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Abstract: Gully erosion susceptibility (GES) maps are essential for managing land resources and
erosion control. Choosing the optimal horizontal resolution in GES mapping is a challenge. In
this study, the optimal resolution for GES mapping in a complex loess hilly area on the Chinese
Loess Plateau was tested using two machine learning algorithms. Unmanned aerial vehicle (UAV)
images with a 9 cm resolution and GNSS RTK field-measured data were employed as base datasets,
and 11 factors were used in the machine learning models. A series of horizontal resolutions, from
0.5–30 m, was used to determine which was the optimal level and how the resolution influenced
the GES mapping. The results showed that the optimal resolution for GES mapping was 2.5–5 m
in the loess hilly area, for both the random forest (RF) and extreme gradient-boosting (XGBoost)
machine learning algorithms employed in this study. High resolutions overestimated the probability
of gully erosion in stable regions, and it became difficult to identify gully and non-gully regions
at too-coarse resolutions. The variable importance for GES mapping changed with the resolution
and varied among variables. Slope gradient, land use, and contributing area were, in general, the
three most critical factors. Land use remained an important factor at all the tested resolution levels.
The importance of the slope gradient was underestimated at coarse resolutions (10–30 m), and the
importance of the contributing area was underestimated at resolutions that were comparatively fine
(0.5–1 m). This study provides an essential reference for selecting the optimal resolution for gully
mapping, and thus, offers support for approaches attempting to map gullies using UAV.

Keywords: gully erosion; resolution; machine learning; influencing factor; Loess Plateau

1. Introduction

Gully erosion is one of the most severe types of soil erosion [1,2] and is a threat to
the environment and society [3]. It affects nearly 1 billion hectares of land worldwide [4],
and its soil loss rate accounts for 10–94% of the total sediment production caused by water
erosion [5]. The gully erosion susceptibility (GES) map is a valuable tool for discovering
potential gully-prone areas and, thus, for helping to control gully erosion [6,7]. The selection
of resolution affects the accuracy of the modeling results, making the selection of the optimal
resolution one of the major challenges in GES mapping.

In previous studies, topographic thresholds, traditional statistical models, and machine
learning algorithms are usually used to predict gully location. Machine learning algorithms,
such as random forest (RF) [3,8], support vector machine (SVM) [9,10], boosted regression
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tree (BRT) [9,11], multivariate additive regression Spline (MARS) [3,8] and gradient-boosted
regression tree (GBRT) [12], do not require common assumptions regarding parameter
statistics and provide high-precision simulation results, and they are widely used in GES
mapping to evaluate the probability of gully occurrence. In these algorithms, the RF
algorithm has been applied in a wide range of applications and provides high simulation
accuracy [3,9,12]. The more advanced extreme gradient-boosting (XGBoost) algorithm was
recently applied and yielded good simulation results [13–15].

Factors such as topography, lithology, soil features, climate, hydrology, land use (LU),
and vegetation cover can affect the process and distribution of gully erosion; therefore, these
factors and related variables are usually used as independent variables in GES mapping [16].
The effect of factors on gully erosion is not constant. As studies by Rahmati et al. [11]
and Arabameri et al. [17] have shown, hydrology is the most critical factor affecting
GES mapping in northern Iran. Research by Gayen et al. [3] suggested that LU is the
most important factor in the Pathro River Basin of eastern India. Jiang et al. [18] and
Yang et al. [14] found that topography is the most critical factor in the Loess Plateau region.
Chowdhuri et al. found that Normalized Difference Vegetation Index (NDVI) was the
most critical factor in the eastern fringe area of the Chota Nagpur plateau. The sources of
data associated with these factors are extensive. Data for topographical and hydrological
factors are mainly obtained from topographical maps at various scales, the advanced
land-observing satellite (ALOS) DEM, and the advanced spaceborne thermal emission and
reflection radiometer (ASTER) DEM. LU and vegetation cover data are mainly obtained
from Sentinel-2A and Landsat images. Lithology and soil feature data are mainly obtained
from geological and soil maps at various scales. Therefore, most studies produce GES
maps at medium and low resolutions (10–30 m). In recent years, unmanned aerial vehicles
(UAVs) and light detection and ranging (LIDAR) technology have been used for mapping
at finer resolutions.

