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Abstract: Phase filtering is a vital step for interferometric synthetic aperture radar (InSAR) terrain
elevation measurements. Existing phase filtering methods can be divided into two categories:
traditional model-based and deep learning (DL)-based. Previous studies have shown that DL-based
methods are frequently superior to traditional ones. However, most of the existing DL-based methods
are purely data-driven and neglect the filtering model, so that they often need to use a large-scale
complex architecture to fit the huge training sets. The issue brings a challenge to improve the accuracy
of interferometric phase filtering without sacrificing speed. Therefore, we propose a sparse-model-
driven network (SMD-Net) for efficient and high-accuracy InSAR phase filtering by unrolling the
sparse regularization (SR) algorithm to solve the filtering model into a network. Unlike the existing
DL-based filtering methods, the SMD-Net models the physical process of filtering in the network
and contains fewer layers and parameters. It is thus expected to ensure the accuracy of the filtering
without sacrificing speed. In addition, unlike the traditional SR algorithm setting the spare transform
by handcrafting, a convolutional neural network (CNN) module was established to adaptively learn
such a transform, which significantly improved the filtering performance. Extensive experimental
results on the simulated and measured data demonstrated that the proposed method outperformed
several advanced InSAR phase filtering methods in both accuracy and speed. In addition, to verify
the filtering performance of the proposed method under small training samples, the training samples
were reduced to 10%. The results show that the performance of the proposed method was comparable
on the simulated data and superior on the real data compared with another DL-based method,
which demonstrates that our method is not constrained by the requirement of a huge number of
training samples.

Keywords: interferometric phase filtering; sparse regularization (SR); deep learning (DL); neural
convolutional network (CNN)

1. Introduction

Due to the all-weather and all-day characteristics of the synthetic aperture radar (SAR),
it plays an important role in remote sensing [1–5]. Simultaneously, the continuous develop-
ment of SAR has brought more and more development prospects to interferometric SAR
(InSAR). At present, InSAR has a wide range of applications such as surface deformation
monitoring and terrain mapping [6–11]. The basic principle of InSAR measurement tech-
nology mainly extracts the phase difference in the primary and secondary images through
the observation angle difference of the primary and secondary antennas, and finally inverts
the elevation information of the observation area by using the formula between the phase
difference and the height.
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In the whole InSAR processing flow, noise is inevitably added to the InSAR phase,
which can be divided into three categories: system noise, coherent noise, and noise intro-
duced by signal processing [12,13]. The presence of noise severely destroys the follow-up
phase unwrapping step, which reduces the accuracy of phase unwrapping and even ob-
tains the incorrect results [14,15]. Therefore, interferometric phase filtering is a necessary
processing step and has also become a very important technology in InSAR measurement.

Since the invention of InSAR technology, a large number of effective interferometric
phase filtering approaches have been developed, and the traditional methods fall into four
main categories (i.e., spatial domain local filters [16–20], spatial domain nonlocal (NL)
filters [21], transform domain local filters [22–26], and transform domain NL filters [27,28]).
The main idea of spatial domain local filters is to filter out the phase noise in the space
domain using a local window with pixels. A well-known spatial domain local filter is the
Lee filter [18]. Unlike spatial domain filters, the transform domain local filters denoise
the interferogram in the transform domain such as the Goldstein filter [26]. However, the
above two kinds of filters cannot balance the noise suppression ability and phase detail
preservation ability well. In order to further enhance the phase detail preservation capability
while ensuring effective noise suppression, the spatial and transform domain NL filters have
been proposed, which utilize the patch-by-patch method to measure the patch similarity
of the interferogram and the weighted average to restore the interferometric phase [14]
such as NL-InSAR [21] and InSAR-BM3D [28]. Although NL filters can consider both noise
suppression and phase detail preservation, they suffer from a huge computational cost
due to abundant similar block operations. Aiming to bridge this regret, a series of newly
advanced filtering algorithms have been proposed [29–34].

Over the past few years, deep learning (DL) has been successfully applied to in-
terferogram denoising due to the powerful feature extraction and calculation ability of
convolutional neural networks (CNNs) such as Phi-Net [31] and PFNet [30]. However,
there are two key problems with the vast majority of existing CNNs. On one hand, the
underlying structure of the purely data-driven CNN with a black-box nature is difficult to
interpret, that is, it lacks interpretability. Of course, interpretability is an important feature
in many fields because it relates to conceptual understanding and the development of
knowledge frontiers [35]. On the other hand, most modern CNNs need to learn a large
number of parameters, so they excessively depend on huge amounts of data. In other
words, a vast majority of CNNs improve the accuracy at the cost of increasing the network
complexity. However, in many fields such as in [36,37], the performance of the network
trained with small training sets will be significantly reduced, and even inferior to the
traditional methods.

