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Abstract: Microwave and optical imaging methods react differently to different land surface parame-
ters and, thus, provide highly complementary information. However, the contribution of individual
features from these two domains of the electromagnetic spectrum for tree species classification is
still unclear. For large-scale forest assessments, it is moreover important to better understand the
domain-specific limitations of the two sensor families, such as the impact of cloudiness and low
signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of
the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest
classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and
Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely
using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of
83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data
improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was
supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall
accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using
three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1
including phenological indicators and additional features derived from the time series did not yield
satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated.

Keywords: tree species classification; Sentinel-1; Sentinel-2; multitemporal; random forest;

Wienerwald biosphere reserve; BPWW

1. Introduction

The ongoing species loss and the continued degradation of many terrestrial ecosystems
make it increasingly important to monitor changes on the Earth’s surface on a large scale,
with high accuracy and low latency [1]. The multispectral image data generated by the
Sentinel-2 (S2) twin satellites are provided free of charge through the European Copernicus
program. These data provide a great opportunity to monitor the entire Earth’s surface with
high spatial and spectral as well as temporal resolution [2,3]. Several studies have already
shown that the use of multispectral imagery generates highly informative data for land
cover and tree species classification [4,5]. Further improvements in classification accuracy
can be achieved by using multispectral time series [6-8].

While the high 5-day-temporal resolution of the S2 satellites leads to dense time series,
it is not guaranteed that areas larger than 103-10* km? are fully covered by the very same
cloud-free acquisitions. The selection of suitable image material is, therefore, often easy
and straightforward for smaller areas, but for large areas, additional pre-processing steps
are needed to ensure a homogenous and gap-free set of features. Suitable techniques
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are, for example, compositing techniques [9], gap-filling procedures [10,11], or the use of
descriptive temporal metrics [12].

Radar sensors, on the other hand, provide a more continuous data stream with how-
ever a lower signal-to-noise-ratio (SNR), as well as terrain- and observation-geometry-
related artifacts [13,14]. The two Sentinel-1 satellites (S1), which possess high spatial
resolution and high revisit frequency, are also provided free of charge by the Copernicus
program and generate microwave images under almost all weather conditions. A number
of studies have demonstrated a good potential for the differentiation of deciduous trees
and conifers [14,15]. Riietschi et al. [16] obtained an overall accuracy of 72% for a test site
in Switzerland. Udali et al. [17] presented a forest type and tree species classification in a
test area in southern Sweden using multitemporal S1 data with overall accuracies of 94%
and 66%, respectively.

The combination of S1 and S2 data was used in several studies [7,15] for forest type
and tree species classifications. Bjerreskov et al. [7] used a combination of multitemporal S1
and S2 data to classify nemoral forests in Denmark into broadleaf and coniferous forest
types as well as into predefined tree species groups with overall accuracies of 95% and
63%, respectively. A combination of S1 and optical Landsat imagery was used for the
classification of dominant tree species in broadleaf deciduous forests in Vietnam with an
overall accuracy of 79% [18]. Systematic ablation studies are lacking investigating the
potential of the two electromagnetic domains for the classification of a higher number (>10)
of tree species in forests with high diversity.

The objective of this paper is to study the benefits of combining S1 and S2 data for
tree species classification in the mid-altitude forests of Austria. Various S1 and S2 data
combinations are used to classify 12 different tree species with the help of Breiman’s random
forest classifier [19] to evaluate the discriminative power of the two data streams:

(1) aset of Sl-derived parameters and 14 cloud-free S2 scenes were classified individually
and in combination;

(2) the monotemporal S2 scenes were classified separately as well as paired with S1 data;

(3) the accuracies obtained from the monotemporal S2 scenes were used to determine
the most- and least-accurate S2 scenes from spring, summer, and autumn seasons.
Combinations of the least- and most-accurate seasonal S2 scenes were classified with
and without S1 data.

2. Materials and Methods
2.1. Study Site, Reference Data

The Biosphere Reserve Wienerwald (BPWW) is located southwest of Vienna (Austria)
and covers an area of approximately 105,000 hectares with a geographical extension of ca.
42 km x 47 km and an elevation between 162 and 893 m above sea level. The broadleaf-
dominated forest is characterized by more than 20 forest communities [20]. Due to its
diversity of tree species and its location within the overlapping area of two S2 orbits, it is
particularly well suited for investigating remote sensing methods.

