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Abstract: At present, it is challenging to extract landslides from high-resolution remote-sensing
images using deep learning. Because landslides are very complex, the accuracy of traditional
extraction methods is low. To improve the efficiency and accuracy of landslide extraction, a new
model is proposed based on the U-Net model to automatically extract landslides from remote-sensing
images: L-Unet. The main innovations are as follows: (1) A multi-scale feature-fusion (MFF) module is
added at the end of the U-Net encoding network to improve the model’s ability to extract multi-scale
landslide information. (2) A residual attention network is added to the U-Net model to deepen the
network and improve the model’s ability to represent landslide features. (3) The bilinear interpolation
algorithm in the decoding network of the U-Net model is replaced by data-dependent upsampling
(DUpsampling) to improve the quality of the feature maps. Experimental results showed that the
precision, recall, MIoU and F1 values of the L-Unet model are 4.15%, 2.65%, 4.82% and 3.37% higher
than that of the baseline U-Net model, respectively. It was proven that the new model can extract
landslides accurately and effectively.

Keywords: landslide; remote sensing; U-Net; attention mechanism; deep learning

1. Introduction

Landslides are some of the most common and hazardous geological hazards. Although
they often occur in mountainous areas, they seriously threaten human lives and property
safety [1]. It is of great importance for disaster rescue, prevention and mitigation to
obtain related information on landslides quickly and accurately after the occurrence of the
hazards [2].

Satellite remote-sensing technology can accurately extract the data features of objects
and capture information on earth changes in a timely manner. The technology has been
widely used in geological disaster-related research. Satellite remote-sensing image data can
cover an area of hundreds of square kilometers, which provides rich image information for
landslide extractions [3]. Therefore, losses of human lives and properties can be effectively
reduced by using remote-sensing technology to grasp landslide information in a timely
manner and formulate reasonable rescue plans.

Visual interpretation is a commonly used landslide extraction method that mainly
uses the spectral features and spatial features of images to extract landslides. This method
has a high extraction accuracy and reliability, but it requires a significant investment of time
and energy. Moreover, it requires a high level of professional knowledge and experienced
interpreters, which make it difficult to meet the timeliness of disaster rescue.

The pixel-oriented landslide extraction method performs remote-sensing image analy-
ses based on the spectral texture features of individual pixels to obtain information about
landslides and achieve the automatic identification of such disasters. The commonly used
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approaches used in this method include principal component analyses [4], support vector
machines [5], maximum likelihoods [6] and so on. However, this method considers only
the individual information of a single pixel point and ignores correlations between pixels,
which greatly reduces its extraction accuracy.

With the improvement of remote-sensing image resolutions, objects on the ground in
such images are becoming richer and more informative. Thus, the object-oriented image
analysis (OBIA) approach has been applied to the information extraction of remote-sensing
images and has been developed rapidly [7]. This method takes a target object as a basic unit
after an image segmentation and determines the class in which the target object belongs
by combining spectral, spatial, shape and contextual features. This method relies on the
selection of a segmentation scale, but the existing segmentation algorithm cannot meet the
demands of remote-sensing images [8].

Deep learning has been widely used in various fields, such as object detection [9],
semantic segmentation [10], image classification [11] and so on. With a powerful feature
extraction ability, it can quickly and efficiently extract landslide information, which provides
a new method for landslide extractions from remote-sensing images. Sameen et al. [12]
fused spectral and topographic information and trained it by using residual networks
to achieve better results in landslide extraction. Wang et al. [13] fused the pre-disaster
and post-disaster red, green, blue and near-infrared bands as well as NVDI data to obtain
a total of nine bands for landslide extraction by using CNN. Ghorbanzadeh et al. [14]
evaluated the ability of ANN, SVM, RF and CNN to detect landslides and concluded
that the CNN approach is still in its infancy but has great potential. Zhang et al. [15]
used the deep-learning module of ENVI to identify co-seismic landslides in the Hokkaido
region of Japan. Lu et al. [16] combined transfer learning and OBIA methods to accurately
extract landslides. Moreover, to emphasize landslide features from a complex background,
Ji et al. [17] integrated spatial and channel attention to propose a novel attention module.
This attention module significantly improves the ability of a model to extract landslides.
Liu et al. [18] proposed an end-to-end landslide extraction method by improving the Mask
R-CNN model.