In recent years, a promising technique that unrolls the SR algorithm into network
architectures was developed by Gregor et al. [38]. Compared to modern CNNs, the unrolled
network not only has a sufficient theoretical basis, but also contains fewer layers and
parameters, which do not rely on huge training sets. Therefore, some novel networks
based on the idea of unrolling the SR algorithm into CNN have been proposed such as
in [39,40]. However, since SR algorithm unrolling has not been applied to InSAR phase
denoising, we attempted to combine this technique into this field. Inspired by [39–42], we
designed an InSAR phase filtering model and established a model-driven CNN to filter the
noisy interferograms.

In this article, we propose a sparse-model-driven network (SMD-Net) for efficient
and high-accuracy InSAR phase filtering. In the method, we first establish a SR model for
interferometric phase filtering. Then, the SMD-Net is designed as an iteration-based CNN
architecture by unrolling each iteration process of the iterative shrinkage-thresholding
algorithm (ISTA) [43] to solve the phase filtering model into a block. In each block, a CNN
module with a local block and global context (GC) [44] block is established to adaptively
learn the sparse domain transform of each iteration in ISTA. Finally, due to dealing with
complex-valued data, our method is carried out by exploiting the idea of separating the
real and imaginary parts of the interferometric phase. In short, the SMD-Net models
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the interferometric phase filtering process, rather than relying entirely on data fitting
as most networks do and its network structure is simple. It thus improves the filtering
performance and computational efficiency at the same time. The experimental results on
the simulated and measured data demonstrate that the proposed method outperformed the
Lee filter [18], Goldstein filter [26], InSAR-BM3D filter [28], ISTA-based filtering method,
and the PFNet [30] in both precision and speed. Furthermore, the filtering performance of
the SMD-Net on 10% of the original training samples was also slightly better than that of
the PFNet. The main contributions of our work are as follows.

(1) We first built an InSAR phase filtering model. Then, the SMD-Net was designed based
on the idea of unrolling the ISTA algorithm of solving the model into a simple network
architecture, which enhanced the interpretability of the network. Subsequently, the
SMD-Net transformed the interferometric phase into a real matrix consisting of the
real and imaginary parts of the phase to achieve a complex-valued filtering operation.

(2) Unlike the traditional ISTA algorithm setting the sparse transform by handcrafting,
the SMD-Net exploits a CNN module to automatically learn the sparse basis operation,
which enhances the filtering performance.

(3) Plenty of simulated and measured experiments illustrate that the proposed method
achieves efficiency and high-precision filtering.

The rest of this article is organized as follows. Section 2 describes the InSAR phase
noise principle and the InSAR phase SR filtering model. We introduce the design of the
SMD-Net and loss function in Section 3. In Section 4, we describe a method of generating
the training and testing data, experimental details, and experimental metrics. Extensive
experiments on the simulated and real data are conducted in Section 5. Section 6 further
discusses the performance of the proposed method under small training samples. Section 7
presents our conclusions.

2. Principle and Model

In what follows, we provide a brief review of the formulation of the interferometric
phase and focus on designing the interferometric phase filtering model by analyzing the
formulation. This work is to prepare for the subsequent unrolling of the InSAR phase
filtering algorithm.

2.1. InSAR Phase Noise Principle

The interferogram Γ is defined as the conjugate product of a pair of single-look complex
SAR images.

Γ = z1·z∗2 = |z1·z∗2 |ej(ϕ) (1)

where z1 and z2 are the two complex SAR images; * indicates the complex conjugate; and
ϕ denotes the measured interferometric phase with noise. The phase noising model with
additive noise is as follows.

ϕ = ϕc + nγ (2)

whereϕc denotes the clear interferometric phase and nγ is the zero-mean additive Gaussian
noise associated with the coherence coefficient γ, which is expressed as:

γ =
E(z1·z∗2)√

E
(
|z1|2

)
·E
(
|z2|2

) (3)

The interferometric phase noise level is correlated with the coherence coefficient γ.
The higher the coherence coefficient, the lower the noise level.

It is worth noting that the value range of the interferometric phase is distributed in
(−π, π]. Hence, phase denoising is implemented in the complex field in for the subsequent
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phase unwrapping steps. Employing a mathematical manipulation on Equation (2), we
obtain the following expression.

p = ejϕ = ej(ϕc+nγ) = ϕr + jϕi (4)

where p indicates the interferogram and ϕr and ϕi denote the real and imaginary parts of
p, respectively. According to the analysis of [45], ϕr and ϕi can be given by.

ϕr= cos(ϕc + nγ) =Nc cos(ϕc) + nγc

ϕi= sin(ϕc + nγ) =Nc sin(ϕc) + nγs
(5)

where nγc and nγs are defined as the zero-mean additive noise, and Nc is a phase quality eval-
uation metric related to the coherent coefficient γ. Finally, combining Equations (4) and (5),
the formulation of the interferometric phase is derived as follows.

p = Nc·pc + n (6)

where n = nγc + jnγs denotes the noise of the interferogram and pc = ejϕc is the
ideal interferogram.

