracy. The correct ratio and fit
ratio are calculated as follows:

Correct(%) =
FPp ∩ FWFlood

FWFlood
× 100 (11)

Fit(%) =
FPp ∩ FWFlood

FPp ∪ FWFlood
× 100 (12)

where Correct(%) is the correct ratio, and Fit(%) is the fit ratio. FPP represents the pixels
considered as predicted flood areas. FWFlood represents the ground-truthing flood areas
extracted from GF-3 and Landsat 8 OLI images.
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The definition of flood hazard positive and negative groups is a critical process for
constructing a validation dataset. From the view of classification, this definition means
determining the classification threshold. This study defined two kinds of positive group
and negative group, as follows:

â Validation 1: {positive group: “very high”, “high”, “moderate”;
negative group: “very low”, “low”};

â Validation 2: {positive group: “very high”, “high”;
negative group: “very low”, “low”, “moderate”}.

To further distinguish the flood hazard estimation result from the better-matched
validation group, the F1-score is additionally used as an indicator. The F1-score is used to
distinguish the combined accuracy among the used methods. The F1-score is a comprehen-
sive indicator in binary segmentation problems. More excellent classification usually has
a higher value of F1-score in binary segmentation problems. Moreover, the value of the
F1-score is expected to be 0.6~0.8 or higher. It can be calculated according to Equation (13):

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2× P× R

P + R
(13)

where F1 is the F1-score, P is the precision rate, R is the recall rate, TP is the cells with
truthing status predicted as positive in the validation dataset, FP is the cells with false
status expected as positive in the validation dataset, and FN is the cells with false status
predicted as negative in the validation dataset.

The flood hazard estimation is a five-type classification issue. Its comparison matrix
was constructed following Table 5. As in large-scale flood hazard estimation, the ratio of
predicted flood area is always small compared with the range of study area. Moreover, in
this study, the proposed method considered the flood hazard level of all the water areas
(the normal range of transport and storage water, such as rivers, lakes and so on) was “very
high”. In order to focus on the estimation of the consistency of predicted flood hazard
pixels with the ground-truthing flood areas, the validation ground-truthing dataset was
constructed by excluding the pixels of normal water body range in rivers, lakes, ponds,
and reservoirs. The excluded water bodies were identified according to Equation (9).

Table 5. The classes and rating of factors in flood hazard estimation.

Validation 1 Validation 2

Positive Group: “Very
High”, “High”, “Moderate”

Negative Group: “Very
Low”, “Low”

Positive Group: “Very
High”, “High”

Negative Group: “Very
Low”, “Low”, “Moderate”

flooded area TP FN TP FN
dry area FP TN FP TN

normal water / / / /

“TP” represents a predicted right result, the predict “Positive” matched the ground-truthing, “FN” represents a
predicted wrong result, the predict “Negative” does not match the ground-truthing, “FP” represents a predicted
wrong result, the predict “Positive” does not match the ground-truthing, “TN” represents predicted right result,
the predict “Negative” matches the ground-truthing.

It is known that the precision, recall, and F1-score indicators in Equation (13) were
widely used in the estimation binary segmentation classifier. Moreover, the correct ratio
(shown in Equation (11)) and the fit ratio (shown in Equation (12)) were widely used
indicators reflecting the flood hazard estimation accuracy. It can be found that both correct
ratio and fit ratio focus on the estimation of the consistency of predicted flood areas with the
ground-truthing flood pixels. Moreover, the correct ratio is the same as the recall indicator
(the R in Equation (13)):

Correct(%) =
FPp ∩ FWFlood

FWFlood
× 100 =

TP
TP + FN

(14)
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As in flood estimation, precision is important, but the value of recall is more im-
portant. Moreover, the fit ratio can be expressed as Equation (15), which can reflect the
overestimation of predicting flood pixels.

Fit(%) =
FPp ∩ FWFlood

FPp ∪ FWFlood
× 100 =

TP
TP + FP + FN

(15)

3. Results

This session describes the experimental results, including the sub-watershed division
results and the flood hazard map derived by the proposed method.

3.1. The Sub-Watershed Derived by DEM Using MFD and D8 Algorithms

In this paper, the hydrology layer collected in geographic information (1:1 million)
was used to burn in DEM. Using the hydrology information enforced DEM, the raster of
sub-watersheds can be delimitated via the MFD and D8 algorithms (Figure 4).
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Figure 4. The sub-watersheds derived via MFD (a) and D8 (b–g). The area threshold used in the
MFD-derived subwatershed is 66.7 ha, and the area thresholds used in the D8-derived subwatershed
as shown in (b–g) are 66.7 ha, 200.0 ha, 667.0 ha, 2000.0 ha, 3333.0 ha and 6667.0 ha, respectively.

In Figure 4a, the MFD algorithm used to delimitate sub-watersheds was programmed by
C#. The MFD algorithm adopts pixels in sink areas as seeds, traces the flow direction raster
and identifies all the converging pixels consisting as a whole of sink areas. When delimitating
sub-watersheds, all the pixels in the sink area and those pixels in the eight directions flowing
towards to sink areas would be kept in the same sub-watershed as the sink area. Otherwise,
the converging pixels would be classified as several sub-watersheds according to the flow
order adjacent to the labeled sub-watershed in the same sink area. In this study, the maximum
area threshold of the MFD algorithm adopted 66.7 ha to delimitate sub-watersheds.