With the broad application of machine learning algorithms and various data sources,
performing accurate GES mapping has become an urgent task. The horizontal resolution
of data affects the detection and analysis of land surface features [19]. DEM and remote
sensing data at different resolutions can be used to identify various topographical, hy-
drological, and environmental factors to use as GES mapping parameters. Testing the
influence of resolution on GES mapping helps researchers understand the uncertainty of
gully erosion modeling and improves the mapping accuracy of the models [20]. Some
studies have suggested that the finer the resolution, the higher the accuracy of the GES
mapping. Lucà et al. [21] compared the impact of the resolution from 7.5 to 20 m on GES
mapping. They found that the larger the spatial resolution was for influential variables, the
lower the mapping accuracy and the extent of the most-susceptible classes. Other studies
have suggested that very-fine resolutions may not necessarily yield the best GES mapping
accuracy. For example, Gomez-Gutierrez et al. [22] compared the impact of the resolution
of 2 to 50 m on GES mapping and noted that the optimal resolution in the San Giorgio
basin and the Mula River basin was 4 m and 20 m, respectively. The selection of resolution
should be related to the size of the landform. Garosi et al. [23] found that a resolution of 10
m was most-suitable for GES mapping in the Ekbatan Dam Basin, based on the resolution
of 2 to 30 m. The gullies with high cross-sectional areas partly influenced the optimal
resolution. Therefore, scholars have different views on the influence of resolution on GES
mapping, and the optimal resolution in different regions is often variable. The range of the
detected resolution and the gully size may affect the judgment of the optimal resolution.
Additionally, most study areas have been relatively flat (e.g., areas in Italy, Spain, and Iran),
and the optimal resolution has not been tested in complex-terrain areas.

In recent years, the rapid development of UAV technology has made it very convenient
to obtain fine and diverse resolution data, and has greatly improved the detectable range
of resolution. In the Loess Plateau of China, the terrain is highly complex, and most of the
gullies are distributed on steep hillslopes. The expression of gully features may require fine
resolutions [24].
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This study aims to evaluate the impact of horizontal resolution (0.5–30 m) on GES
mapping in loess hilly regions where the terrain is highly complex. The results of this
study may provide a reference for selecting the optimal resolution for the GES mapping
and provide support for gully erosion management.

2. Materials and Methods
2.1. Study Area

The study area is the Mizhigou watershed (37◦41′ to 37◦43′N, and 109◦56′ to 109◦59′E),
with an area of 10.9 km2. This watershed is located in Shaanxi Province, a typical loess
hilly area (Figure 1). The average yearly precipitation is 430 mm; most of the rainfall occurs
from May to September, with heavy rains and frequent floods. The natural vegetation in
the study area is mainly herbaceous, with small quantities of shrubs and trees. The height
of vegetation is relatively homogeneous. The LU types are mainly grassland (67%) and
agricultural land (23%). The terrain here is highly complex. The average slope gradient is
28.7◦, and 27.1% of the hillslopes are steeper than 40◦. The main soil type is loess, with silt
size particles. This kind of soil is characterized by weak cohesion, high infiltrability, low
water retention, and high erodibility [25]. Gullies are widely distributed in the study area.

Figure 1. Study area. (a) Altitude surface of the study area based on UAV-sourced DSM and locations
of watershed and gullies sampled. (b) Photo of a typical gully. (c) Typical gully in UAV-sourced DOM.

2.2. Experimental Procedure

The experimental process includes the following six steps; see Figure 2. Step 1 involves
the acquisition of base data, including the gully erosion inventory map and data for the
factors that influence gully erosion at various resolutions. Step 2 is a multicollinearity
analysis, which ensures that the factors involved in the machine learning modeling are
independent of each other. Step 3 is building the ML model at various resolutions, and
the algorithms used in this step are RF and XGBoost. Step 4 involves using the receiver
operating characteristic (ROC) curve to evaluate the accuracy of each model and to evaluate
the robustness of the models at the optimal resolution. Step 5 includes generating GES
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maps at each resolution using the optimal model. In Step 6, the relative importance of
each influential factor is determined at each resolution. In our previous study [14], when
calculating the weight of factors based on the Gini index, the results obtained by RF and
XGBoost were consistent. Therefore, we decided to choose a model with higher simulation
accuracy to obtain the variable importance.