2.2. InSAR Phase SR Filtering Model

The conventional SR model for recovering a single from a measurement is as follows.

y = Φx + n (7)

where y ∈ RM is the measurement; Φ ∈ RM×N is dubbed the measurement matrix; x ∈ RN

is the recovered signal; and n ∈ RM is the noise.
According to Section 2.1, the InSAR phase filtering model can be modeled as.

p = Φpc + n (8)

Aiming to solve Equation (8), it is transformed into the following convex optimization
problem.

^
pc = argmin

pc

1
2
‖Φpc − p‖2

2 + λ‖ψpc‖1 (9)

where ψpc is a sparse representation of pc; ψ denotes a certain transform such as Wavelet,
Fourier and so on; and λ is a tunable soft threshold parameter.

The main iterative steps of solving Equation (9) by the ISTA algorithm are as follows.

h(k) = pc
(k−1) − αΦH

(
Φpc

(k−1) − p
)

(10)

pc
(k) = ψHsoft

(
ψh(k), λ

)
= ψHsign(ψh(k))max

{∣∣∣ψh(k)
∣∣∣− λ, 0

}
(11)

where α indicates the step size; sign(·) denotes a sign function; ΦH is the conjugate trans-
pose of Φ; and h(k) is the residual error in iteration k. However, the sparse transform ψ

and parameters such as α and λ are hand-crafted, which results in the algorithm being
nonadaptive. Moreover, ISTA usually suffers from a huge calculative burden due to its
large number of iterative steps.

We chose the identity matrix as the measurement matrix Φ by the formulation of the
interferometric phase. It can be seen from the above analysis that the phase filtering is
operated in the complex domain to achieve high-precision phase unwrapping. Therefore,
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taking advantage of the idea of separating real and imaginary parts, the noisy phase p, the
ideal phase pc, and the measurement matrix Φ are transformed as

pR =

(
ϕr
ϕi

)
, pcR

=

(
ϕcr
ϕci

)
(12)

ΦR =

(
Φr −Φi
Φi Φr

)
(13)

where ϕcr and ϕci are the real and imaginary parts of the ideal interferogram pc, and Φr
and Φi denote the real and imaginary parts of the measurement matrix Φ, respectively.

In the end, the filtered interferometric phase is obtained by the real part ϕ′r and
imaginary part ϕ′i of the recovered interferometric phase as follows.

ϕ′ = ∠
(
ϕ′r + jϕ′i

)
(14)

3. Methodology

According to the phase filtering model established in Section 2.2, which aimed at
performing a fast yet accurate filtering method, we propose a sparse-model-driven network
(SMD-Net) for efficient and high-accuracy InSAR phase filtering by combining the inter-
pretability and fewer parameters of SR and the speed advantage of the CNN. Inspired by
the idea of the unrolled SR algorithms, the designed network casts the phase filtering model
into the unrolled network and implements the complex operation of the unrolled network.
In the filtering process shown in Figure 1, first of all, the SMD-Net is trained by employing
the real and imaginary parts of the training datasets obtained by Equation (12). Then, the
real and imaginary parts of the noisy interferograms (testing data) are entered into the
trained SMD-Net, and the filtered real and imaginary parts corresponding to the input
are recombined into the estimated interferometric phase using Equation (14). Finally, the
filtered phase patches are spliced together by using an image fusion algorithm. Next, we
will introduce this section in detail from the design of the SMD-Net and the loss function.

Figure 1. The flow chart of the interferometric phase filtering via the SMD-Net.
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3.1. Network Architecture
3.1.1. The SMD-Net Architecture

Nowadays, some phase filtering methods [29–31] based on DL have achieved a better
filtering performance than conventional filtering approaches. Nevertheless, they are purely
data-driven, which means that these networks rely on a huge data volume and their
underlying structures are difficult to interpret. In addition, these networks generally consist
of many layers and learn a large number of parameters, which lead to great increases in the
computational burden of the network. Considering that SR algorithms model the physical
processes underlying the problem and a few parameters, we designed the SMD-Net by
employing the idea of unrolling the ISTA algorithm. Unlike the existing based-DL phase
filtering methods, the SMD-Net focuses on the interferometric phase filtering model rather
than relying entirely on the data fitting and its network structure is simple. It thus is
expected to improve the filtering performance and computational efficiency at the same
time. The architecture of the SMD-Net is shown in Figure 2.

Figure 2. The architecture of the SMD-Net.

In the SMD-Net, each network block is equivalent to an iterative process in the
traditional ISTA algorithm. To improve the filtering performance and computational
efficiency, we exploited a CNN module that automatically learns the sparse transform
instead of the artificial sparse transform in the traditional ISTA algorithm. The CNN
module is shown in Figure 3.

Figure 3. The CNN module in the kth block.