The study site and the reference data are shown in Figure 1. An existing dataset,
created by using information from several forest enterprises such as forest inventories and
stand-wise description of the forest management plans, was used as reference data [6].
Additional samples were added to better balance the different classes. While it was not
always possible for sparsely represented tree species, a maximum of one pixel per forest
stand was selected. The final dataset consisted of 1283 individual pixels, representing a
total of 12 tree species—seven deciduous and five coniferous. Although not all tree species
occurring in the BPWW were represented in the samples, they nevertheless provided a
good overview of the main tree species prevailing in the park.
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Figure 1. Overview of the Biosphere Reserve Wienerwald in the southwestern area of Vienna as well as

the 12 classes of tree species reference samples. Background: Color Infrared composite of Sentinel-2.

2.2. Sentinel-2 Data

All 14 completely cloud-free S2 scenes from the 2018 growing period (April to October)
were selected (Table 1). Since Nkosi et al. [21] found band 9 to have a high capability
in discriminating tree species, band 9 was left in the dataset, while bands 1 and 10 were
excluded. The remaining eleven S2 spectral bands were resampled to a unique 10 m spatial
resolution and corrected using the Sen2Cor atmospheric correction [22]. The resulting
dataset was expanded by two biophysical vegetation variables calculated from visible and
NIR spectral channels: FAPAR and the LAI [23,24]. In addition, 30 vegetation indices were
calculated and added to the dataset (Table A1).

Table 1. Summary of the Sentinel-2 (S2) scenes of the 2018 vegetation period used for classification.

S2 Satellite Date Orbit Sun Zenith Angle Sun Azimuth Angle
B 8 April 2018 79 43.02 157.29
B 21 April 2018 122 37.72 160.39
A 6 May 2018 122 33.06 159.37
A 2 July 2018 79 28.23 147.73
B 9 August 2018 122 34.38 155.97
A 21 August 2018 79 38.49 154.81
B 29 August 2018 122 40.40 160.44
A 13 September 2018 122 45.59 163.93
B 18 September 2018 122 4741 164.98
B 28 September 2018 122 51.10 166.96
A 30 September 2018 79 52.25 164.21
B 5 October 2018 79 54.08 165.12
A 10 October 2018 79 55.90 165.94
A 30 October 2018 79 62.82 168.14
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2.3. Sentinel-1 Data

In this study, 250 S1 ground-range-detected (GRD) interferometric wide (IW) swath
mode acquisitions from the year 2018 were used. The pre-processed data were avail-
able via the Austrian Data Cube [25]. The pre-processing steps included precise orbit
correction, border noise removal, radiometric correction to ﬁo values, radiometric terrain
flattening, range-Doppler terrain correction, and conversion to the decibel scale. A terrain
model based on airborne laser scanning resampled onto a 10 m grid was used for the
radiometric terrain flattening and the range-Doppler terrain correction steps. From the
multitemporal S1 data, several parameters were computed. These included temporally
averaged backscatter values for given time periods, phenological parameters, and harmonic
regression model parameters.

2.3.1. Backscatter Averages and Ratios

For each repeat cycle of the S1 satellites (12 days), the temporal average of S1 backscat-
ter was computed (Table 2). Two values per polarization (VV and VH)—one representing
snow free, leaf-off conditions (14 to 26 March 2018) and one representing leaf-on conditions
(18 to 30 June 2018) were selected. Furthermore, in case of the leaf-on period, the cross ratio
(CPR) was computed as the backscatter ratio between VH and VV polarization [26,27], and
in the case of VH polarization, the backscatter ratio between the leaf-on (18 to 30 June 2018)
and leaf-off (14 to 26 March 2018) conditions was included.

Table 2. Summary of the Sentinel-1 temporal average backscatter parameters of the 2018 vegetation
period used for classification.

Temporal Average Backscatter Leaf-Off Leaf-On
VH 20180314_20180326_VH 20180618_20180630_VH
\A% 20180314_20180326_VV 20180618_20180630_VV
VH/VV 20180618_20180630_CPR

2.3.2. Phenological Parameters

Deciduous forest classes show distinct backscatter behavior where the VH backscatter
drops during the summer period by 1-2 dB when compared to the leaf-off period [16,28].
Several studies assumed that the drop in backscatter is connected to the leaf emergence,
while the backscatter increase is caused by the leaf fall [16,28-30]. We applied the break-
points algorithm described in Zeileis et al. [31] and successfully tested on the annual time
series of the 12-day VH backscatter averages [16]. The computation was limited to pixels,
where the average backscatter in the leaf-on period was lower than that in the leaf-off
period (hence the ratio between the temporally averaged backscatter for leaf-on and leaf-off
conditions was positive). The first breakpoint in the time series was assumed to represent
the start of the season, while the second breakpoint represented the end of the season.
The length of the season was computed as the difference between the two values. Start of
season, end of season, and length of season were used in this study (Table 3).

Table 3. Summary of the Sentinel-1 phenological parameters of the 2018 vegetation period used
for classification.