Figure 2. Study flow diagram.

2.3. Base Datasets and Data Processing

We used a UAV to obtain digital surface models (DSMs) and digital orthophoto maps
(DOMs) of the studied watershed in August 2019 at a spatial resolution of 9 cm. The type of
UAV used was a DJI4RTK, and control points were evenly distributed in the study area to
reduce the position offset error and increase the accuracy of data [26]. The flying altitude of
the UAV was 300 m, and the side overlap and front overlap were both more than 70%. The
weather conditions were good, with a clear, partly cloudy sky. The Pix4D mapper software
was used for data processing. Firstly, the acquired image was matched and calibrated.
Then, point clouds were generated from the calibrated image to create the 3D mesh, and a
3D model was built using the SfM method to generate a DOM and DSM. Based on the DSM,
a series of DEMs with various resolutions (0.5, 1, 2.5, 5, 10, 12.5, 15, and 30 m) was obtained.

2.4. Gully Erosion Inventory Mapping

A gully erosion inventory map shows the location of gullies, and is the basis for the
spatial modeling of gully erosion [11]. It was mainly obtained from a visual interpretation
based on a 9 cm DOM in this study. Our previous research [14] showed that the gully
erosion inventory mapping accuracy using UAV images was 96.78%, according to the
field-measured results using GNSS RTK (Figure 3). In this study, 482 gully polygons were
randomly selected, of which 337 (70%) were randomly selected as the training set for GES



Remote Sens. 2022, 14, 2580 5 of 19

map modeling, and the remaining 145 (30%) were used for model validation. Non-gully
polygonal regions were randomly selected to generate the same number of training and
testing sets in the watershed.

Figure 3. Field photographs of the gully in the study area. (a) Photo of a typical gully. (b) Photo of a
measured gully.

The length of these gullies ranged from a few meters to several hundred meters,
and the width ranged from a few meters to dozens of meters. The average length was
approximately 50 m, and the average width was approximately 15 m. Most of the gullies
are connected downstream of the drainage network, and the sediment produced by gully
erosion is quickly transported to other areas via the drainage network.

2.5. Factors That Influence Gully Erosion

The selection of influential factors is a critical step in GES map modeling, and it directly
affects the quality of the model and prediction accuracy [27,28]. Topographical, environ-
mental, hydrological, geological, and climatological conditions affect the initiation and
development of gully erosion. However, global consensus and standard methods for se-
lecting these factors have not yet been established [29]. Based on previous studies [9,30,31],
topographical, hydrological, and environmental factors were generally considered as the
most critical factors affecting gully erosion. Therefore, we selected altitude, slope gradient
(Slope), slope aspect (Aspect), plane curvature (PlC), profile curvature (PrC), contributing
area (CA), slope length and steepness (LS), topographical wetness index (TWI), distance
from streams (D_stream), land use (LU), and fractional vegetation cover (FVC) as param-
eters for GES mapping. The topographic factors were obtained based on the DEMs at
various resolutions. The other factors, at varied resolutions, were obtained by resampling
their highest-resolution datasets (Figure 4).

Specifically, we used surface analysis tools in the software ArcGIS 10.5 to generate
topographic factors, including slope gradient, slope aspect, plane curvature, and profile
curvature. We also used hydrological analysis tools to calculate the contributing area
using the same software. Land use and streams datasets were obtained from a visual
interpretation based on DOM, and the distance from streams was generated based on the
Euclidean distance tool in the software ArcGIS 10.5. LS and TWI were obtained according
to the algorithms provided by Zhang et al. [32] and Moore et al. [33], respectively. FVC was
calculated from the visible-band difference vegetation index (VDVI) (Equation (1)), based
on UAV-sourced DOMs. The value range of VDVI is [−1, 1]; it can be calculated according
to Equation (2) [34]:

FVC =(VDVI − VDVIsoil )/(VDVI veg − VDVIsoil

)
(1)

VDVI =
2 × ρgreen − ρred − ρblue

2 × ρgreen+ρred+ρblue
(2)

where ρgreen, ρred, and ρblue are the values of the green band, red band, and blue band,
respectively. VDVIsoil and VDVIveg are the VDVI values of bare soil and dense vegetation,
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respectively. The 5th and 95th percentile of the VDVI value were used as VDVIsoil and
VDVIveg, respectively.