The sub-watersheds produced by the D8 algorithm with different area thresholds
were mapped in Figure 4b–g. The hydrological tool of ArcGIS 10.3 is programmed basing
the D8 algorithm. The hydrology tool was used to delimitate sub-watersheds. The main
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process contained calculating flow direction, calculating flow accumulation, extracting
stream, making stream link, and delimitating sub-watersheds. The definition of area
threshold determines the process of extracting the stream. Only pixels with an area of flow
accumulation larger than the area threshold will be extracted as separate streamlines. The
streamline would identify the sub-watersheds derived stream link while considering the
stream links as pours. In this study, the used area thresholds in Figure 4b–g were 66.7 ha,
200.0 ha, 667.0 ha, 2000.0 ha, 3333.0 ha and 6667.0 ha, respectively.

As in Figure 4a, the flat area, especially the water bodies, was kept in the same sub-
watershed. This indicates that the MFD algorithm can keep connecting flat areas as a whole.
While in the D8 algorithm, all the flat areas and water bodies were treated as pixels to
divide sub-watershed. The defined area threshold represents the maximum number of
pixels converging in upstream water. Thus, as in Figure 4b–g, the flat area, the water areas
and corresponding connected neighborhood pixels were sliced as sub-watersheds, and
most of the sub-watershed areas seemed to be similar. Moreover, as the area threshold
increases from Figure 4b–g, the number of sub-watersheds was reduced.

3.2. The Flood Hazard Map Derived by the Proposed Method

The actual flood areas (Figure 5a), the flood hazard map derived by the proposed method
(Figure 5b), and part of the detailed flood area distribution (Figure 5c,d) were shown in
Figure 5. Especially for the detailed flood area, the overlayer vector map of flooded towns
and villages is filtered from Baidu News. Furthermore, Table 6 listed the comparison matrix
of elements corresponding to flood areas, and dry areas with predicted flood hazard pixels.
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Figure 5. The flood hazard distribution is derived from the proposed method. Subfigure (a) was the
real-world flooded areas extracted by remote sensing in July 2020 in the Chaohu basin. Subfigure
(b) was the flood hazard distribution estimated by the proposed model. Subfigure (c) was the detailed
hazard view of the Fengle river and the Hangfu River, and subfigure (d) was the clear hazard view of
the Xi River.



Remote Sens. 2022, 14, 2465 16 of 34

Table 6. The comparison matrix and correct ratio, fit ratio, F1-score of flood hazard and flooded areas
distribution.

Items

Validation 1 Validation 2

Positive Group (P):
“Very High”, “High”,

“Moderate”

Negative Group (N):
“Very Low”, “Low”

Positive Group (P):
“Very High”, “High”

Negative Group (n):
“Very Low”, “Low”,

“Moderate”

Flooded area (T) 842,963 131,230 583,933 390,260
Dry area (F) 1,004,991 302,577 673,359 634,209

Correct ratio (%) 87 60
Fit ratio (%) 43 35

F1-Score 0.597 0.523

Table 6 demonstrated that when considering the flood hazard pixels of {“very high”,
“high”, and “moderate”} derived by the proposed method as Positive results, the Correct
ratio, Fit ratio and F1-Score were 87%, 43%, and 0.597, respectively. When considering the
flood hazard pixels of {“very high”, and “high”} derived by the proposed method as a
Positive result, the Correct ratio, Fit ratio and F1-Score were 60%, 35%, and 0.523, respectively.
Moreover, according to the F1-score, the flood hazard estimation result using validation 1
has higher consistency with flood areas extracted by remote sensing images.

As shown in Figure 5a, there were plenty of flooded areas near the north beach of
the Fengle River in Feixi city. There were flooded areas distributed at the south beach of
the Fengle River and the north beach of the Hangfu River in Shucheng city. Moreover, the
flooded regions of Lujiang city were located in the south part of the Hangfu River and Xi
River. Moreover, the flood areas of Wuwei city were scattered in the northern region of the
Xi River. Moreover, in the northwest of Chaohu, there were some flooded areas near the
Nanfei River in Feidong county. In the northeast of Chaohu, there was some flooded area
near the Tuohao River in Chaohu city.

Figure 5b–d shows flooding hazard distribution overlayered by breaking points,
flooded town/villages, or actively flood areas, which were searched from Baidu News.
Moreover, as in Figure 5b–d, the breaking points corresponding to the towns were 1—Taoxi
town, 2—Bolin village, 3—Qianrenqiao town, and 4—Tongda town. Moreover, in the
area of the flooding point, the related towns were 21—Nihe town, 22—Yefushan town,
23—Shengqiao town, 24—Zhongmiao street, 25—Baishan town, 26—Shitou town, 27—
Jinniu town, 28—Guohe town, and 29—Chengguan town. Moreover, in the active flood
area, the corresponding towns were 31—Union dike of Shatan, Fengle town, 32—Union
dike of Binhe & Union dike of Jiangkouhe, Sanhe town, and 33—Union dike of Peigang,
Baihu town.