Backscatter ratio VH or VV
Leaf-on/Leaf-off Rat_Leaf_on_off
Phenology VHor VV
Start of season—day of the year sos_doy
End of season—day of the year eos_doy
Length of season—days sos_doy

correlation_winter
slope_winter
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2.3.3. Harmonic Parameters

Changes in the vegetation structure and environmental conditions cause temporal
changes in radar backscatter. Especially in the case of vegetation, these changes typically
have a strong seasonal character. Harmonic models (Equation (1)) can be used to describe
this seasonal backscatter variation [32].

Kk 27tit, 27tity
Vo =7+ 1 (Ci cos — = + Sisin ny) (1)
’ i=1

The model estimates the most probable radar backscatter, “}?day, for a given day of the

year, t4,,, from the average backscatter, 79, for the given time period (year 2018 in case
of this study) and the harmonic coefficients of the cosine and sine components, C; and
S;. Harmonic coefficients and average backscatter are referred to as harmonic parameters
(HPAR). As suggested, k is set to 3, representing the processes of a time scale of four
months [32].

The HPARs (Table 4) are derived from a least-squares estimation based on the backscat-
ter values and corresponding observation times of the input S1 time series. As opposed to
Schlaffer et al. [32], we used the backscatter observations directly instead of using 10-day
composites. Due to the strong dependency of the backscatter on the acquisition geometry,
the parameter estimation was performed separately for each unique acquisition geometry
(e.g., relative S1 orbit). As an additional parameter, the standard deviation of the residual
error of the harmonic model was calculated as the square root of the sum of squared errors
(SSE), divided by the number of data points (Niuts) adjusted for the degrees of freedom of
the model (Equation (2)). The SSE was derived from the pixel’s backscatter time-series 72 ;
and its harmonic model '??, .-

For this study, we computed HPARs for both VV and VH polarization and for one
ascending (relative orbit number 73) and one descending (relative orbit number 22) orbit.

SSE(f,, of ) o
S=\| ———
Npoints -2

Table 4. Summary of the Sentinel-1 harmonic parameters of the 2018 vegetation period used
for classification.

HPAR
Cosine 1

Cosine 2
Cosine 3
Sine 1
Sine 2
Sine 3

HPAR temporal average

HPAR model error

Ascending (Orbit 73) Descending (Orbit 22)
VH HPAR-C1_2018_VH_A073 HPAR-C1_2018_VH_D022
\'A% HPAR-C1_2018_VV_A073 HPAR-C1_2018_VV_D022
VH HPAR-C2_2018_VH_A073 HPAR-C2_2018_VH_D022
Vv HPAR-C2_2018_VV_A073 HPAR-C2_2018_VV_D022
VH HPAR-C3_2018_VH_A073 HPAR-C3_2018_VH_D022
Vv HPAR-C3_2018_VV_A073 HPAR-C3_2018_VV_D022
VH HPAR-51_2018_VH_A073 HPAR-51_2018_VH_D022
\A% HPAR-S1_2018_VV_A073 HPAR-51_2018_VV_D022
VH HPAR-52_2018_VH_A073 HPAR-52_2018_VH_D022
Vv HPAR-52_2018_VV_A073 HPAR-52_2018_VV_D022
VH HPAR-S3_2018_VH_A073 HPAR-S3_2018_VH_D022
Vv HPAR-S3_2018_VV_A073 HPAR-S3_2018_VV_D022
VH HPAR-MO0_2018_VH_A073 HPAR-MO0_2018_VH_D022
Vv HPAR-MO0_2018_VV_A(73 HPAR-MO0_2018_VV_D022
VH HPAR-STD_2018_VH_A073 HPAR-STD_2018_VH_D022
Vv HPAR-STD_2018_VV_A073 HPAR-STD_2018_VV_D022
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2.4. Classification Approach

Different test cases were defined (Table 5), which included various band and parameter
combinations of the two satellite systems.

Table 5. Scenario of the nine test cases evaluated using different combinations of Sentinel-1 (51) and
Sentinel-2 (S2) data.

Test Case Acronym Features Comment
1 S1 43 multitemporal S1 parameters
2 S2 (MULTTI) 574 multitemporal image data of 52
3 S1 + S2 (MULTI) 617 multitemporal S1 parameters + multitemporal image data of S2
4 52 (MONO) 41 monotemporal image data of S2
5 S1 +S2 (MONO) 84 multitemporal S1 parameters + monotemporal image data of S2
6 52 (MAS) 123 image data of Most Accurate S2 Scene of each growing season
7 S1+ 52 (MAS) 166 multljtemporal S1 parameters + image data of Most Accurate S2 Scene of each
growing season
8 52 (LAS) 123 image data of Least Accurate S2 Scene of each growing season
9 S1+ 52 (LAS) 166 multitemporal S1 parameters + image data of Least Accurate S2 Scene of each

growing season

Test case 1 to Test case 3 represent various combinations of the respective total data
of the two satellite systems. While Test case 4 and Test case 5 were defined to evaluate
the influence of additional S1 data on a monotemporal S2 scene, they were also necessary
to identify the S2 scenes to be used in Test case 6 to Test case 9. Test cases 6-9 used a
selection of the three scenes from the spring, summer, and autumn seasons, which had the
highest/lowest total accuracy. Of these, classification models were created as the “most
accurate scene of season” (MAS) and the “least accurate scene of season” (LAS) with and
without the S1 features, respectively.