Figure 4. Cont.
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Figure 4. Gully erosion influencing factors. (a) Slope gradient. (b) Altitude. (c) FVC. (d) LS. (e) Land
use. (f) Distance from stream. (g) TWI. (h) Contributing area. (i) Slope aspect. (j) Plan curvature.
(k) Profile curvature. (l) DOM.

We used ArcPy to realize the automatic extraction of influence factors; it is very
convenient for repetitive and cumbersome data processing tasks and can achieve a vari-
ety of processing work, such as geographic data management, data transformation, and
data analysis.

2.6. Multicollinearity of the Factors That Influence Gully Erosion

In a multiple regression model, incorrect prediction results will be obtained when there
is a linear relationship between two or more independent variables in the dataset; therefore,
it is usually necessary to perform a collinear analysis among the influential factors before
modeling [35]. When there is a high correlation between two variables in the dataset, those
specific variables need to be removed. Tolerance and variance inflation factor (VIF) are
two indexes used to evaluate collinearity among variables. In general, for the collinearity
values of TOL < 0.1 and VIF > 10 [17], the corresponding formulas are:

Tolerance = 1 − R2
j (3)

VIF =
1

Tolerance
(4)

where R2
j represents the coefficient of determination of explanatory variable j in the regres-

sion based on all the other explanatory variables.

2.7. Description of the Models
2.7.1. Random Forest (RF)

RF is a nonparametric multivariable model based on multiple decision trees. It is
commonly used in classification and regression tasks and can be applied for variable
selection, clustering, and interaction detections [11,36]. It is an effective method to solve
the problem of nonlinear higher-dimensional GES assessment. The RF algorithm generates
several weak classifiers based on decision trees by replacing and continuously changing
the factors that affect the target. Then, the final prediction results are output through a
comprehensive analysis of these weak classifiers. The prediction results of RF classification
are obtained via the simple majority voting method, and the results of RF regression are
obtained by calculating the average value of each classifier. The main advantages of the
RF model are as follows: (1) there is no need for assumptions about the data distribution;
(2) overfitting is avoided; (3) each subtree is constructed by randomly selecting a certain
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number of data and features, the correlations among the features of a single tree are very
low, and the RF system is highly diverse; (4) estimation errors are minimized by using
out-of-bag (OOB) data; (5) the output results are obtained by averaging over a large number
of trees, with low deviation and variance; and (6) excellent prediction performance can be
achieved [37].

The RF modeling process was implemented in Python 3.8. In the modeling process,
the number of trees, the number of factors, and the number of nodes are considered to
be hyperparameters that need to be tuned, and they control the complexity of the model.
Complex models often need more computing memory and time. The best model was
determined by using five-fold cross-validation.

2.7.2. Extreme Gradient Boosting (XGBoost)

XGBoost is an algorithm based on an improvement to traditional gradient boosting,
which was initially proposed by Chen and Guestrin [38]. XGBoost has won many data
science competitions and is one of the most advanced methods in machine learning. No-
tably, it has been one of the most widely used algorithms in recent years [13,39]. Individual
decision trees are serially trained so that each tree is an improved version of the previous
one, thus reducing the residuals and the error rate [40]. XGBoost includes several sub-
algorithms, such as sparsity-aware split finding, approximation, basic exact greedy, and
weighted quantile sketch procedures, which can efficiently determine the best splitting.
To avoid overfitting, XGBoost also introduces regularization to limit the complexity of
trees. Some models perform well in the training set but poorly in testing, indicating that
the model’s generalization ability is poor. The addition of regularization helps overcome
overfitting problems and improves the flexibility of the gully erosion prediction model. In
addition to regularization, shrinkage and column subsampling are also used to prevent
overfitting in XGBoost. Moreover, XGBoost provides scalability, sparse data processing,
comprehensive document availability, low computing resource requirements, and high
performance for different scenarios, and it is easy to implement [38]. XGBoost aims at
minimizing the following objective function:

Obj =
m

∑
i=1

l (yi, ŷi) +
K

∑
k=1

Ω( fk) (5)

The first term in this equation represents the loss function, which measures the differ-
ence between the actual value (yi) and the predicted value (ŷi), and the second one controls
the model complexity to avoid overfitting. Minimizing this objective function helps to
reduce generalization errors and improves computational efficiency.