At present, the use of deep learning for landslide extraction is still in its initial stage.
How to finely extract landslide features and improve the accuracy of landslide extraction is
the focus of research. U-Net [19] is a classical model in the field of semantic segmentation,
and it has been widely used because of its simple structure and high recognition accuracy.
Soares et al. [20] achieved the automatic extraction of landslides in the mountains of Rio
de Janeiro, Brazil, by using the U-Net model. However, if U-Net is directly used for a
landslide extraction from remote-sensing images, there are some problems. It is more
difficult for the shallow U-Net model to learn landslide features with complex shapes and
solve the problem of confusion between landslides and other background information.
Therefore, Liu et al. [21] improved the U-Net model by adding residual learning units
to the encoding and decoding network and expanding the input image to six channels
by adding DSM, slope and aspect. They obtained fairly good results in the experiment.
Ghorbanzadeh et al. [22] compared the results of the U-Net and ResU-Net models for
extracting landslides and thought the performance of ResU-Net was better than that of
U-Net. Following this, Ghorbanzadeh et al. [23] combined ResU-Net and OBIA approaches
by using the OBIA approach to optimize the result maps generated by ResU-Net. The
authors achieved accurate extractions of landslides. Although the above methods based on
U-Net achieved better results, little attention has been paid to landslides showing different
features at different scales in remote-sensing images. The simple skip connection of U-Net
cannot meet the requirements of extracting multi-scale landslide information.

In order to solve the problems noted above, we improved the U-Net model and thus
propose an automatic landslide extraction model named L-Unet. The main improvements
are as follows: (1) A proposed MFF module based on dilated convolution is embedded at
the end of the U-Net encoding network. (2) A residual attention network is added to the
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U-Net network structure. (3) The upsampling process uses DUpsampling to replace the
bilinear interpolation algorithm.

2. Model
2.1. U-Net

The U-Net model was proposed mainly for segmentation in the field of medical images
and stitches features together in the channel dimension so that the obtained feature maps
contain both high-level feature information and low-level feature information. The model
can achieve a high accuracy even for small data sets. Our landslide dataset was small, so
U-Net was chosen as a base model.

The U-Net model consists of two parts: encoding and decoding networks. The
encoding network consists of four downsamplings, each consisting of two convolutional
layers and a maximum pooling layer. The feature map size is reduced by half after each
downsampling. The decoding network contains four upsamplings by which the feature-
map size is recovered in relation to the feature-map size of the corresponding layer of the
encoding network and the information is extracted by convolutional blocks after stitching.
In the last layer, the output feature map is passed through a 1 × 1 convolutional layer to
obtain a final result. The model structure is shown in Figure 1.

Figure 1. Structure diagram of U-Net model; consists of downsampling and upsampling.

2.2. L-Unet

The structure of the L-Unet model is shown in Figure 2.
In the encoding network, the residual network A is added after a 3 × 3 convolutional

layer, batch normalization (BN) layer and ReLU activation function, and then a pooling
layer is connected. Residual network A consists of residual blocks and the attention
mechanism. The residual block can deepen the network so that the model can fully extract
landslide features. Adding the attention mechanism can ensure more of a focus on landslide
information and can suppress unimportant background information. The output of the last
layer of the encoding network is passed through the MFF module to obtain fused features
at different scales.

In the decoding network, the residual network B is added to each layer of U-Net after
the upsampling and convolution. The feature-map size is recovered in relation to the output
feature-map size of residual network A in the corresponding layer of the encoding network
by using DUpsampling, and the stitching combines low-dimensional detail information
and high-dimensional semantic feature information to allow for obtaining a more accurate
feature map.

2.2.1. Residual Attention Network

Generally, the deeper the network is, the better the extraction of feature information
and the better the model performance. However, experiments showed that when the
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network is deepened to a certain level, its performance becomes worse. This is due to the
problems of a vanishing gradient and an exploding gradient that occurs when the network
deepens to a certain level, causing difficulties in model training. The proposed residual
network [24] is a good solution to the problems caused by the deepening of the network.

Figure 2. Structure diagram of L-Unet model; consists of downsampling, MFF module and upsampling.