From each block in Figure 2, ℵ(·) and ℵ−1(·) functions in the CNN module replace the
sparse basis ψ and the conjugate transpose of ψ in the traditional ISTA, respectively. Thus,
Equation (9) is transformed as

^
pc = argmin

pc

1
2
‖Φpc − p‖2

2 + λ‖ℵ(pc)‖1 (15)

The iterative process in ISTA converts to each block operation in the SMD-Net. Now,
we can take the kth block as an example for detailed analysis.
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Step 1: The SMD-Net transfers the model parameters of block k − 1 corresponding to
the ISTA algorithm parameters to block k by making use of back-propagation. Then, h(k) is
updated by

h(k) = pc
(k−1) − αΦH

(
Φpc

(k−1) − p
)

(16)

where α indicates the step size; ΦH is the conjugate transpose of Φ; and h(k) is the residual
error in the kth block.

Step 2: In order to satisfy the second term of Equation (15), (i.e., the sparse constraint).
In the first stage of the CNN module, h(k) is sparsely represented as ℵ

(
h(k)

)
ℵ(·) is a

function that automatically learns the sparse domain.
Step 3: The CNN module takes ℵ

(
h(k)

)
and λ as inputs. The kth filtered result in the

sparse domain is calculated by

s(k) = soft
(
ℵ
(

h(k)
)

, λ
)
= sign(ℵ

(
h(k)

)
)max

{∣∣∣ℵ(h(k)
)∣∣∣− λ, 0

}
(17)

Step 4: The ℵ−1(·) function is designed on the constraint of ℵ−1(·)×ℵ(·) = I to obtain
the kth filtered result in the spatial domain. The result is obtained by

pc
(k) = ℵ−1

(
s(k)
)

(18)

where ψpc is a sparse representation of pc; ψ denotes a certain transform such as Wavelet,
Fourier and so on; and λ is a tunable soft threshold parameter.

The SMD-Net is a combination of the merits of modern CNN and the ISTA algorithm.
On one hand, the CNN can quickly process the operations between network layers, which
makes up for the disadvantage of traditional ISTA algorithms relying on a large number of
iterations, thus improving the computational efficiency. On the other hand, interpretability
and a few parameters with specific meanings of the ISTA algorithm overcome the drawback
that the CNN learns abundant parameters using a large amount of training data and
improves the accuracy and the stability of the method.

3.1.2. CNN Module Architecture

To achieve the most suitable sparse representation of h(k) and enhance the performance
of the SMD-Net, we exploited a CNN module to automatically learn the sparse transform
instead of the traditional hand-crafted presets one. The CNN module is shown in Figure 3,
and it contains the sparse transform ℵ(·), soft(·) function, and inverse transform ℵ−1(·).
The front end of ℵ(·) is a local feature extraction module. In order to combine the global
phase information, a GC block [44] is connected to the back end of ℵ(·) to extract the global
feature of the phase. ℵ(·) can be represented by the following expression.

ℵ
(

h(k)
)
= GC

(
δ× Γ1h(k) + (1− δ)× Γ2ReLU

(
Γ1h(k)

))
(19)

where Γ1 represents a convolution operator with Mf filters of the size Ms ×Ms; Γ2 is another
convolution operator corresponding to Mf filters of the size Ms ×Ms ×Mf; δ denotes the
weight; ReLU (x) = max (0, x); and GC(·) represents a GC block.

Moreover, the inverse transform function ℵ−1(·) is the mirror-symmetrical architecture
of ℵ(·). The constraint ℵ−1(·) × ℵ(·) = I is required to obtain the filtered phase in the
spatial domain. The two convolution operations in ℵ−1(·) are the same as in ℵ(·), but the
order is switched.

In the kth block of the SMD-Net, Equation (15) can be written as

pc
(k) = argmin

pc

1
2

∥∥∥pc − h(k)
∥∥∥2

2
+ λ‖ℵ(pc)‖1 (20)
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Finally, according to ℵ(·) and ℵ−1(·), Equation (15) can be expressed in the following form.

pc
(k) = ℵ−1

(
soft

(
ℵ
(

h(k)
)

, λ
))

(21)

The CNN module is exploited to automatically learn the appropriate sparse basis and
parameters, which not only bridges the regret of the hand-crafted setting in the conventional
ISTA, but also enhances the performance of the SMD-Net for InSAR phase filtering.

3.2. Loss Function

The SMD-Net is trained with the training data {pi, pci}
Ntr
i=1, in which pi and pci are the

measurement and the labels, respectively, and Ntr is the number of the training samples.
Then, the loss function is defined as:

loss =
ρ1

Ntr

Ntr

∑
i=1

∥∥∥∥^
pci
− pci

∥∥∥∥2

2

+
ρ2

N × Ntr

N

∑
k=1

Ntr

∑
i=1

∥∥∥ℵ−1
(
ℵ
(

h(k)
i

))
− h(k)

i

∥∥∥2

2

(22)

where N denotes the total number of the SMD-Net block; ρ1 and ρ2 indicate the weight

parameters of the two constraint items;
^
pci

and pci
are the ith interferogram estimated; h(k)

the ith ideal interferogram; and h(k)
i represents the residual error in the kth SMD-Net block.