In this study, XGBoost was implemented using the XGBoost Python packages in the
Python 3.8 environment. In the modeling process, the number of trees was set to 250, and
the other hyperparameters (e.g., max_depth, eta, gamma, lambda, alpha, colsample_bytree,
colsample_bynode) were tuned by using five-fold cross-validation.

2.8. Validation of the Modeling Results

The ROC curve method is used to assess probability prediction and statistical predic-
tion systems, and it has been widely used to evaluate the accuracy of models [41,42]. The
shape of the ROC curve represents the accuracy of the model, and an ROC curve near the
upper-left corner suggests that the accuracy of the model is high. Additionally, the area
under the curve (AUC) can be used to evaluate the advantages and disadvantages of a
model quantitatively, and an AUC = 0.5 suggests that the prediction effect of the model is
poor and at a level no better than random identification, for gully and non-gully pixels in
this case. An AUC = 1 indicates that the model can perfectly predict gully and non-gully
pixels [43]. The quantitative–qualitative relationship between the AUC value and predic-
tion accuracy is as follows: 0.5–0.6 is poor, 0.6–0.7 is average, 0.7–0.8 is good, 0.8–0.9 is very
good, and 0.9–1 is excellent [8]. In addition, after determining the optimal pixel size, the
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training and testing sets obtained for the best pixel size are changed three times to evaluate
the robustness of the model. The AUC can be calculated by the following equations:

TPR =
TN

TP + FN
(6)

FPR =
TN

FP + TN
(7)

AUC =
(∑ TP+∑ TN)

(P + N)
(8)

where TP is a true positive, TN is a true negative, FP is a false positive, and FN is a false
negative. P and N represent the presence and absence of gullies, respectively.

3. Results
3.1. Analysis of the Multicollinearity of Factors

Table 1 presents the collinear analysis results for each factor at various resolutions. The
minimum value of tolerance and the maximum value of VIF were 0.15 and 6.56, respectively.
These values indicate that there is no collinearity among the factors selected at various
resolutions, and that all factors can be used in GES mapping.

Table 1. Multicollinearity test among the factors that influence gully erosion at different resolutions.