These 9 test cases (Table 5) were passed to Breiman’s [19] random forest (RF) algorithm,
a widely used ensemble learning approach. To avoid overfitting, a recursive “mean decrease
in accuracy” feature selection (MDA) was performed similarly to other studies [6,33-35].
The number of trees in the random forests was chosen with ntree = 1000, and for mtry
(number of predictors randomly sampled for each node), the default value was used, that
is the square root of available input variables. The accuracy assessment was done based
on the out-of-bag-results (OOB) of the random forest models calculating common metrics
based on confusion matrices.

3. Results
3.1. Full S1/52 Dataset Comparison

In Table 6, the results of the model created exclusively with S1 data are shown (Test
case 1). An overall accuracy (OA) of 55.7%, with a Cohen’s kappa of 0.469, was achieved.
While good class-specific accuracies were achieved, especially for the conifers, the decid-
uous trees, apart from European beech (Fagus sylvatica FS), could only be separated with
significantly lower accuracy. Furthermore, not a single sample of the two tree species maple
(Acer spp. AC) and alder (Alnus glutinosa AG) could be assigned to the correct class.

If the sample classes were stratified in broadleaved (BL) and coniferous (CO) groups,
the random forest model was able to separate them very well (BL = 96.5%, CO = 92.7%).

In the model built using only the S2 data (Test case 2), the overall accuracy was 83.2%
with a Cohen’s kappa of 0.806. We also observed an increase in overall accuracy between
the broadleaved and coniferous groups (BL = 99.4%, CO = 97.2%) compared to Test case 1,
while a significant increase occurred in both the user’s and producer’s accuracies of all tree
species. The two species that could not be classified using the S1 data were also relatively
well separated (Table 7).
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Table 6. Confusion matrix based on the out-of-bag-result of Test case 1, using only Sentinel-1 data.
UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the abbreviations of tree
species names see Figure 1.

Reference
FS AG FE QU PR cP AC PA PN PS LD PM UA F1-Score
FS 236 33 36 86 16 39 34 0 10 4 14 0 46.5%  0.584
_ AG 0 0 0 1 0 1 0 0 0 0 0 1 NA NA
Y FE 3 2 6 2 1 1 4 0 0 0 0 0 31.6% 0.113
§ o QU 47 14 40 140 2 18 13 0 4 1 0 0 50.2%  0.550
z 2 PR 1 0 0 0 1 0 0 0 0 0 0 0 50.0%  0.074
= g cp 0 0 2 0 0 4 0 1 0 0 0 1 50.0%  0.101
H‘ “:J)) AC 0 0 0 0 0 0 0 0 0 0 0 0 NA NA
- < PA 1 0 0 0 0 2 0 119 2 7 0 24 76.8%  0.821
g Y PN 7 2 2 1 0 5 2 1 114 19 1 5 71.7%  0.755
é PS 0 0 0 0 1 0 0 5 11 44 1 5 65.7%  0.603
LD 5 1 1 0 4 1 2 1 0 2 31 1 63.3%  0.626
PM 0 0 0 0 0 0 0 8 2 2 3 19  55.9% 0422
Y- Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 78.7% 0.0% 69% 609% 4.0% 5.6% 0.0% 88.1% 79.7% 55.7% 62.0% 33.9%
OA 55.7% Kappa 0.469
Table 7. Confusion matrix based on the out-of-bag-result of Test case 2, using only Sentinel-2 data.
UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the abbreviations of tree
species names see Figure 1.
Reference
FS AG FE QU PR CcP AC PA PN PS LD PM UA F1-Score
FS 272 4 10 26 5 22 15 0 2 0 6 0 751%  0.822
o AG 1 42 3 1 1 1 0 0 0 0 0 0 85.7%  0.832
Y FE 6 2 64 5 2 4 3 0 2 0 2 0 71.1%  0.723
S o Qu 13 1 7 195 5 4 4 0 0 0 1 0 84.8%  0.848
7 = PR 0 0 0 0 12 0 0 0 0 0 0 0 100.0%  0.649
= g cp 3 2 1 1 0 40 1 0 0 0 0 0 83.3%  0.672
(\‘l E AC 5 1 0 1 0 0 30 0 0 0 0 0 81.1%  0.652
= S PA 0 0 0 0 0 0 0 127 1 4 1 3 93.4% 0937
g Y PN 0 0 0 0 0 0 2 3 133 1 1 1 94.3%  0.937
é PS 0 0 0 0 0 0 0 3 3 72 3 5 83.7%  0.873
LD 0 0 2 1 0 0 0 0 2 2 36 2 80.0%  0.758
PM 0 0 0 0 0 0 0 2 0 0 0 45 957%  0.874
Y Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 90.7% 80.8% 73.6% 84.8% 48.0% 56.3% 54.5% 94.1% 93.0% 91.1% 72.0% 80.4%
OA 83.2% Kappa 0.806