As shown in Figure 5c,d, the flood hazard map derived by the proposed method
almost covered the areas, including the active drainage areas (No. 31, No. 32, and No. 33),
the dike broken areas (No. 1, No. 2, No. 3, and No. 4), and the under submerged flooded
areas (No. 21~No. 29). The flood hazard map derived by the proposed method contained
part of the flooded district. The phenomenon indicated that the proposed method had
higher consistency with flooded areas caused by broken and active drainage than natural
flooding areas.

3.3. The Flood Hazard Distribution via AHP and the Proposed Models

The flood hazard distribution derived by pixel-based AHP and sub-watershed-based
WZSAHP-RC were illustrated in Figure 6.
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Figure 6. Differences in ground-truthing flooded areas compared with expected flooded areas from
the AHP and the proposed model. (a) was the distribution of validation flood area, (b) was from the
original pixel-based AHP, while (c) was from the proposed model.

Compared with the flood hazard map derived by AHP (Figure 6c), the areas were
classified as higher hazards via the proposed method (Figure 6b), especially those pixels
located along the Fengle river, the Hangfu river, the Zhao river, and the Yangtze River.
Moreover, in the areas near the north beach of the Yangtze River, the flood hazard levels
derived by the proposed model were higher than the AHP model.

Table 7 listed the validation results of Correct ratio, Fit ratio, and F1-Score derived by
AHP and WZSAHP-RC models. Compared with the AHP model, when considering pixels
of “very high”, “high”, and “moderate” as predicted flooding areas, the correct ratio and
fit ratio calculated by the WZSAHP-RC model increased by 16% and 6%, respectively.
Moreover, when considering pixels of “very high” and “high” as predicted flooding areas,
the correct ratio and fit ratio calculated by the WZSAHP-RC model were increased by 34%
and 17%, respectively.

Table 7. The correct ratio, fit ratio and F1-score were calculated by the pixel-based AHP method and
the proposed sub-watershed-based WZSAHP-RC method.

Adopted
Method Base Unit

Validation 1:
Positive Group (P): “Very High”, “High”,

“Moderate”; Negative Group (N): “Very Low”,
“Low”

Validation 2:
Positive Group (P): “Very High”, “High”; Negative

Group (N): “Very Low”, “low”, “Moderate”

Cor.1 (%) Fit1 (%) F1-Score Cor.2 (%) Fit2 (%) F1-Score

AHP Pixel 67 37 0.542 22 18 0.298
WZSAHP-RC Sub-watershed 83 43 0.597 60 35 0.523
Increasing (%) / 16 6 / 34 17 /
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3.4. The Flood Hazard Results Estimated by Constraining Different Converging Indicators

Figure 7 mapped the flood hazard map derived by AHP (Figure 7a) and WZSAHP-RC
using MFD-derived sub-watersheds (Figure 7b–m).
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Figure 7. Flood hazard levels from pixel-based AHP (a), while (b–m) show flood hazard levels
derived by WZSAHP-RC using different indicators and zonal statistics.

The C1 and F1 represented the correct ratio and fit ratio considering “very high”,
“high”, and “moderate” as predicted flooded pixels, and the C2 and F2 represented the
correct ratio and fit ratio considering “very high” and “high” as predicted flooded pixels.
The range of permanent water bodies was colored blue. The flood hazard levels from low to
high were colored with dark green, light green, yellow, orange, and red. For the subfigures
of WZSAHP derived flood hazard maps, those in the same row constrained the same
kinds of indicators (including {“Distance from Streams”}, {“Slope”, “Distance from Streams”},
{“Elevation”, “Distance from Streams”}, {“Elevation”, “Slope”, “Distance from Streams”}). The
sub-figures in the same column adopted the same zonal statistical method (e.g., maximum,
median, majority), e.g., Figure 7b–d used the MFD-derived sub-watershed to constrain the
“Distance from Streams” by the maximum, median, and majority zonal statistical methods,
respectively.

As in Figure 7, when using the maximum type of zonal statistical method via the
MFD-derived sub-watershed to constrain all kinds of combinations of converging related
indicators, the correct ratio and fit ratio could keep being increased, considering {“high”,

“very high”, “moderate”} or {“very high”, “high”} as predicted flooding areas.
Using the sub-watershed derived by MFD as a basic unit to constrain different kinds of

converging indicators, we obtain the other distribution of the flood hazard index. Figure 8
shows the combined curve plots and bar graphs relating the AHP and the WZSAHP
constrained sub-watershed to various converging indicators.
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Figure 8. The correct ratio and fit ratio values of pixel-based AHP and sub-watershed-based
WZSAHP-RC models constrain different kinds of converging related indicators.

As shown in Figure 8, the quality estimation correct ratio and fit ratio demonstrated
that all the used constrain sub-watershed-based indicators via the maximum zonal statis-
tical method could be improved. Moreover, for the median and majority zonal statistical
methods, the correct and fit ratios derived by the WZSAHP-RC model via the constraining
sub-watershed to {“Distance from Streams”}, {“Slope”, “Distance from Streams”}, {“Elevation”,
“Distance from Streams”} or {“Elevation”, “Slope”, “Distance from Streams”} had a higher
value than pixel-based AHP model. As in maximum, median, and majority zonal statistical
methods, it could be observed that the correct ratio and fit ratio would be higher as the
constraining indicators contain the “Distance from Streams” indicator. This phenomenon
demonstrated the proposed WZSAHP-RC model—using MFD-derived subwatershed as a
basic unit to constrain converging related indicators will steadily improve the flood hazard
estimation correct ratio and fit ratio.