Collinearity Statistics
with Resolution of

Influencing Factors

A B C D E F G H I J K

0.5 m
T 0.69 0.39 0.99 0.57 0.56 0.96 0.45 0.47 0.71 0.88 0.98

V 1.46 2.54 1.01 1.75 1.77 1.04 2.20 2.11 1.41 1.13 1.02

1 m
T 0.68 0.60 0.98 0.60 0.57 0.98 0.75 0.68 0.71 0.89 0.98

V 1.47 1.66 1.02 1.68 1.75 1.02 1.33 1.48 1.42 1.13 1.03

2.5 m
T 0.67 0.49 0.99 0.60 0.51 0.97 0.44 0.45 0.16 0.17 0.98

V 1.49 2.06 1.01 1.68 1.95 1.03 2.26 2.21 6.44 5.98 1.03

5 m
T 0.66 0.56 0.98 0.52 0.43 0.96 0.40 0.43 0.15 0.17 0.96

V 1.51 1.80 1.02 1.92 2.31 1.04 2.54 2.32 6.49 6.02 1.04

10 m
T 0.64 0.56 0.96 0.48 0.42 0.88 0.40 0.44 0.69 0.88 0.96

V 1.57 1.78 1.04 2.08 2.37 1.14 2.52 2.30 1.45 1.14 1.05

12.5 m
T 0.63 0.56 0.96 0.44 0.42 0.88 0.38 0.43 0.69 0.88 0.94

V 1.59 1.78 1.04 2.27 2.39 1.14 2.61 2.35 1.45 1.14 1.06

15 m
T 0.64 0.53 0.98 0.43 0.44 0.92 0.39 0.41 0.15 0.17 0.95

V 1.57 1.87 1.02 2.34 2.29 1.09 2.59 2.44 6.56 6.08 1.06

30 m
T 0.57 0.52 0.93 0.41 0.58 0.89 0.40 0.40 0.67 0.89 0.97

V 1.75 1.93 1.07 2.47 1.74 1.12 2.52 2.52 1.49 1.13 1.04

A: altitude; B: slope gradient; C: slope aspect; D: profile curvature; E: plan curvature; F: contributing area; G: TWI;
H: slope length; I: distance from streams; J: land use; K: fractional vegetation cover; T: tolerance; V: variance
inflation factor.

3.2. Impacts of Resolution on Modeling Accuracy

Figure 5 displays the predictive performance of the models at each resolution. The
results showed that with the coarsening of the resolution, the AUC increased at first and
then decreased, with a maximum value at a resolution from 2.5 m to 5 m. This finding
indicates that the finest resolution does not necessarily yield the best mapping accuracy,
and medium resolutions are often the best. Additionally, different algorithms do not affect
the selection of the optimal resolution. Notably, the overall AUC of XGBoost was higher
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than that of the RF algorithm, especially when the resolution was lower than 10 m. Thus,
the XGBoost algorithm is more suitable for mapping in the study area.

Figure 5. Validation of the ROC curve at each resolution. (a) XGBoost. (b) RF.

To verify the robustness of the models, we randomly selected three different samples
from the training and testing sets to evaluate the prediction accuracy at a resolution of
2.5–5 m (Figure 6). The results showed that the maximum difference of the AUC in different
random samples was less than 0.04. Thus, the two models exhibit good stability for three
random samples, and the results are similar.

Figure 6. Evaluation of the robustness of data sets with a resolution of 2.5–5 m. (a) RF—2.5 m.
(b) RF—5 m. (c) XGBoost—2.5 m. (d) XGBoost—5 m.
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3.3. Impacts of Resolution on GES Map

Based on the XGBoost algorithm, we created a GES map at each resolution and used
the natural breaks method to divide erosion areas in each map into five different classes:
“very low”, “low”, “medium”, “high”, and “very high” susceptibility (Figure 7). The
prediction of the very high- and high-susceptibility classes was consistent in the GES maps
at resolutions of 0.5–5 m. These areas were mainly distributed on both sides of stream
banks, in the middle of hillslopes, and in areas closely connected to the drainage network.
Notably, the classification of very low-susceptibility areas greatly varied. It had a smaller
range when the resolution was fine (0.5–1 m). The continuity of the 10–30 m map was poor,
and with the coarsening of the resolution, the maps became increasingly fragmented.

Figure 7. Gully erosion susceptibility maps using the XGBoost model at different resolutions.
(a) XGBoost—0.5 m. (b) XGBoost—1 m. (c) XGBoost—2.5 m. (d) XGBoost—5 m. (e) XGBoost—10 m.
(f) XGBoost—12.5 m. (g) XGBoost—15 m. (h) XGBoost—30 m.
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Figure 8 quantitatively shows the percentages of susceptibility classes at each res-
olution. The percentages of both the very high- and high-susceptibility classes did not
change much with a resolution ranging from 0.5 to 5 m. The model at this resolution
is consistent with gully simulation, and the area is seriously affected by gully erosion.
The very low-susceptibility class was more affected by the resolution. At fine resolution
(0.5–1 m), the percentage of this class was low, and more areas were predicted to be low-
and medium-susceptibility classes. When the resolution became coarser, from 5 m to 30 m,
generally speaking, the percentages of the very low- and very high-susceptibility classes
both decreased, and more areas were predicted to be moderately susceptible. This result
indicates that, as the resolution becomes coarser, the ability of the model to distinguish
between gully and non-gully areas decreases.

Figure 8. Percentages of susceptibility classes for each resolution.