The results of Test case 3, combining all data, show a marginal 0.5-percentage-point
improvement in overall accuracy with OA = 83.7 % and kappa = 0.811, compared to Test
case 2 (Table 8). The within-coniferous-group accuracy slightly gained by 1.1 percentage
points compared to that for the sole use of optical data (Test case 2). The results of the
individual classes remained more or less constant.

To better understand the inputs, Figure 2 lists the 15 most important out of the
50 remaining variables after the MDA-Feature selection of Test case 3. The analysis reveals
that, with “20180618_20180630_VH"” and “20180618_20180630_CPR” (red), only two S1
parameters were among the 50 remaining variables of the model. Interestingly, they were in
the first and third place of importance. Band 9 was not included in the remaining variables.
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Table 8. Confusion matrix based on the out-of-bag-result of Test case 3, using Sentinel-1 data
and Sentinel-2 data. UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; for the
abbreviations of tree species names see Figure 1.

Reference
FS AG FE QuU PR cp AC PA PN PS LD PM UA F1-Score
FS 271 2 9 28 8 19 16 0 1 0 3 0 75.9% 0.825
- AG 0 43 1 0 0 1 0 0 0 0 0 0 95.6% 0.887
Y FE 6 2 64 6 0 3 4 0 1 0 2 0 72.7% 0.731
S < QU 16 1 9 193 6 4 3 0 0 0 0 0 83.2% 0.835
*%’ S PR 0 0 0 0 10 0 0 0 0 0 0 0 100% 0.571
= .§ CP 2 3 3 2 0 44 1 0 1 0 0 0 78.6% 0.693
O,L E AC 4 1 0 0 1 0 29 0 0 0 0 0 82.9% 0.644
= S PA 0 0 0 0 0 0 0 129 1 4 1 5 92.1% 0.938
-E U PN 1 0 0 0 0 0 2 3 135 2 2 0 93.1% 0.938
§ PS 0 0 0 0 0 0 0 2 3 70 2 3 87.5% 0.881
LD 0 0 1 1 0 0 0 0 1 3 40 2 83.3% 0.816
PM 0 0 0 0 0 0 0 1 0 0 0 46 97.9% 0.893
Y Reference 300 52 87 230 25 71 55 135 143 79 50 56
PA 90.3% 82.7% 73.6% 83.9% 40.0% 62.0% 52.7% 95.6% 94.4% 88.6% 80.0% 82.1%
OA 83.7% Kappa 0.811
20180618_20180630 VH o
2018.07.02_B12 SWI2 Q@
20180618_20180630_CFR a
2018.05.06_NDEESWIR o
2018.05.06_B04 RED a
2018.1030_GI a
2018.07.02_NDEESWIR o
2018.07.02_B02_BLUE a
2018.07.02_B05_EE1 a
2018.05.06_B12 SWI2 @
2018.04 21 NDEESWIR o
2018.10.30_SENIRG a
2018.05.06_B05_RE1 o
2018.07.02_B11 SwWIl a
2018.08.29 NDVI o
T T T T T T T
26 27 28 29 30 Ch 32

MeanDecreaseAccuracy

Figure 2. Importance plot of the remaining variables of Test case 3. The two Sentinel-1 parame-
ters 20180618_20180630_VH and 20180618_20180630_CPR (in red letters) remain in the classifica-
tion model.

3.2. Added Value of S1 on Monotemporal 52 Datasets

To evaluate the contributions of S1 data in the (extreme) case of only one available
52 scene, the individual S2 scenes were each classified separately with (Test case 5) and
without S1 data (Test case 4). Figure 3 compares the two variants for each of the 14 S2
acquisitions of Test case 4 and Test case 5, each with (blue) and without S1 data (green).
Furthermore, as surrogates for compositing approaches, the three most-accurate (MAS)
and the three least-accurate scenes (LAS) of each growing season are shown, which serve
as S2 data material for Test case 6 to Test case 9. The last bar shows the result of using all
available S2 data, with (blue) and without S1 data (green).
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0.9

HS52 E52+51

Figure 3. Overall accuracy of models using monotemporal Sentinel-2 (S2) scenes as well as two
seasonal selections using the three least- (LAS) and the three most-performing S2 scenes (MAS), with
and without Sentinel-1 (S1) combination. Also shown are the results when using all available 52
scenes with and without S1 combination. The red horizontal line highlights the results of the model
based on S1 data only.