Figure 9 demonstrated the distribution of the flood hazard index calculated by pixel-
based AHP and sub-watershed-based WZSAHP-RC. All the subfigures in Figure 9 mapped the
scatter points (X, Y) in terms of the index of flood hazard indexes (FRIWZSAHP−RC, FRIAHP).
The FRIWZSAHP−RC represented flood hazard index is calculated by the WZSAHP-RC
model, and the FRIAHP represented flood hazard index is derived by the AHP model.

The scatter diagrams used the water areas extracted by remote sensing images as
truth values to filter the flood hazard index’s raster values. Moreover, the subfigures were
sampled using a moving grid window column× row with a size of 20× 30 to obtain the
values at the range of the column and row of water areas. Moreover, the unique index
points were used to obtain the value of the flood hazard indexes. The scatters diagrams
were drawn using a transparent circle with a variable radius (alpha = 0.1, radius =
2 ∗ Numsamepoints), which adopted 0.1 as the value of transparency and used two times the
number of pair points having the same values as the variable radius.

For the influence of the zonal statistical method, as shown in Figure 9 the scatter
distribution pattern of using median and majority types of zonal statistical methods seemed
to be similar. The same results could be observed. Only in the subfigures of flood hazards
estimated using the maximum zonal statistical method (Figure 9a,d,g,j), all the scatter points
were distributed on the lower diagonal side, and this indicated that the WZSAHP model
using a maximum zonal statistical method to constrain converging related indicators would
increase the flood hazard index.
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Figure 9. Scatter diagrams of flood hazard index derived by WZSAHP-RC via MFD delimitated
sub-watershed as X-axis and flood hazard index derived by AHP as Y-axis. The converged indicator
in (a–c), (d–f), (g–i), and (j–l) were the same, and the sub-figures in the same column used the same
type of zonal statistical method.

For the influence of constraining indicators, it indicated that as constrained “Stream or
Elevation & Stream”, the scatter points distribution in all kinds of zonal statistical methods
seemed to be more concentrated than restrained {“Slope”, “Distance from Streams”} or
{“Elevation”, “Slope”, “Distance from Streams”}. Therefore, the spatial distribution of sample
points demonstrated that the WZSAHP-RC constrained by {“Slope”, “Distance from Streams”}
or {“Elevation”, “Slope”, “Distance from Streams”} would perform better in distinguishing
flood hazard index, which means they might have a higher correct ratio and fit ratio. This
phenomenon indicated that the efficient method needs to map a higher flood hazard index
and make the flood hazard index distribution a dispersing pattern.

3.5. The Flood Hazard Results Estimated by Using D8-Derived Sub-Watershed with Different Area
Thresholds as Basic Units

The flood hazard maps derived by AHP (Figure 10a) and using WZSAHP-RC via
D8-derived sub-watersheds using different kinds of area thresholds (as listed in Table 3)
were illustrated in Figure 10b–s.
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Figure 10. Flood risk levels from pixel-based AHP (a) and sub-watershed based AHP using D8-
derived sub-watershed to constrain converging related indicators, such as Elevation, Slope and Distance
from Streams (b–s).

The labeled correct ratio and fit ratio corresponding to the validation 1 of {“very high”,
“high”, “moderate”} were recorded as C1 and F1, and the validation 2 of {“very high”, “high”}
were marked as C2 and F2, respectively. The range of permanent water and the flood
hazard levels were colored as same as in Figure 7.

As in Figure 10b–s, subfigures in the same row adopted the same threshold area, and
subfigures in the same column used the same statistical method. Moreover, using the
maximum type of zonal statistical method to constrain flood converging related indicators,
indicated that the correct ratio and fit ratio could keep increasing, considering {“very high”,
“high”, “moderate”} or {“very high”, “high”} as predicted flooding areas.
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The flow path and the area threshold determined the final sub-watershed division
results. The correct ratio and fit ratio derived by the six kinds of area threshold (as described
in Table 4) using the proposed method and D8-derived sub-watershed to constrain “Slope”
and “Distance from streams” were compared in Figure 11.
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Figure 11. The correct ratio and fit ratio values of pixel-based AHP and the WZSAHP-RC using D8
derived sub-watershed to constrain converging related indicators.

As shown in Figure 11, while in the validation of considering “high” and “very high”
as predicted flooding areas, the inflection point could be observed as the area threshold
of 2000 ha. It indicated that the correct ratio and fit ratio derived by D8-based WZSAHP-
RC (always using the maximum zonal statistical method) were consistently higher than
pixel-based AHP, but the increasing of correct ratio and fit ratio derived by D8-based
WZSAHP-RC would be influenced by the definition of area threshold for sub-watershed
delimitating. For the median and majority zonal statistical methods, the correct and fit ratios
seemed to fluctuate as the area threshold changed.

Figure 12 aimed to distinguish the scatter diagrams of flood hazard index distributions
calculated by the AHP and the WZSAHP-RC using the D8 derived sub-watershed as basic
units to constrain “Slope” and “Distance from streams” by the maximum, median, and majority
zonal statistical methods.