3.4. Impacts of Resolution on Variable Importance

Figure 9 illustrates the relative importance of the influential variables at each resolution.
The greater the F-score, the greater its role in GES mapping, and the closer its relationship
with gully erosion. The results suggested that the slope gradient, LU, contributing area,
and plane curvature were the most critical variables, and their importance was different
at various resolutions. When the resolution was relatively fine (0.5–1 m), the relative
importance of the contributing area decreased, and altitude was a relatively important
factor. When the resolution was relatively coarse (10–30 m), the relative importance of the
slope gradient decreased, and LU gradually became the dominant factor.
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Figure 9. Variable importance at each resolution using the XGBoost algorithm. (a) Resolution—
0.5 m. (b) Resolution—1 m. (c) Resolution—2.5 m. (d) Resolution—5 m. (e) Resolution—10 m.
(f) Resolution—12.5 m. (g) Resolution—15 m. (h) Resolution—30 m.
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4. Discussion
4.1. Exploration of the Optimal Resolution

GES maps differed at various resolutions. There was little difference between the dis-
tribution and percentages of the very high- and high-susceptibility classes at fine resolution
(0.5–5 m). At the finest resolution (0.5–1 m), the very low-susceptibility class decreased sig-
nificantly in abundance, and more areas were classified as low- and medium-susceptibility
areas. Thus, gully features were not well-expressed at fine resolutions, and susceptibility
was overestimated in some stable areas where no gullies are located and the terrain is
relatively flat (Figure 4i). At coarse resolutions (10–30 m), the percentages of the very low-
and very high-susceptibility classes gradually decreased, and the maps became increasingly
fragmented. Notably, although the local variance is reduced at coarse resolutions and the
influence of detailed land surface information is limited, gully features are often overgen-
eralized [44], thus narrowing the gap between gully and non-gully areas on hillslopes.
The average size of gullies in this study is relatively small. With the coarsening of the
resolution, the number of gully pixels decreased, and some gully information was difficult
to express. The features of objects must be many times larger than the spatial resolution to
be consistently and accurately recognized [45]. Therefore, in the process of mapping, not
only should the landform features be effectively expressed, but the impact of detailed land
surface information should also be avoided in flat areas.

The properties of terrain and gullies may affect the selection of the optimal resolution.
Gorasi et al. [23] found that the optimal resolution of GES mapping in the Ekbatan Dam
Basin was 10 m, based on four machine learning models. The average slope gradient of
the ground is an important index to measure the terrain complexity [46]. In this study,
the average slope gradient was 28.7◦, greater than the value of 19◦ in their study. In areas
with complex terrain, factors are more affected by the changes in resolution [47], and the
effective expression of gully features may require a fine resolution. The average length
of gullies in this study area was approximately 50 m, the width was approximately 15 m,
and the gullies were mainly distributed on steep slopes (>30◦). In their study, gullies were
more than 300 m long, with a cross-sectional area of 2–10 m2, and these gullies were mainly
distributed on moderately steep slopes (>15◦). Overall, the smaller the gully size was, the
finer the optimal resolution. Gómez-Gutiérrez et al. [22] reached the same result. Therefore,
when our simulation object is a small gully (a few tens of meters long), we may need a finer
resolution (5 m or finer) to express the gully features more effectively, so that the model can
better identify the gully. When simulating larger gullies (a few-hundred-meters-long or
more), such a fine resolution is not necessarily needed to express the gully features, and
a coarser resolution (ten meters or coarser) may be enough for the model to identify the
gully effectively.

Additionally, the optimal resolution may vary for different prediction methods. Dai et al. [24]
found that the optimal resolution of gully mapping in loess hilly areas was 0.5–2 m based
on a multidirectional hill-shading method. This method uses illumination to identify slope
variation points in the gully and non-gully areas to extract gully regions [48]. Areas of steep
slope variation are more easily affected by resolution changes than are other regions [49,50];
therefore, a detailed DEM is necessary to describe some gully features. In this research,
the multiple regression method of machine learning was used. Gully and non-gully
areas (e.g., building land, cultivated land, and water bodies) were randomly selected as
distinguishing features in the study region, and influencing factors, such as topographical,
hydrological, and environmental factors, were used as independent variables to construct
a regression model. This approach weakened the impact of gully feature loss due to the
resolution becoming coarser. This change may be why this study does not require more
fine variable parameters.