4. Experiments
4.1. Experimental Data

It is well-known that training a deep network requires at least a few hundred or
more training datasets with labels. Of course, training the SMD-Net also needs enough
interferograms with noise corresponding to the ideal interferograms. In order to obtain a
large number of labeled training sets, we generated abundant noisy interferograms with
corresponding ideal interferograms by utilizing a digital elevation model (DEM). This is
helpful in enhancing the phase detail characteristic similarity between the simulated and
measured interferograms [46,47]. The simulated interferometric phase can be obtained
as follows:

ϕc = arg
(

ej2π(H/ha)
)

(23)

where H is the height value of the DEM; arg(·) represents the complex argument operator;
and ha indicates the ambiguity height, which was set to 92.13 m and was consistent with
the measured InSAR data used in subsequent experiments.

According to the formulation of the interferometric phase in Section 2.1, the level
of noise is related to the coherence coefficient γ, and the higher the coherence value, the
less the noise in the InSAR phase data. Hence, interferograms with different coherence
coefficients were simulated in order to enhance the generalization ability of the network.
The coherence coefficients were in the range of [0.5, 0.95] and the interval was 0.05, which is
helpful in that the network adapts to the noise level of a large number of real interferograms.

The generation manner of the simulated training sets is as follows. A simulated clean
interferogram, shown in Figure 4b, is generated by employing the DEM (as illustrated in
Figure 4a) of the eastern part of Turkey with the size of 2048 × 2048 from the SRTM 1Sec
HGT based on Equation (23). Ten noise interferograms were generated by adding different
levels of noise whose coherence coefficients were [0.5, 0.95] to the clean interferograms.
Noisy interferograms with coherence coefficients of 0.5 and 0.95 are shown in Figure 4c,d.
In this paper, we divided the whole interferogram into interferogram patches with the size
256 × 256 with a 0.5 overlap rate to obtain enough training sets and improve the computa-
tional efficiency. Among them, each noise interferogram with a coherence coefficient was
cropped into a group containing 225 patches. Hence, the total number of interferogram
patches with 2250 patches contained ten groups.
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Figure 4. (a) The DEM used to generate the training sets; (b) clean interferogram generated by (a);
(c) noisy interferogram with a coherence coefficient of 0.95; (d) noisy interferogram with a coherence
coefficient of 0.5.

Figure 5a shows the DEM with the size of 1024 × 1024 from SRTM 1Sec HGT, which
was used to generate the testing data illustrated in Figure 5b. Ten noise interferograms
with different coherence coefficients were obtained by adding noise in the same way as
the training data, among which the coherence coefficients of 0.5 and 0.95 are shown in
Figure 5c,d. These testing interferograms with the different noise levels were also cut into
490 patches like the training data.

Figure 5. (a) The DEM used to generate the testing sets; (b) clean interferogram generated by (a);
(c) noisy interferogram with a coherence coefficient of 0.95; (d) noisy interferogram with a coherence
coefficient of 0.5.
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4.2. Experimental Details

In this article, we analyzed the performance of the SMD-Net on the experimental
results of the simulated and measured data. The proposed method outperformed the
previous three widely-used methods (i.e., the Lee filter [18], Goldstein filter [26], and
InSAR-BM3D filter [28]) and the two methods based on DL (Phi-Net [31] and PFNet [30]).
For a fair comparison, all experiments were carried out on an Inter® Core™ i7-2790K CPU
with 4 Gb random access memory (RAM) and an NVIDIA GeForce GTX 980 Ti GPU, where
the previous three widely-used methods were performed in MATLAB R2016b and the
proposed method was tested in Pytorch.

Inspired by the work of [39], the SMD-Net contained nine blocks (i.e., nine iterations),
each of which had the same network structure as follows: Γ1 is a convolution operator
with 32 filters of the size 3 × 3; Γ2 is another convolution operator corresponding to
32 filters of the size 3 × 3 × 32. In our experiments, the SMD-Net was trained with the
first 2000 interferograms of the training sets obtained in Section 4.1 by utilizing the Adam
optimization [48] with a batch size of two. We set the initial learning rate, λ, α, and δ as
0.0001, 0.01, 0.2, and 0.1, respectively.

4.3. Evaluation Metrics

The objective of phase filtering is to suppress noise and preserve interferometric phase
details as much as possible. Therefore, the precision of a filtering approach is evaluated by
considering both the denoising ability and the phase detail preservation ability. Moreover,
the computational complexity is also an important problem for phase filtering, so the
evaluation of computational efficiency is essential. In order to compare the performance
of filtering methods more intuitively, we adopted two evaluation methods based on the
image and data, namely, qualitative evaluation and quantitative evaluation. Qualitative
evaluation is implemented directly by the naked eye, which is highly subjective and
the evaluation results are not entirely desirable. In contrast, quantitative evaluation has a
certain theoretical basis, so the evaluation results are highly reliable. In this paper, the mean-
square error (MSE) [49] representing the difference between the filtered interferometric
phase and the corresponding ground truth, the number of residues (NOR) [50] used to
reflect the denoising ability of a filtering method, the mean structural similarity index
(MSSIM) [51] reflecting the phase detail feature preservation ability of a filtering method,
and running time (T) were adopted to assess the experiments on the simulated data. In
view of lacking the ground truth of the real InSAR data, the no-reference metric Q [52]
is a quantitative assessment index of balancing between phase detail preservation and
denoising, and the higher this is, the more powerful the phase detail preservation capacity.