In Figure 12, the scatter point pairs and sampling and mapping methods were the
same as in Figure 9. The subfigures in the same row adopted the same area threshold
determined sub-watershed as a basic unit. The subfigures in the same column used the
same zonal statistical method. For example, as the scatter points (FRIWZSAHP−RC, FRIAHP)
in Figure 12a, the FRIWZSAHP−RC represented flood hazard index was calculated by the
proposed model using a D8-derived sub-watershed with an area threshold of 66.7 ha,
and the FRIAHP represented flood hazard index was derived by the AHP model. The
scatter was mapped according to the moving sampling grid window of size 20× 30 via the
flood hazard index raster derived by the AHP and WZSAHP-RC methods. Moreover, the
converging related indicators were used to derive FRIWZSAHP−RC, which was calculated
by the maximum type of zonal statistical method.
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Figure 12. Scatter diagrams of flood hazard indexes distribution sampled by WZSAHP-RC via D8
delimitated sub-watershed a basic unit (WZSAHP-RC-D8) and AHP methods. The subfigures (a–r)
used the flood hazard index derived by WZSAHP-RC-D8 as X-axis and using flood hazard index
derived by AHP as Y-axis.

As in Figure 12a–i, it could be found that the spatial distribution of sampled point pairs
was determined by the zonal statistical method. Moreover, the area threshold in the cluster
of 66.7 ha, 200 ha and 667 ha were more similar to each other; in the area threshold defined
as 2000 ha, 3333 ha, and 6667 ha, their scatter distribution pattern seemed to be more
similar. This phenomenon also revealed that the flood hazard index changing trend using
the D8-derived sub-watershed as a basic unit would have a point of inflection. Moreover,
this suggested that the use of WZSAHP-RC via the D8-based sub-watershed as a basic unit
should take care of the proper area threshold for sub-watershed delimitation.



Remote Sens. 2022, 14, 2465 24 of 34

3.6. The Validation of Using the Global River Widths from Landsat (GRWL) as Streams

The Global River Widths from the Landsat (GRWL) database was the first global
compilation of river planform geometry at a constant-frequency discharge [34]. It is highly
recognized by academics as a worldwide product. In this subsection, the GRWL was
used to construct the “Distance from streams” indicator (Figure 13); additionally, the flood
hazard distribution derived by pixel-based AHP and the proposed WZSAHP-RC method
were compared (Figures 14 and 15). Moreover, the WZSAHP-RC uses sub-watershed to
constrain the “Slope”, “Elevation”, and “Distance from streams” indicators. The used “Slope”
and “Elevation” were as same as in Sections 3.4 and 3.5. Only the “Distance from streams”
was constructed according to the vector stream map supported by the GRWL database.
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Figure 13. The GRWL distribution and the GRWL-based Distance from streams indicator in the study
area. Figure (a) was the GRWL vectors and corresponding buffer results basing the attribute value of
the width, figure (b) was the Euclidean distance from the GRWL buffer border, and figure (c) was
the ordinary water bodies overlying the GRWL buffer layer and the ranked “Distance from streams”
indicator in figure (d) was derived by GRWL and normal water range.
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Figure 14. The flood hazard distribution derived by pixel-based AHP, the WZSAHP-RC using D8-
derived and MFD to classify sub-watersheds as basic units. (a–c) were the flood hazard distribution
basing pixel-based AHP, WZSAHP via D8-derived sub-watershed, and WZSAHP via MFD derived
sub-watershed, respectively. (d–f) were the GRWL derived distance from streams distribution
using pixel-based AHP, WZSAHP via D8-derived sub-watershed, and WZSAHP via MFD derived
sub-watershed, respectively.

The GRWL vector is the shape of hydrology lines, and the width was recorded in
the attribute table. The hydrology polygon was constructed using the width’s value to
build buffer areas on both sides of the hydrology lines (Figure 13a). Then, according to
the ranking definition of the level 5 digital stream in Table 3, the calculation of Euclidean
distance from the GRWL buffer range was implemented using distances of 1000 m, 2000 m,
4000 m, and 6000 m, respectively (Figure 13b). The level “Distance of streams” of pixels
in the range of regular water areas (Figure 13c) was ranked as 5, and the pixels in the
range of Euclidean distance from GRWL of <1000 m, 1000 m~2000 m, 2000 m~4000 m,
4000 m~6000 m, and >60,000 m were classified as 4, 3, 2, 1, 0, respectively (Figure 13d).

Based on the ranked “Distance from streams” derived by GRWL, the flood hazard
distribution estimated by pixel-based AHP demonstrated the proposed WZSAHP-RC
method using the D8-derived and MFD derived sub-watersheds as units (Figure 14). The
validation dataset was constructed as in Sections 3.4 and 3.5. The correct ratio and fit ratio
indicated that the WZSAHP-RC using the MFD sub-watershed as the basic unit (Figure 14c)
performed better than using the pixel-based AHP (Figure 14c) and the WZSAHP-RC using
the sub-watershed derived by D8 as units (Figure 14c). Figure 14d–f was the used distance
from streams indicator in the pixel-based AHP, WZSAHP-RC using the D8 derived sub-
watersheds and MFD derived sub-watershed. As in Figure 14e,f, the neighborhood pixels
of those with high levels would be higher, especially using D8-derived sub-watershed as
basic units.
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Figure 15. The correct ratio, fit ratio and F-measure basing the validation dataset excluding permanent
water areas and including permanent water areas. (a,b) were the validation ratio using floodwater
areas excluding permanent water areas. In contrast, (c,d) was the validation ratio using all water
areas on flood days.