4.2. Impacts of Resolution on Variable Importance

The variable importance results showed that slope gradient, LU, and contributing
area were the most critical factors related to the occurrence of gully erosion, which is a
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common geomorphological process. Most of the gullies in the study area are located in the
middle of hillslopes. The hillside process mainly controls the formation and development
of these landforms [22]. Flow velocity and discharge are the main factors that determine
the amount of slope erosion [5]. There is a significant runoff in the middle part of the
hillslopes on the Loess Plateau, and the hillslopes are steep. The energy of the slope flow
and the undercutting ability of surface runoff are considerable. When the shear force of the
slope surpasses the critical condition for gully development, the slope may be destroyed
and gradually develop into a gully [51]. The slope gradient controls the flow velocity of
the runoff, and the contributing area provides essential storage for surface runoff [52];
thus, the slope gradient and contributing area play important roles in the formation and
development of gullies. Land use is closely related to hydrological and geomorphological
processes which control the dynamics of surface runoff and sediments and impact slope
stability [53]. This is considered to be a critical driving factor affecting land degradation and
gully formation [2]; some studies have also proved that it is an important factor affecting
gully erosion occurrences [3,9].

When the variable resolution is fine, the importance of the contributing area decreases.
The main reason may be that fine resolutions are likely to highlight microtopography. For
example, small fluctuations may change drainage pathways [54], thereby affecting the influ-
ence of corresponding factors on the terrain, resulting in a weakened role in GES mapping.
Yang et al. [14] obtained the same result at a 1 m resolution based on three machine learning
algorithms. A fine resolution may provide information to describe the surface accurately,
but will not necessarily provide accurate topographical parameters [49,55]. At coarse res-
olutions (10–30 m), the importance of the slope gradient decreases. A steep change in
slope gradient is often associated with the occurrence of gullies. Some detailed terrain
structures will be lost or reduced at coarse resolutions, and the slope gradient variation will
decrease on hillslopes [56]. The model cannot effectively distinguish gully and surrounding
non-gully regions in these cases based solely on changes in the slope gradient, resulting in
the weakening of the role of the slope gradient in the GES mapping process (Figure 10).
Since the continuity of LU is high and the size of many land-type patches is large in the
study region, this may be the main reason for why the importance of LU is less affected
by resolution.

4.3. Implications

A GES map can be used to predict the probability of gully erosion occurrences in space,
which is the foremost step for the sustainable management of land degradation caused by
gully erosion. The selection of resolution affects the mapping accuracy, and there is still a
lack of research on the influence of resolution on the GES mapping process. This research
shows that, with changes in resolution, the distribution of the GES map and the variable
importance has changed to different degrees. The local terrain, landform features, and
prediction method are closely related to determining the optimal resolution. Additionally,
the occurrence of gully erosion is greatly affected by several factors, potentially due to the
region’s gully formation and development mechanisms. In the future, the main controlling
factors in different regions will be assessed to help understand the process of gully erosion,
to use data more reasonably and purposefully, and to manage and control the damage
caused by gully erosion effectively.
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Figure 10. Slope gradient at various resolutions.

5. Conclusions

In this study, the sensitivity of the horizontal resolution in GES mapping was tested
using machine learning algorithms. Based on the results of this study, the machine learning
modeling accuracy, the GES map, and the variable importance were influenced by resolu-
tion. It was not always true that fine resolutions provided the most-accurate results. The
optimal resolution was 2.5–5 m for GES mapping in the studied loess hilly area, based on
the detection at resolution levels from 0.5 to 30 m and two algorithms, including RF and
XGBoost. As the resolution became coarser, the prediction accuracy increased firstly and
then decreased. XGBoost had higher simulation accuracy, and when the training set and
testing set changed, all models had good robustness at the resolution of 2.5–5 m. Highly
detailed land surface information at a very-fine resolution (finer than 2.5 m) did not express
gully features better and will increase the risk of estimating gully occurrence in non-gully
areas. At coarser resolutions (coarser than 5 m), identifying gully and non-gully areas
was challenging, with many moderate gully susceptibility areas. Slope gradient, land use,
and the contributing area had a greater influence on gully erosion. The importance of the
contributing area decreased at the finer resolutions (finer than 2.5 m), and the importance of
the slope gradient decreased at coarser resolutions (coarser than 5 m). Land use remained
an important factor at all the detected resolutions.
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