The monotemporal S2 results show an increase of the OA from spring to summer and
again slightly lower values in the fall. Adding S1 data, the overall accuracy increased by
around 5 percentage points but still fell far short of the accuracies achieved in Test case 2
(all S2 scenes without any S1; Figure 3 right, green). Each of the 14 monotemporal S2 scenes
largely outperformed (by 5.2 to 14.3 percentage points) the full S1 dataset (horizontal red
line in Figure 3).

3.3. Added Value of S1 on Multitemporal S2 Dataset

The two variants of seasonal S2 data (LAS vs. MAS) were separated by roughly 10
percentage points from each other (71.1% vs. 80.0%) with very minor improvements when
the suite of S1 features were included (Figure 3). The LAS variant without S1 data, in
which for each of the three seasons only the worst performing S2 image was retained (Test
case 8), still performed better than the single best performing S2 scene (July image) and
largely better (15.4%) compared to the full S1 dataset. The differences between S1 and
52 data were further accentuated (by almost 9%) when the three seasonal images were
composed of the best performing individual S2 images (MAS; Test case 6). For this test
case, classification results were almost on par with Test case 2 (all S2 scenes) and Test case 3
(all S1 and S2 data).

When comparing the sample-class Fi-scores of Test cases 5 to Test case 9, shown in
Figure 4a, it becomes apparent that already three S2 MASs were sufficient to eliminate the
added value of S1 data on the classification result. If only three S2 LASs were available,
there was a marginal improvement in the F;-scores of individual sample classes, but the
results of already well-classified sample-classes were not further improved.

Nevertheless, it was not possible to reach the highest overall accuracy of Test case 3 by
using only three individual S2 scenes, with and without additional S1 data.



Remote Sens. 2022, 14, 2687

10 of 16

F, —scores b Fy —scores
s Fg — SI{MAS)
—59 — S2{LAS)
P =52 AG R PM S1+52(MAS)
51+52 TR S1+52(LAS)

________
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Figure 4. Fy-scores of Test cases 1 to Test case 3 (a), F1-scores of all expressions of Test cases 6 to Test
case 9 (b); for the abbreviations of tree species names see Figure 1, and definitions of test cases are
provided in Table 5.

4. Discussion

The classification based only on S1 data (Test case 1) did not achieve the same high
accuracy values as the classification with either monotemporal and/or combined S2 image
data. Nevertheless, it was already possible to separate the five coniferous species with
a moderate degree of accuracy. This underlines the potential of S1 for separating differ-
ent conifers. Furthermore, the separation of the two groups, deciduous and coniferous
forests, was already at a very high level and exceeded the results from previous S1-based
studies [14,15]. The increased accuracy could be related to the higher number of samples
and/or the significantly smaller study area compared to the aforementioned studies. The
larger number of derived S1 features could also play a role here, albeit comparisons across
datasets are generally to be taken with caution.

The fact that the species within the conifer group were separated with satisfactory
accuracies using microwave data—but not the deciduous species—is possibly related to
the more distinct canopy surface roughness between conifers (as compared to the smoother
deciduous species canopy surface). These results are in line with previous studies on tree
species classification from S1 with slightly higher overall accuracies but fewer species
(Table 9).

Test case 2, which was only based on S2 data, delivered significantly better results than
Test case 1. This was expected as optical data reflect both structural and biochemical forest
traits [46] and their temporal evolution, and S2 data are known to have a very high SNR and
a good temporal coverage [47]. The differentiation of the two strata was again very good,
but more importantly, now all species (deciduous and conifers) were separable. Separating
the individual tree species yielded a satisfactory result with an OA of 83.2%, kappa of 0.806
and an improvement of 27.5 percentage points compared to the sole use of S1 (Test case 1).
The result of Test case 2 could not reach the high accuracy of 88.7%, which was reached
by using the original sample dataset and S2 scenes from several years [6]. However, the
samples were increased in size and more balanced. Compared to other studies presented
in Table 9, the OA of Test case 2 is within the range usually achieved with multitemporal
52 data.