Figure 15 shows the further comparison of statistical results using a different method
to construct validation flood areas. There are flood areas on a land surface that use water
areas, excluding permanent water areas as a validation range (Figure 15a,b) and flood
areas in all regions which contain land surface and common water areas, such as lakes,
and rivers (Figure 15c,d). The results indicated that as constructed validation using water
areas excluding permanent water areas, the correct ratio and fit ratio of WZSAHP-RC could
consistently outperform pixel-based AHP.

As shown in Figure 15b,d, the F1-measures value was higher than in Figure 15a,c).
This phenomenon revealed that validation dataset 2 (which adopted “high” and “very high”
as predicted flooded areas) was more suitable than validation dataset 1 (which adopted
“moderate”, “high”, and “very high” as indicated flooded areas).

4. Discussion

In this section, the influence and the usage of the proposed WZSAHP-RC model
were discussed. The sub-watershed delimitation methods and their influences on the
proposed model were discussed in Section 4.1. The converging involving indicator choices
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in AHP-based flood hazard related estimation, and the influence on the proposed method
is discussed in Section 4.2.

4.1. The Sub-Watershed Delimitation Methods and the Related Influences in the Proposed Model

The contribution of the proposed model revealed using sub-watershed as a basic unit
to constrain converging related indicators can improve flood hazard estimation correct
ratio and fit ratio. Thus, the sub-watershed delimitation is very important. Usually, the
sub-watershed delimitated by DEM could be grouped as SFD and MFD algorithms. The
accuracy influence of delimitation methods and the attention points in SFD-based and
MFD-based sub-watershed delimitations should be discussed.

Point 1. The influence of DEM accuracy for MFD and SFD methods.
DEM is the primary material for sub-watershed delimitation. The accuracy of DEM

is limited by the accuracy of the original captured data quality, the precision of the DEM
producing process, and the related resolution format transformation. Therefore, to obtain
higher consistency with the real-terrain DEM data, one method is to derive a hydrology
data enforced DEM dataset.

Normal water distribution reflected the terrain in low-lying areas and the potential
risk locations. The range of normal water can be used to improve the accuracy of DEM and
used as auxiliary data to calculate flood hazard estimation involving indicators, such as
“Distance from streams” and “Hydro-lithological formations”.

In this study, the SWI index was used to improve the water areas. The essential
feature of the SWI was extracting water areas by the defined thresholds to extract those
elements with corresponding area and length relations. The RivaMap is a convenient engine
to extract river centerlines by Landsat images, a geometric parameter of the multiscale
singularity index to distinguish lakes and rivers effectively [35]. Figure 16 revealed the
distribution of the normal water range extracted by the SWI and the multiscale singularity
index of the RivaMap. Figure 16b,d indicated that the SWI derived water was cleaner than
the RivaMap. However, the SWI derived result had a better effect and was beneficial to the
accuracy of former potential water bodies supported by the impervious surface production.
The RivaMap relay on the input Landsat image derived MNDWI index, and the RivaMap
engine might calculate the multiscale singularity index automatically. Then, using the
general Natural Break method could distinguish the final water map. Therefore, as in a
large area of research, the easily used RivaMap engine might be a good choice to extract
the textural characteristics of rivers and lakes.

Moreover, there were some refined river extraction [36] and automatic channel network
extraction methods [37]. These methods rely on detailed indicators of remote sensing
images and DEM. As in a small area range of study areas, they were using the precise
hydrology information extraction method, which might be better to derive more detailed
and near real-time water systems than the released geology information.

Point 2. The critical points of the MFD delimitation method.
In this study, the used MFD algorithm [20] adopts pixels in sink areas as seeds, traces

the flow direction raster and identifies all the converging pixels consisting of whole sink
areas. When delimitating sub-watersheds, all the pixels in the sink area and those in
the eight directions totally flowing towards sink areas would be kept in the same sub-
watershed as the sink area. Otherwise, the converging pixels would be classified as several
sub-watersheds according to the flow order adjacent to the labeled sub-watershed in the
same sink area.

Point 3. The critical points of the SFD delimitation method.
The D8 algorithm is one of the classical SFD algorithms. The result (in Section 3.5)

indicated that the area threshold of the D8-based sub-watershed would influence the final
estimation results. Therefore, for D8-based sub-watershed delimitation, exploring the
proper area threshold is very important. In this study, the result indicated that 667 ha is a
point of inflection. This might be influenced by some special environment factors, such as
the study area scale, the flat terrain features and the special validation event. The proper
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area threshold should be further explored in a specific study case. Thus, the high efficiency
of sub-watershed delimitation is very important. High-efficient extraction of drainage
networks from digital elevation models constrained by enhanced flow enforcement from
known river maps proposed a ConstrainedDNE tool to extract drainage networks [38]. It
could auto delimitate sub-watershed as several grades of the version, only relying on the
given DEM and streamlines.
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Figure 16. The normal water range extract by the proposed SWI and the RivaMap. (a) was the range
of water bodies extracted by SWI overlay the distribution of the impervious surface production,
(b) was the water body and range areas of SWI, and (c,d) were the distributions of the multiscale
singularity index of RivaMap classified by nature break method as nine types and two types.