The attention mechanism mimics human vision by focusing on a region of interest
while ignoring other background information, thus achieving the effect of improving the
performance of deep-learning models. Numerous experiments showed that the accuracy of
the semantic segmentation model would be greatly improved by adding the attention mech-
anism. Co-ordinate attention (CoordAttention) [25] can focus on both position and channel
information and bring little overhead to the network. It can aggregate features from hori-
zontal and vertical directions, respectively. It not only retains critical position information
when capturing channel information but also captures long-range dependent information.

We found that the low-resolution feature maps obtained during downsampling may
lose position and channel information. In order to deepen the network while improving the
model’s ability to acquire position and channel information, the CoordAttention mechanism
was combined with the residual block to form the residual attention module. The structures
of the two residual networks are shown in Figure 3. In residual network A, the output
of the input feature map X, after passing through two stacked residual blocks, is added
with the output after the co-ordinate attention. In residual network B, the input feature
map is directly output after two residual blocks. Since residual network A incorporates
CoordAttention, it is added to the encoding network of the U-Net model to fully extract
the landslide features and residual network B is added to the decoding network of the
U-Net model.

2.2.2. MFF Module

Remote-sensing images contain many kinds of objects, among which landslides have
complex and variable shapes, and such images’ features are not the same at different
scales. The size of the receptive field also affects the accuracy of landslide extraction to a
certain extent. Although the U-Net model integrates both high-level feature information
and bottom-level feature information, its extraction of landslide multi-scale information is
limited. The dilated convolution inserts zero values on the normal convolution kernel to
achieve the purpose of increasing the receptive field so that the output contains a larger
range of information.
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(a) (b)

Figure 3. (a) Residual network A based on the residual block and the CoordAttention mechanism
and (b) residual network B based on the residual block.

In the encoding networks, constant pooling operations can lead to the loss of informa-
tion, which contains useful landslide information and can result in small landslides being
missed and parts of large landslides being extracted incorrectly. The MFF module based
on the dilated convolution is proposed to prevent the loss of useful information and to
improve the ability of the model to learn landslide features at different scales, as shown in
Figure 4.

The MFF module proposed in this paper contains five branches. The first branch
uses a 1 × 1 normal convolution and the other four branches use different dilation rates of
dilated convolutions. Due to the variable shapes of landslides, the set dilation rate is too
large to effectively extract a small landslide. In order to enhance the correlation between
features at different scales, the input of the third, fourth and fifth branches is the stitching
of the output of the previous branch after the dilated convolution and the original input
feature map. Then, the 1 × 1 convolution, BN layer and ReLU activation function are used
to deepen the network while increasing nonlinear features. The output of each branch is
defined as the following equation:

Ai =

{
D3×3

εi
(I), i = 2

D3×3
εi

(C(Ai−1, I)), i = 3, 4, 5
(1)

Oi =

{
f 1×1(I), i = 1
η(BN( f 1×1(Ai))), i = 2, 3, 4, 5

(2)

where I represents the input feature map, C represents stitching in the channel dimen-
sion, D3×3

εi
represents the dilated convolution with the convolution kernel size of 3 × 3,

ε = {εi|i = 2, 3, 4, 5} is the set of the dilation rate of D3×3
εi

, η represents the ReLU activation
function, Ai represents the output of the i-th branch-dilated convolution and Oi represents
the output of the i-th branch.

The output feature maps of the five branches are fused to obtain a new feature map
with rich multi-scale information. Finally, the new feature map is output by adjusting the
number of channels through a 1 × 1 convolution layer. The MFF module’s final output (Y)
is written as follows:

Y = f 1×1(C(O1; O2; O3; O4; O5)) (3)
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Figure 4. Multi-scale feature-fusion module based on dilated convolutions with different dila-
tion rates.

2.2.3. DUpsampling

The bilinear interpolation method is data-independent, and the overly simple ex-
pansion does not consider the correlation between pixels, which affects the quality of the
recovered feature maps. DUpsampling [26] can achieve accurate pixel-level predictions
and improve segmentation accuracy when recovering image dimensions. Therefore, DUp-
sampling was used instead of the bilinear interpolation algorithm in the decoding network
to avoid the loss of feature information in the bilinear interpolation process and better
recover landslide information.