The result of Test case 2 could be improved only marginally, 0.5 percentage points, by
using additional S1 data (Test case 3). Including S1 data, however, we observed a shift in
contributing features. Indeed, the MDA analysis revealed that Test case 3 included two
very high ranking S1 parameters as input variables, which, therefore, had to replace at
least two optical features from Test case 2. The high number of highly correlated features
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makes it very difficult to fully understand the MDA findings. After the MDA-Feature
selection, band 9 never remained in the dataset. Therefore, the added value of band 9 in
the discrimination of tree species depicted by Nkosi et al. [21] could not be confirmed.

Table 9. Summary of previous studies using Sentinel-1 (S1), Sentinel-2 (S2), and both combined for
tree species classification and their achieved overall accuracies (OAs).

Satellite No. .Of Species Names OA  Reference
Species
S1 3 Quercus spp., Fagus sylvatica, Picea abies 72% [16]
S1 4 Quercus robur, Betula spp., Picea abies, Pinus sylvestris 66% [17]
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,
S1 12 Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua, 58% Table 6
Pseudotsuga menziesii
S2 4 Fagus sylvatica, Quercus spp., other broadleaf trees, coniferous trees 88% [36]
S2 4 Sabina przewalskii, Picea crassifolia, Betula spp., Populus spp. 90% [37]
S2 5 Larix spp., Pinus spp., Pinus mugo, Abies alba/Picea abies, broadleaf trees 84% [38]
S2 5 Picea abies, Pinus silvestris, Larix x marschlinsii, Betula sp., Quercus robur 88% [39]
S2 7 Picea sp., Pinus sp., Larix sp., Abies sp., Fagus sp., Quercus sp., other broadleaf trees  66% [3]
Acacia mearnsii, Eucalyptus dunnii, Eucalyptus grandiis, Eucalyptus mix, Pinus o
S2 7 g ros. 84% [40]
tecunumanii, Pinus elliotii, Pinus taedea
Fagus sylvatica, Quercus spp., Alnus spp., Betula pendula, Picea abies, Pinus sylvestris, o
S2 8 . . . 82% [8]
Abies alba, Larix decidua
Fagus sylvatica, Betula pendula, Carpinus betulus, Abies alba, Acer pseudoplatanus, Larix o
S2 9 . . ) R . 92% [41]
decidua, European larch, Alnus incana, Pinus sylvestris, Picea abies
s 1 Alnus spp., Acer pseudoplatanus, Fagus sylvatica, Betula pendula, Carpinus betulus, 87% [42]

Quercus spp., Picea abies, Pinus sylvestris, Larix decidua, Pseudotsuga menziesii
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,
S2 12 Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua, 83% Table 7
Pseudotsuga menziesii
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,
S2 12 Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua, 90% [6]
Pseudotsuga menziesii
Betula pendula, Quercus robur/pubescens/petraea, Quercus rubra, Populus spp., Fraxinus

S2 12 excelsior, Robinia pseudoacacia, Salix spp., Eucalyptus spp., Pinus nigra subsp. laricio, O.*9 0 [43]
Pinus pinaster, Pinus nigra, Abies alba, Pseudotsuga menziesii, Cupressus spp.
Fagus sylvatica, Alnus spp., Quercus petraea/robur, Quercus rubra, Betula pendula,
s 17 Robinia pseudoacacia, Tilia cordata, Acer pseudoplatanus, Fraxinus excelsior, Populus 96% [44]
spp., Carpinus betulus, Picea abies, Larix spp., Pseudotsuga menziesii, Pinus sylvestris, **
Pinus strobus, Pinus nigra
S1+LS 4 Shorea siamensis, Shorea obtuse, Dipterocarpus tuberculatus, semi-evergreen/evergreen  79% [18]
S1+8S2 6 Fagus sylvatica, Quercus spp., other broadleaves, Picea sp., Pinus sp., other conifers ~ 63% [7]
S1+S2 6 Quercus mongolia, Betula spp., Populus spp., Armeniaca sibirica Larix spp., Pinus 78% [45]
tabulaeformis
S1+S2 - Acacia mearnsii, Eucalyptus dunnii, Eucalyptus grandiis, Eucalyptus mix, Pinus 88% [40]

tecunumanii, Pinus elliotii, Pinus taedea
Fagus sylvatica, Alnus glutinosa, Fraxinus excelsior, Quercus spp., Prunus spp.,
S1+S2 12 Carpinus betulus, Acer spp., Picea abies, Pinus nigra, Pinus sylvestris, Larix decidua, 84% Table 8
Pseudotsuga menziesii

* mean Fl-score instead of OA; ** OA influenced by high dominance of one class.

For the study area, Wienerwald, and the employed RF classifier, it can be stated that if
there are a sufficient number of S2 scenes available, no more added value is generated by
using additional S1 data. We did, however, not evaluate the impact of the S2 orbit overlap on
the classification accuracy, which certainly would negatively impact the obtained accuracies.
On the other hand, temporal metrics (both parametric and using harmonics) in this study
were only employed for S1 data.