5. Results
5.1. Results on the Simulation Data

After obtaining the trained network, in the testing stage, a noisy interferogram with a
coherence coefficient of 0.5 shown in Figure 6b from the simulated testing sets was used to
qualitatively assess the performance of the proposed method in this article. Figure 6a is
the corresponding reference interferogram. In order to validate the proposed method, we
compared it with the Lee filter [18], Goldstein filter [26], InSAR-BM3D filter [28], traditional
ISTA algorithm [43], Phi-Net [31], and PFNet [30]. All filtered results are illustrated in
Figure 7. Figure 7(a1–g1) represents the filtered interferograms of the seven approaches,
respectively. Qualitative evaluation with the naked eye showed that the result of the
proposed method was closest to the ideal interferogram shown in Figure 6a. We calculated
the difference phases of the seven filtered results and the corresponding ideal interferogram,
respectively, and show the difference images in Figure 7(a2–g2). From Figure 7(a2–g2), we
can see that the difference image of the proposed method was closest to zero, which further
verified that the filtered result obtained by the proposed method was most similar to the
ideal interferogram. Moreover, the SSIM maps shown in Figure 7(a3–g3) were computed to
assess the capability of the phase detail preservation, where it can be seen that the SSIM
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map of the proposed method (Figure 7(g3)) had the most regions whose values were close
to 1 amongst all of the testing methods. The above preliminary comprehensive qualitative
analysis showed that the proposed method had the best visual performance in both the
suppression noise and phase edge detail preservation.

Figure 6. A simulated testing interferogram patch: (a) Clean interferogram patch; (b) noisy interfero-
gram patch with a coherence coefficient of 0.5.

The qualitative evaluation is too subjective and unstable, and testing only a noisy
interferogram is haphazard. Therefore, we calculated the mean MSE and MSSIM of all
results obtained by the experiments on all of the testing sets with the same coherence
coefficients, and these results are shown in Figure 8. In Figure 8, we can intuitively see
that the MSE of the proposed method was lower and the MSSIM was higher than the six
reference methods. This demonstrates that the proposed method has the characteristics of
the best noise suppression and phase detail feature preservation capabilities among the
seven methods.

Finally, the mean values of all metrics are presented in Table 1. In Table 1, the proposed
method had the highest MSSIM, lowest MSE, and NOR among the seven methods. Through
a comprehensive comparison, the performance of the proposed method was optimal among
the seven methods. In detail, the NORs of the proposed method, InSAR-BM3D, Phi-Net,
and PFNet were equal to 0, which demonstrates that the denoising ability of the four
methods is powerful. However, the proposed method could better balance between the
noise reduction and phase edge feature preservation because it had the highest MSSIM
and the lowest MSE. Furthermore, the running time (T) of the proposed method was the
shortest. Compared to Phi-Net and PFNet, the mean T of the proposed method was 87.2%
and 85.5% faster, respectively. This means that the proposed method had the most powerful
computational capability among the seven methods.
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Figure 7. Cont.
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Figure 7. The analysis of the simulated interferogram patch: (a1–g1) Filtered interferograms
of the Lee filter, Goldstein filter, InSAR-BM3D filter, ISTA, Phi-Net, PFNet, and the proposed
method; (a2–g2) difference images of Figure 6a and (a1–g1) in sequence; (a3–g3) SSIM maps of
Figure 6a and (a1–g1), respectively.

Table 1. The metrics of the seven methods on the simulated interferogram. MSSIM is the core
accuracy index. T is the speed index.

Methods MSE (Rad2) NOR MSSIM T (s)
Lee [18] 1.62 293.48 0.36 4.39

Goldstein [26] 1.24 91.12 0.50 5.41
InSAR-BM3D [28] 0.63 0 0.74 6.97

ISTA [43] 1.13 185.34 0.51 9.73
Phi-Net [31] 0.66 0 0.74 0.86
PFNet [30] 0.54 0 0.79 0.76

SMD-Net (Ours) 0.50 0 0.81 0.11
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Figure 8. The metrics of the seven methods on the simulated interferograms with ten coherence
coefficients: (a) mean MSE; (b) mean MSSIM.

5.2. Results on the Real Data

In order to validate the performance of the proposed method in real data, we em-
ployed two measured interferograms with the size of 512 × 512 pixels to perform the test
experiments. As shown in Figure 9, these were provided by the Sentinel-1 SAR satellite. In
order to prove the filtering performance of the proposed method in different shapes and
different coherence areas, Figure 9a,b shows a high-coherence area A with a dense fringe
and low-coherence area B with flatness, respectively.