2.2.4. Loss Function

The binary cross-entropy was used as the loss function in the study. By letting N
represent the number of samples, P represent the number of pixels in a single sample,
ŷj

i represent the predicted value of the ith pixel of the jth sample and yj
i represent the

ground-truth value of the ith pixel of the jth sample, the binary cross-entropy loss function
could be defined in the following formula:

LBCE =
1
N

1
P

N

∑
j=1

P

∑
i=1

(yj
i × logŷj

i + (1− yj
i)× log(1− ŷj

i)) (4)

2.3. Evaluation Indicators

Precision, recall, F1 score (F1) and mean intersection over union (MIoU) were chosen
to evaluate the performance of the model in the study. Precision refers to the proportion of
pixels correctly detected as landslides to all pixels detected as landslides and recall refers to
the proportion of all pixels correctly detected as landslides to all pixels labeled as landslides.
MIoU is used to calculate the average of the ratio of the intersection of and the union of the
two sets of true and predicted values. F1 is defined as the summed average of the precision
and recall. The formulas for precision, recall, F1 and MIoU are as follows:

Precision =
TP

FP + TP
(5)

Recall =
TP

FN + TP
(6)
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MIoU =
TP

FN + FP + TP
(7)

F1 = 2× Precision× Recall
Precision + Recall

(8)

where true positive (TP) is the number of pixels correctly classified as landslide pixels, true
negative (TN) is the number of background pixels correctly classified, false positive (FP) is
the number of background pixels misclassified as landslide pixels and false negative (FN)
is the number of landslide pixels misclassified as the background.

3. Experiment
3.1. Study Area

As shown in Figure 5, this study area was located in the northern mountainous area
of Huizhou District, Huangshan City, Anhui Province, China. The study area is about
268.16 km2. The whole study area is dominated by mountainous areas. Strong rainfall
often occurs in the summer, and the stability of the mountain is poor; both factors create
favorable conditions for the occurrence of landslides. Rapidly obtaining the locations of
these landslides is of great importance for post-disaster rescues and reconstructions.

Figure 5. Geographic location and remote-sensing image of the study area.

3.2. Dataset

The data used in the experiments were obtained from Google Earth images. The
imagery spatial resolution was 4 m. The main operations performed on the remote-sensing
data of the study area included cropping, labeling and data enhancement. The large remote-
sensing images were uniformly cropped to the size of 256 × 256 pixels. Labels were made
for the small cropped images by using a manual interpretation method. The pixel value of
the landslide area was set to 255, and the pixel values of other objects were set to 0. After
that, the data were fed into the convolutional neural network for learning. This dataset
has a total of 820 landslide images, a quarter of which were used for testing. Because the
dataset is small, data enhancement operations were performed during the training stage,
mainly including random rotation (90°, 180°, 270°), random vertical flip, random crop,
random zoom in/out, random color transformation and random Gaussian noises.

3.3. Experimental Environment

All the code for this experiment was implemented in the deep-learning software
framework Pytorch with the built-in Python version 3.6.0. The graphics card that was used
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was a Telsa P100-PCIE-16GB, and the processor was an Intel(R) Xeon(R) Silver 4114 CPU @
2.20 GHz.

In the training process, the batch size was set to 8. SGD was used as the optimizer. The
initial learning rate was set to 0.001. If the accuracy of the validation set did not improve
after ten training iterations, the learning rate decreased to 0.1 times the original rate. ε was
{2, 3, 5, 7}. The total number of training iterations was 100.

3.4. Results
3.4.1. Comparison of L-Unet with the Baseline Model

In order to evaluate the landslide extraction ability of the L-Unet model proposed in
this paper, some of the landslide extraction results of L-Unet for the test set are shown
in Figure 6. It can be seen that the landslides in the images were extracted completely.
Moreover, the comparison of the improved model with the base model is shown in Table 1
and Figure 7.

Table 1 and Figure 7 compare the model performance changes after adding different
modules in turn. After adding the MFF module, the precision, recall, MIoU and F1 values
of the model were 3.13% 0.53% 2.59% and 1.76% higher than those of the baseline U-Net,
respectively. The addition of the residual attention network increased the precision, recall,
MIoU and F1 values by 3.95% 1.76% 4.16% and 2.80% respectively, compared to the
baseline U-Net values. Based on these findings, we used DUpsampling to replace the
bilinear interpolation upsampling to refine the landslide information and obtain the L-Unet
model in this paper. Its precision, recall, MIoU and F1 values were 4.15% 2.65% 4.82% and
3.37% higher than those of the baseline U-Net values, respectively. From the results, it can
be seen that each improvement of the U-Net model improved the accuracy of landslide
extraction in different degrees. Thus, the model proposed in this paper is feasible.