However, [38] expected to use an outside prepared stream to determine the sub-
watershed by back-tracing the outlet of rivers. For one aspect, it is not easy to prepare
data. As collecting fully covered stream information in the real world at a sub-watershed
scale is relatively easy, the study area may consist of several sub-watersheds. The data
requirement of fully covered and high quality makes using the suggested method difficult.
For another aspect, it is difficult to fully match the survey streamlines to the used DEM. As
in the large-area study case, the public used DEM is always produced by satellite-based
InSAR surveying. The production of DEM might not be as high quality as local survey
data because the surveyed streamlines are always investigated by local departments. Thus,
DEM could use corresponding essential survey points to derive higher accuracy of results.

4.2. The Choice of Converging Indicators and the Related Influences in the Proposed Model

The AHP model is a traditional method used in flood hazard estimation. Thus, it is
significant to discuss the possible reasons why and the function of how the converging
indicators play a role in the proposed WZSAHP-RC model.

Point 1. The function converging indicators in this study.
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In this study, the converging related indicators contain “Slope”, “Elevation”, and “Dis-
tance from Streams”. The results in Figures 8 and 9 revealed that when using MFD-derived
sub-watershed to constrain indicators {“Distance from Streams”}, or {“Elevation”, “Distance
from Streams”}, or {“Slope”, “Distance from Streams”}, or {“Elevation”, “Slope”, “Distance
from Streams”}, the proposed WZSAHP-RC model derived correct ratio and fit ratio were
demonstrated to be higher than the derived by pixel-based AHP method. Constraining
indicators {“Elevation”, “Slope”, “Distance from Streams”} performed best, and followed by
{“Slope”, “Distance from Streams”}, {“Elevation”, “Distance from Streams”}, and {“Distance from
Streams”}.

The essential of constraining sub-watershed to specific indicators means properly
considering the hydrology converging influence on individual pixels. In the research
of [39], the similar indicator “Distance from drainage network” matched with the “Distance
from streams” of this study. It explained that the “Distance from drainage network” is influenced
by the converging indicator “drainage density” and the runoff production indicator (such
as “ground water depth”, and “land use”, etc.). The indicator “Slope” also has a significant
influence on the indicator “drainage density” and “ground water depth”. Those findings
confirmed that the indicator “Distance from streams” could reflect other indicators directly
or indirectly. Thus, constraining sub-watershed to “Distance from streams” might influence
converging and runoff production indicators.

Point 2. The converging indicators are used in the related flood hazard estimation.
In the flood probability estimation based on geo-environment indicators [40], the

weight of indicator order is demonstrated as “slope”, “distance to rivers”, “altitude” (referring
to the “elevation”), and then followed by the “terrain ruggedness index” (TRI) and “drainage
density”. Moreover, in the study of prioritization of sub-watershed flood probability based
on physical, hydrological, and climatological parameters [41], the high-risk sub-watersheds
have higher “permeability” and “rainfall” and greater “drainage network density” at a shorter
“distance from rivers”. In [42], the flood hazard estimation in the vicinity of the main channels
of the Kifisos and Ilisos Rivers indicated that the highest flood hazard areas were total
covered “streams”, expansion of “impermeable formations” and “intense urbanization”. As in
the referenced flood probability and flood hazard estimation research, the distance from

“streams”, “rivers”, or “drainage networks” is taken seriously.
In the flood susceptibility mapping research basing the statistical model [43], “distance

from streams”, “elevation”, and “slope” were important indicators in the occurrence of floods,
and the “rainfall”, “terrain wetness index” (TWI) and “land cover type” also influenced in-
dicators on flood sensitivity. Moreover, the flood susceptibility mapping based machine
learning research [44] found the relative importance order of indicators were “slope angle”,
“distance from rivers”, “land use”, “TWI”, “elevation”, and other indicators. For flash flood
susceptibility estimation [45], the slope was the essential indicator that occurred and devel-
oped floods. Thus, it was assigned the highest weight and followed by the factors of “land
use”, “lithology”, and “profile curvature”. Therefore, these works of literature all considered
the “slope”, “distance from ‘streams’ or ‘rivers’”, “elevation” as essential indicators, and some
research assigned “slope” the highest weight.

Point 3. The choices of digital streams and GRWL to construct “Distance from streams”.
The choice of using a proper stream also needs to be discussed. DEM can be used to

produce digital streams, and there is some mature globe-scale hydrology production, such
as GRWL. The digital streams extracted from DEM were used as basic streams to construct
“Distance from streams” in this study.