Figure 9. The measured interferograms: (a) Area A with high coherence; (b) area B with low coherence.

The seven methods were used in area A, as shown in Figure 9a and the results are
shown in Figure 10a–g, respectively. From the perspective of vision, the proposed method
has a more powerful noise reduction capacity than the Lee filter, Goldstein filter, InSAR-
BM3D filter, and traditional ISTA. Compared to Phi-Net and PFNet, their denoising abilities
were comparable, but it can be seen from the black rectangles in Figure 10e–g that the phase
detail feature preservation ability of the proposed method was stronger.
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Figure 10. The filtering results obtained by processing Figure 9a using the seven methods: (a) fil-
tering interferogram of the Lee filter; (b) filtering interferogram of the Goldstein filter; (c) filtering
interferogram of the InSAR-BM3D filter; (d) the filtering interferogram of ISTA; (e) the filtering
interferogram of Phi-Net; (f) the filtering interferogram of PFNet; (g) the filtering interferogram of
the proposed method.
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Next, we computed the number of residues (NOR), the no-reference metric Q, and
the running time (T), listed in Table 2, to assess the performance of the proposed method
more accurately. From Table 2, it can be seen that the NOR of the proposed method was
lower than that of the Lee filter, Goldstein filter, InSAR-BM3D filter, and ISTA algorithm,
and its metric Q was higher than that of the four methods. This strongly proves that our
method was superior to the four reference methods in both the noise suppression and
preservation of edge detail. Furthermore, compared with the Phi-Net and PFNet, the NOR
of the proposed method was higher, but its metric Q was 9.9% and 7.8% higher, respectively,
which demonstrates that the proposed method was superior to the Phi-Net and PFNet in
the phase edge detail preservation (i.e., it provided a well-balanced noise reduction and
fringe detail preservation). From the perspective of processing efficiency, the running time
of the proposed method was the shortest with only 1.43 s among the seven methods and
was 51.9% faster than the PFNet. In conclusion, the proposed method performed better
than the six reference approaches in both the filtering performance and speed.

Table 2. The metrics of the seven methods on the measured interferogram of area A. Metric Q is the
core accuracy index. T is the speed index.

Methods NOR Metric Q T (s)
Lee [18] 2506 30.86 16.70

Goldstein [26] 1404 48.73 22.00
InSAR-BM3D [28] 66 71.38 31.26

ISTA [43] 12 54.21 81.67
Phi-Net [31] 2 82.30 11.90
PFNet [30] 0 83.87 2.97

SMD-Net (Ours) 6 90.43 1.43

Area A is a high-coherence area with dense fringe. Therefore, in order to prove the
adaptability of the proposed method to different terrain regions with different levels of
noise, we selected a flat area (area B shown in Figure 9b) of low coherence to experiment
further. The filtering results of the seven methods are shown in Figure 11a–g. From
Figure 11a–g, we can see that our method offers the best-balanced noise suppression
and the preservation of the phase edge texture. In more detail, the denoising ability of
the proposed method was obviously stronger than the three widely-used methods. The
traditional ISTA algorithm lacks a denoising ability, but also suffers from a serious loss
of phase details. As shown in the black rectangles in Figure 11e–g, compared with the
Phi-Net and PFNet, it was obvious that the proposed method preserved the phase detail
features more completely, while the PFNet filtering excessively resulted in a serious loss of
phase details. Similarly, the indicators of all of the results obtained by the seven methods
were calculated for a quantitative assessment and are listed in Table 3. The performance
of the proposed method was obviously better than that of the three widely-used methods,
the ISTA algorithm and Phi-Net. Then, the proposed method has a 19.8% higher metric
Q compared with PFNet. Combined with the quantitative indexes of area A and area
B as shown in Tables 2 and 3, we can see that the performance reduction in the PFNet
was significantly higher than that of the proposed method. This proves that the proposed
method had better generalization.
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Figure 11. The filtering results obtained by processing Figure 9b using the seven methods: (a) the
filtering interferogram of the Lee filter; (b) the filtering interferogram of the Goldstein filter; (c) the
filtering interferogram of the InSAR-BM3D filter; (d) the filtering interferogram of ISTA; (e) the
filtering interferogram of the Phi-Net; (f) the filtering interferogram of the PFNet; (g) filtering
interferogram of the proposed method.
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Table 3. The metrics of the seven methods on the measured interferogram of area B. Metric Q is the
core accuracy index. T is the speed index.