(a) (b)

Figure 6. (a) Part of the landslide images for the test set and (b) extraction results of the L-Unet model.

Table 1. Comparison of the performance before and after improvement.

Model Precision/% Recall/% MIoU/% F1/%

U-Net 84.39 80.89 70.36 82.60
U-Net+MFF 87.52 81.42 72.95 84.36

U-Net+MFF+ResNet 88.34 82.65 74.52 85.40
L-Unet 88.54 83.54 75.18 85.97

3.4.2. Comparison of L-Unet with Other Models

To compare with other network models, we reproduced several state-of-the-art models:
FCN-8s [27], SegNet [28], PspNet [29], HRNet [30], Deeplab v3+ [31], Liu et al. [21], DDCM-
Net [32] and MACU-Net [33]. We trained these models on the same dataset, and the results
of each model for the test set are shown in Table 2 and Figure 8.
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Precision Recall MIoU F1

Evaluation Indicators

70

72

74

76

78

80

82

84

86

88

90

U-Net

U-Net+MFF

U-Net+MFF+ResNet

L-Unet

Figure 7. Comparison of the results of models U-Net, U-Net+MFF, U-Net+MFF+ResNet and L-Unet
for the four metrics precision, recall, MIoU and F1.

Table 2. Comparison of the performance of different models.

Model Precision/% Recall/% MIoU/% F1/%

FCN-8s 82.93 81.01 69.43 81.96
SegNet 85.24 77.82 68.58 81.36
PspNet 80.58 83.27 69.35 81.90
HRNet 78.98 71.65 60.17 75.13

Deeplab v3+ 83.36 85.84 73.20 84.58
Liu et al. [21] 83.51 82.62 71.04 83.07
DDCM-Net 86.21 83.28 74.06 84.72
MACU-Net 80.94 81.68 68.50 81.31

L-Unet 88.54 83.54 75.18 85.97

As can be seen from Table 2 and Figure 8, the L-Unet model obtained the highest
values in the precision, MIoU and F1 metrics compared to the other models. The recall
value of L-Unet was 2.3% lower than that of Deeplab v3+, but the precision value of L-Unet
was 5.18% higher than that of Deeplab v3+. Because of the ambivalence between precision
and recall, L-Unet uses a small decrease in recall in exchange for a large increase in precision.
Finally, the F1 value of L-Unet improved by 1.39% compared to Deeplab v3+. It can be seen
that although L-Unet has a reduction in recall metrics compared to Deeplab v3+, the former
is still optimal.

3.4.3. Application Analysis

An image of Taoyuan Village in Qimen County, Huangshan City was selected for an
application analysis, mainly for testing the extraction results of the model for multiple
landslides. The image was from Google Earth with a spatial resolution of 4 m. This study
area is mainly mountainous, and in addition, it contains houses, roads, bare land and so
on. The baseline U-Net, Deeplab v3+, Liu et al. [21], DDCM-Net, MACU-Net and L-Unet
models were selected for comparisons for this area, and the results are shown in Figure 9.

As can be seen from the results in Figure 9, except for Figure 9h, the extraction
results of the other models had some obvious errors. The small negative samples in the
images of the training set caused the models to mistakenly extract features with similar
spectral information as landslides. As shown in Figure 9c,d,f,g, parts of the bare land were
incorrectly extracted as landslides. In Figure 9e, some of the landslide pixels were missed
and not extracted completely. L-Unet effectively avoided these misclassifications, so the
extraction results of landslides were more accurate. It can be seen that the overall extraction
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effect for landslides was satisfied. Moreover, it is worth mentioning that L-Unet extracted
more detailed edge information than the other models.

Precision Recall MIoU F1

Evaluation Indicators

60

65

70

75

80

85

90

FCN-8s

SegNet

PspNet

HRNet

Deeplab v3+

Liu et al.[21]

DDCM-Net

MACU-Net

L-Unet

Figure 8. Comparison of the results of models FCN-8s, SegNet, PspNet, HRNet, Deeplab v3+,
Liu et al. [21], DDCM-Net, MACU-Net and L-Unet for the four metrics precision, recall, MIoU and F1.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 9. Extraction results: (a) image; (b) label; (c) extraction results of the U-Net model; (d) extrac-
tion results of the Deeplab v3+ model; (e) extraction results of Liu et al.’s [21] model; (f) extraction
results of the DDCM-Net model; (g) extraction results of the MACU-Net model and (h) extraction
results of the L-Unet model.