The GRWL production contains the width of large-scale lakes and rivers, while the
digital streams focus on distinguishing terrain converging characters (Figure 17). As
described in Sections 3.4 and 3.6, the proposed WZSAHP-RC method using sub-watershed
delimitated by MFD as basic units could improve the correct ratio and fit ratio compared
to the pixel-based AHP using both streams to derive the “Distance from streams” indicator.
Moreover, for WZSAHP-RC method, when using digital streams (Figure 7k), the final
estimated flood hazard distribution had a higher correct ratio and fit ratio (C1 = 87%,
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F1 = 43%, C2 = 60%, F2 = 35%) than using GRWL (C1 = 78%, F1 = 12%, C2 = 61%, F2 = 16%)
(Figure 14c). Therefore, it could be concluded that using the DEM derived digital stream
was more suitable for constructing “Distance from streams” than GRWL at the basin scale.
As in the larger scale, such as catchments or regional areas, more experiments should be
conducted in the future.
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5. Conclusions

In this study, as the traditional pixel-based AHP method failed to capture the hydro-
logical features caused by neighborhood pixels, a sub-watershed-based extended AHP
model named WZSAHP-RC was proposed. Taking the Chaohu Basin of Anhu, China, as
an example, the correct ratio and fit ratio of the proposed method were validated using
the real-flood areas extracted from remote sensing compared with the pixel-based AHP
method. When using {“very high”, “high”, “moderate”} as predicted in flooded areas, the
results indicated that the correct ratio and fit ratio derived by the WZSAHP-RC could
improve by 21% (from 66% to 87%) and 6% (from 37% to 43%), respectively. Moreover,
when using {“very high”, and “high”} as predicted flooded areas, the correct ratio and fit
ratio could increase by 38% (from 22% to 60%) and 17% (from 18% to 35%), respectively.
Moreover, in comparison with flood towns filtered by Baidu News, the proposed method
had higher consistency with dikes broken and active drainage flooded areas than the
pixel-based AHP method.

Furthermore, the correct ratio and fit ratio could be improved using the proposed
WZSAHP-RC method to constrain part of converging related indicators by the MFD-
derived or D8-derived sub-watershed as a basic unit. When using a D8-derived sub-
watershed as a basic unit, the correct ratio and fit ratio were also demonstrated to be
increased compared to the pixel-based AHP model. Still, the area threshold of delimitating
sub-watershed would influence the increasing value.
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Despite the success of the proposed WZSAHP-RC model, we need to acknowledge
its limitations. The validation flood is the period from 20 to 24 July 2020 in the Chaohu
basin, which is the biggest in recent years, but this is validated by one case, and maybe
other places or flood events, would produce different results. Furthermore, it indicated
that the area threshold of delimitating sub-watershed would influence the correct ratio
and fit ratio increment of WZSAHP-RC. Future research needs to reveal the usability
of different terrain character study areas and quantitatively analyze the effective area
threshold range of the delimitating sub-watershed for the proposed method. Meanwhile,
the potential of flooding and the company risk is a combined effect function by flood
hazard, exposure, and vulnerability. Flood hazard estimation needs not only to consider the
spatial heterogeneity but also needs to consider the effect of spatial homogeneity. This study
demonstrated the space connections between sub-watershed and flood hazard estimation.
The flood exposure and vulnerability estimation also need to explore the affiliate effects in
horizontal and vertical geological space in detail, even extending to the link affecting the
multi-dimensional social-economic environment.
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Appendix A. The Used Tiles of Impermeable Surface Product and the Flooded Town
Derived from Baidu News

As shown in Section 2.2, the 18 tiles (Table A1) of China’s impermeable surface product
(2 m) in Hefei, Luan, Anqing, Wuhu, Maanshan, Chuzhou, Huainan cities were used to
prepare the land use and hydrological indicators.
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Table A1. Tiles of China’s impermeable surface product (2 m) were used in the study area.

District Data Tiles Districts Data Tiles

Anqing R1C1, R1C2 Luan R1C2, R3C2
Chizhou R1C1, R1C2 Maanshan R1C1, R1C2
Chuzhou R2C1, R2C2 Tongling R1C1

Hefei R1C2, R1C2, R2C1, R2C2 Wuhu R1C1, R2C1
Huainan R2C1

As shown in Section 2.2, the retrieved raw flood event-related news were manually
cleaned up to derive the final validating dataset of flood town (Table A2) and active
breaking dikes for excessive drainage rainwater in the Chaohu basin (Table A3).

Table A2. The flood- and damage-relevant information from Baidu News in the study area.

Date City Flooded Town (Village) Broken Location

19 July 2020 Shuchengxian, Liuan city

Taoxi town Fengle River (Longtan River)
Blinding (Bolin, Jiehe village) Fenagle (Bolin Reach)

Qianrenqiao town (Shuxin, Xingfeng,
Tonggui, Huangcheng, Wanghe,

Sanchahe, Qiandashan etc. villages)
Hangfu, Qiandashan rivers

Chengguan town (Taiping village) Sanli, Zhanggongdang,
Zhucao Rivers

22 July 2020

Lujiangxian, Hefei city

Tongda town (Xuejiayu, Guyu, Lianhe,
Yongxing, Shifeng, Changfeng villages) Shidayu
Baishan town (Baishan, Daiqiao, Shilian,

Jinsheng, Jiulian, Xingang villages)

Not clear
Shengqiao town, Yefushan town, Shitou
town, Jinniu town, Guohe town, Nihe

town, Baihu town

Table A3. Flooding area distribution caused by active dam breaking.

Date City Flooded Land Mitigation Pressure

19 July 2020 Quanjiaoxian, Chuzhou city Dike of Huangcao district 2 and 3 Chu River

26 July 2020 Feixixian, Hefei city
Union dike of Jiangkouhe, Yandian Xiang

Union dike of Binhu, Sanhe Town
Union dike of Shatan, Fengle Town

Chaohu

27 July 2020 Lujiangxian, Hefei city Union dike of Peigang, Baihu Town Chaohu
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