The best monotemporal S2 result was achieved by the scenes from May and July,
often a period with only few cloud-free data in Central Europe. Whenever data from
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several dates are available, the classification performance can be improved. Both variants
of seasonal data (i.e., combining the three best and the three worst S2 scenes per season)
demonstrated the added-value of multitemporal data.

Interestingly, in (optical) data-poor regions, the low S1 performance can be boosted
significantly, if at least one S2 scene can be added as this adds valuable biochemical trait
information. In this case, the OA of the classification can be increased by ca. 5.0 percentage
points on average. This finding is significant in that S1 scenes, unlike S2 scenes, are always
available due to the nature of their sensor’s active microwaves, but are only marginally
performant when used alone. If, however, several S2 scenes are available, the added value
of 51 is increasingly equalized and decreases to 1.7 percentage points with a composite of
MAS-S2 scenes and to 1.5 percentage points with a composite of LAS-52 scenes. This is
in line with the findings of Mngadi et al. [40] and Waser et al. [15]. Even using seasonal
S2-composites as in other studies [48], overall accuracies of the full multitemporal datasets
as in Test case 2 and Test case 3 were far from achieved.

5. Conclusions

In this study, the performance of the Sentinel-1 and Sentinel-2 satellite pairs, both
individually and in various combinations, is presented. Twelve tree species, seven decid-
uous and five coniferous, of the Austrian Biosphere Reserve Wienerwald were classified
using Breiman’s random forest. While the results using only Sentinel-1 data were not
satisfactory, the ability of the Sentinel-2 satellites to classify tree species was demonstrated
once again. The greatest increase in accuracy can be achieved by using multitemporal
Sentinel-2 data. In areas with insufficient coverage of optical satellites, Sentinel-1 can add
value to classification accuracy. Seasonal Sentinel-2 composites have advantages over
monotemporal classifications, but preference should be given to a full time series whenever
possible. If sufficient Sentinel-2 data are available, the added value of Sentinel-1 data is only
marginal, so that the effort to acquire data is offset by the added value of increased accuracy.
However, for large-scale applications, the possibilities of acquiring cloud-free Sentinel-2
time series are often the limiting factor. In such cases, the advantage of the Sentinel-1 time
series is obvious. The next steps would be further combinations with other datasets such as
LiDAR or hyperspectral data (e.g., ENMAP). For a better understanding of the results and
the relationship between vegetation structure and reflectance properties, radiative transfer
models (RTMs) should be consulted.
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Appendix A

Table Al. Summary of the additional vegetation indices used for the classification, together with the
corresponding formula and references (band 8 was used for the NIR = Near-Infrared; RE = Red-Edge).

Index-Name Formula Reference

Built-up Area Index (BAI) ERRENIN [49]
Chlorophyll Green Index (CGI) ﬁlim [50]
Greenness Index (GI) GIEEBN [51]
Green Normalized-Difference Vegetation Index (gNDVI) %Héjrgiﬁggﬁ [52]
Leaf Chlorophyll Content Index (LCCI) % [53]
Moisture Stress Index (MSI) % [54]
Normalized-Difference Red-Edge and SWIR2(NDRESWIR) % [55]
Normalized-Difference Tillage Index (NDTI) % [56]
Normalized-Difference Vegetation Index (NDVI) % [57]
Red-Edge Normalized-Difference Vegetation Index(reNDVI) % [52]
Normalized-Difference Water Index 1 (NDWI1) % [58]
Normalized-Difference Water Index 2 (NDWI2) % [52]
Normalized Humidity Index (NHI) %% [59]

Red-Edge Peak Area (REPA) RED + RE1 4+ RE2 + RE3 + NIR [55,60]
Red SWIR1 Difference (DIRESWIR) RED + SWIR1 [61]
Red-Edge Triangular Vegetation Index (RETVI) 100(NIR — RE1) — 10(NIR — GREEN) [62]
Soil Adjusted Vegetation Index (SAVI) et =15 [63]
Blue and RE1 Ratio (SRBRE1) BLUE [51]
Blue and RE2 Ratio (SRBRE2) BE [64]
Blue and RE3 Ratio (SRBRE3) BLUE [55]
NIR and Blue Ratio (SRNIRB) s [65]
NIR and Green Ratio (SRNIRG) CRERN [51]
NIR and Red Ratio (SRNIRR) SR [65]
NIR and RE1 Ratio (SRNIRRE1) R [50]
NIR and RE2 Ratio (SRNIRRE2) B [55]
NIR and RE3 Ratio (SRNIRRE3) N [55]
Soil Tillage Index (STI) SWikz [56]
Water Body Index (WBI) % [66]
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