Methods NOR Metric Q T (s)
Lee [18] 5980 25.67 18.36

Goldstein [26] 4430 44.55 22.97
InSAR-BM3D [28] 444 65.82 29.45

ISTA [43] 203 41.08 82.85
Phi-Net [31] 70 63.96 6.79
PFNet [30] 10 74.10 2.87

SMD-Net (Ours) 81 88.76 1.77

6. Discussion

In order to further analyze the performance of the SMD-Net under the small training
samples, in the 10 groups of interferogram patches in Section 4.1, 200 interferogram patches
were selected starting from the first interferogram patch in each group at an interval of
10 interferograms as new training sets. Then, the SMD-Net was retrained with the training
sets. The indicators of the testing results on the simulated data are listed in Table 4. As
can be seen in Table 4, the MSE of the proposed method was 9.3% higher, but the MSSIM
of the proposed method was equal to that of PFNet and its T was 85.5% faster. Therefore,
it can be seen that the performance of the SMD-Net trained with 200 training samples
was comparable to the PFNet trained with 2250 training samples. Unlike the PFNet, the
performance of the SMD-Net was not constrained by the requirement of the data volume.

Table 4. The metrics of the PFNet trained with 2250 samples and the SMD-Net trained with 200 sam-
ples on the simulated data. MSSIM is the core accuracy index. T is the speed index.

Method Samples MSE (Rad2) NOR MSSIM T (s)
PFNet [30] 2250 0.54 0 0.79 0.76

SMD-Net (Ours) 200 0.59 0 0.79 0.11

Like the simulated data, we processed the measured data utilizing the SMD-Net
trained with 200 training samples to analyze the filtering performance of the proposed
method. The filtering result of area A (Figure 9a) is shown in Figure 12b, and we can see
intuitively from the black rectangles in Figure 12a,b that the phase detail features of the
result obtained by our method were better preserved. Next, a flat and low-coherence area
B (Figure 9b) was processed to prove the generalization of the proposed method. The black
rectangles in Figure 12c,d also showed that the proposed method had a stronger phase
edge texture preservation capability.

Furthermore, the quantitative indicators of the two areas were calculated and are listed
in Tables 5 and 6. Tables 5 and 6, compared with the PFNet, it could be observed that the
NORs of the proposed method were higher in both areas, but their metric Qs were higher.
This indicates that the PFNet caused the serious loss of phase fringe detail information
due to over filtering and its phase detail feature preservation capability was inferior to the
proposed method. In addition, we could calculate that the metric Qs of the results obtained
by processing area A and area B with the proposed method were 5.6% and 17.1% higher
than that of the PFNet, respectively. To sum up, it can be seen that the filtering performance
of the SMD-NET trained with 200 training samples outperformed that of the PFNet trained
with 2250 training samples.
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Figure 12. The filtered results obtained by processing area A and area B: (a) Filtered result of area
A utilizing the PFNet trained with 2250 training samples; (b) the filtered result of area A utilizing
the proposed method trained with 200 training samples; (c) the filtered result of area B utilizing the
PFNet trained with 2250 training samples; (d) the filtered result of area B utilizing the proposed
method trained with 200 training samples.

Table 5. The metrics of the PFNet trained with 2250 samples and the SMD-Net trained with 200 sam-
ples on area A. Metric Q is the core accuracy index. T is the speed index.

Methods Samples NOR Metric Q T (s)
PFNet [30] 2250 0 83.87 2.97

SMD-Net (Ours) 200 14 88.60 1.52

Table 6. The metrics of the PFNet trained with 2250 samples and the SMD-Net trained with 200 sam-
ples on area B. Metric Q is the core accuracy index. T is the speed index.

Methods Samples NOR Metric Q T (s)
PFNet [30] 2250 10 74.10 2.87

SMD-Net (Ours) 200 126 86.78 1.45

7. Conclusions

In this article, we propose a sparse-model-driven network (SMD-Net) for efficient
and high-accuracy InSAR phase filtering. The SMD-Net was designed by casting the
mathematical derivation steps of the traditional ISTA algorithm into the network structure.
Unlike the ISTA algorithm, in each block of the SMD-Net, a CNN module was established to
adaptively learn the sparse transform instead of the hand-crafted setting. The SMD-Net not
only significantly reduced the network complexity, but was also combined with the merit
of automatically learning the parameters and sparse transform of CNN. It can thus improve
the filtering performance and speed at the same time. Finally, plenty of experiments were
performed to validate the proposed method.
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We assessed the proposed method qualitatively and quantitatively on the simulated
and measured InSAR data. The experimental results on the simulated and measured data
demonstrated that the proposed method could better balance the abilities of the noise
suppression and phase fringe texture preservation than the several reference filtering
methods. In addition, the speed of the proposed method was very fast. Compared with
the PFNet, the SMD-Net was 85.5% and 51.9% faster on the simulated and measured data,
respectively. Aiming to validate the performance of the proposed method was not limited
by the requirement of the number of training samples, so the experiments were carried out
again when the number of training samples was decreased to 10%. Compared with the
PFNet trained with 2250 samples, the performance of the proposed method was comparable
on the simulated data. In the experiments on the real data, the Qs of the results obtained by
processing high-coherence and low-coherence areas with the proposed method were 5.6%
and 17.1% higher, respectively. This proves that the comprehensive performance of our
method outperformed that of the six competitive approaches, even with small samples.
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