3.4.4. Comparison of L-Unet with Other Models on a New Dataset

To test the generalization ability of the model, the Google Earth images in Guichi
District, Chizhou City, Anhui Province, were selected for validation. The imagery spatial
resolution was 4 m. We created a small landslide dataset by cropping the large imagery into
the images with a size of 512 × 512 pixels. This dataset has a total of 100 landslide images,
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70 of which were used for training and 30 of which were used for testing. The ground
truth was labeled by using a manual visual interpretation, the pixel value of the landslide
area was set to 255 and the pixel values of other objects were set to 0. Data enhancement
operations were performed, mainly including random 90°, 270° rotations, random crops,
random color transformations and random Gaussian noises. The results obtained from the
training on the original dataset were used as initialization weights to train the model on
this small dataset, and the obtained results are shown in Table 3.

Table 3. Comparison of the performance of different models on a new dataset.

Model Precision/% Recall/% MIoU/% F1/%

U-Net 81.67 73.03 62.28 77.10
FCN-8s 78.34 72.76 60.58 75.45

Deeplab v3+ 84.23 74.26 63.98 78.93
DDCM-Net 84.89 70.24 62.17 76.87
MACU-Net 80.37 74.03 62.69 77.07

L-Unet 86.24 76.82 66.03 81.26

From Table 3, it can be seen that our proposed model has a precision of 86.24%, a recall
of 76.82%, an MIoU of 66.03% and an F1 of 81.26%, obtaining the highest values in precision,
recall, MIoU and F1 metrics compared to other models. The L-Unet model is superior to
other models. This is consistent with the results we obtained for the original dataset.

4. Discussion

The U-Net model is shallow, and the continuous simple downsampling is likely to lead
to information loss and the inability to accurately locate the landslide areas. The L-Unet
model solves such problems by embedding the residual attention module in the down-
sampling process. The residual unit can deepen the network to fully extract the sample
features [21]. The combination with the CoordAttention mechanism enables the network
to continuously capture the location and channel information during the downsampling
process. Finally, the model uses the obtained information to precisely locate landslide areas.

In addition, the scales of landslides vary greatly in remote-sensing images. Accord-
ingly, extracting the multi-scale features of images helps to reduce the loss of spatial
information and improve the accuracy of landslide extraction. The MFF module is used in
L-Unet to fuse the landslide features of different scales and improve the model’s ability to
extract multi-scale information. In Table 2, we can see that Deeplab v3+ can obtain such
high recall values because the atrous spatial pyramid pooling (ASPP) [31] module can
obtain the rich multi-scale features of a target. In our model, the MFF module not only
obtains multi-scale information but also considers the correlation between convolutional
layers with different dilation rates.

In Table 3, the L-Unet model obtained the best score on a new dataset compared
to other state-of-the-art models. However, there are very few existing open landslide
datasets at present. The spatial resolutions of images play dominant roles in the accuracy
of landslide extraction. If we make a higher quality dataset to apply to our model, it will
inevitably improve the accuracy and efficiency of the model’s landslide extraction.

According to the above results, it can be seen that our model has advantages in
the accuracy of landslide extraction and distinguishing background information that is
similar to landslides. However, there are still a few errors in extraction. In fact, landslides
usually occur in areas with large topographic fluctuations. We can consider extracting the
topographic information from the digital elevation model (DEM) so as to further improve
the accuracy of the model.

5. Conclusions

In this paper, we proposed a new model for landslide extractions from remote-sensing
images based on the U-Net model that is named L-Unet. In the L-Unet model, the added
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residual attention network not only deepens the network depth but also makes the model
more perceptive of landslide features and reduces the interference of other features. The
added MFF module fuses the landslide features of different scales, expands the receptive
field and enhances the extraction ability of the model for multi-scale landslide information.
The experimental results show that the L-Unet model obtains the best results for our dataset
and effectively improves the accuracy of landslide extraction. For practical applications,
we need to make a dataset, and then we can simply obtain extraction results. Disaster
prevention and control departments can reduce losses of human lives and properties by
responding quickly to obtained results. In our future work, we will make a better dataset
with different resolutions and types and continue to evaluate the model using the dataset.
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