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Abstract: Long-time integration is an effective method for improving the signal–to–noise ratio (SNR)
of an echo. However, if the target radar cross-section (RCS) fluctuates over the long integration time,
the traditional coherent integration and noncoherent integration methods will produce significant
performance losses, making it impossible to achieve a favorable integration performance at low
SNRs. This study proposes a new hybrid integration method based on the generalized Radon–
Fourier transform (GRFT) and generalized Radon transform (GRT) for targets with which echoes
are partially coherent. First, a coherent integration is performed with GRFT within the optimal
coherent processing segment using optimal coherent processing segmented matching. Then, the
GRT is used for noncoherent integration between the coherent processing sections, and the target
motion parameters are obtained through a global search. Compared with the GRFT, GRT, and
moving target detection (MTD)-GRT methods, the proposed method applies to targets with arbitrary
RCS fluctuations, arbitrary cross-range cells, and cross-Doppler cells, and offers the best detection
performance. Finally, both simulation results and measured data processing results demonstrate the
effectiveness of the algorithm.

Keywords: hybrid integration; generalized Radon-Fourier transform (GRFT); generalized Radon
transform (GRT); arbitrary fluctuating target

1. Introduction

At present, dim target detection requires long-time integration to improve the signal-to-
noise ratio (SNR) of the echo due to the low SNR of the single pulse echo of the target [1–3].
Moreover, during radar illumination, both coherent integration algorithms and noncoherent
integration methods can result in significant performance losses. Such losses can also occur
due to the development of cross-range cells and cross-Doppler cells caused by either the
high-speed maneuvering of the targets or high radar resolutions [4–6] and because the
motion of the target relative to the radar causes the target radar cross-section (RCS) to
fluctuate, which brings about partial correlation of the target echo [7–12]. At this point,
the coherent-noncoherent hybrid integration method helps avoid significant degradation
of the coherent integration’s performance in the areas with a weak echo correlation along
with the problem of SNR thresholds regarding noncoherent integration. The coherent
processing time is matched with the decorrelation time of the target echo to achieve better
integration performance [13,14], which has become a research topic of considerable interest
in recent years.

The current long-time integration methods can be classified into noncoherent integra-
tion [15–24], coherent integration [25–43], and coherent-noncoherent hybrid integration [44–48].
Since these methods were easy to implement, the early-stage algorithms were largely nonco-
herent integration algorithms. Typical noncoherent integration methods include projection
transformation algorithms [15–18], dynamic programming algorithms [19–22], and particle
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filter algorithms [23,24]. These methods are effective for echoes with high SNRs, but they
do not work for echoes with low SNRs. In addition, the coherent integration algorithms can
achieve considerable integration gain at low SNRs, since they take full advantage of the phase
information of the echo; hence, they have been extensively studied. The coherent integration
algorithms can be divided into four categories based on their applicable target motion models:
uniform motion algorithms [25–30], uniformly accelerated motion algorithms [31–33], uniform
jerk motion algorithms [34–36], and high-order complex motion algorithms [37–40]. In addi-
tion, there are some compressive sensing algorithms [41–43] once the Nyquist sampling rate
cannot be satisfied. The above algorithms are all operating under the assumption that the
target echoes are completely correlated within the time period of the integration. In many
cases, however, due to the long time spanning of the echo integration, the attitude change of
the target relative to the radar results in partial echo correlation, ranging between completely
correlated and completely uncorrelated. Not all phase information has a positive effect on
integration, which consequently demonstrates the fact that the coherent integration of phase
information cannot solely bring favorable integration effects. In such cases, hybrid integration
is an effective approach for solving this problem. Jiankui Zeng et al. divided the whole
observation time into several coherent processing segments under the condition that there is
no range migration [45]. In each coherent processing segment, the moving target detection
(MTD) method was used for coherent integration, and then the Hough transform was used
for noncoherent integration between segments. In Reference [46], the MTD method was also
used for the coherent integration in coherent processing segments, while the generalized
Radon transform (GRT) was employed for noncoherent integration between segments. All
the hybrid integration algorithms require that there should be no range migration in each
coherent processing segment, which leads to a short coherent integration time for high-speed
targets or radar signals with a high resolution. Since there are only few pulses in the coherent
integration time period, it is impossible to fully play to the high coherent integration gain.
Therefore, it is necessary to further increase the length of the coherent integration segment. The
improved MTD-GRT algorithm in Reference [47] can sufficiently increase the segment length
of coherent integration, although the method requires prior information to compensate for the
target motion, which is difficult to obtain with unknown targets. Reference [48] principally
studied the hybrid integration detector and the optimal number of coherent integration pulses.
The segment length of coherent integration is dependent on the covariance matrix of the echo,
so it is difficult to obtain such information in the case of low SNRs.

In this study, a new hybrid integration algorithm for cross-range cell and cross-Doppler
cell targets in RCS fluctuation and integration time is proposed. Firstly, optimal coherent
processing segmented matching is used for coherent integration through the generalized
Radon-Fourier transform (GRFT) algorithm within the coherent integration segment. Then,
the GRT method is employed for noncoherent integration. The simulation test results
demonstrate the effectiveness of the proposed algorithm.

The rest of the article is organized as follows: Section 2 describes the signal model and
the current problems; the overall procedure of the hybrid integration detection algorithm
and the coherent integration segmented matching algorithm are presented in Section 3; in
Section 4, the simulation test results and the measured data processing results are given;
and finally, the whole study is summarized and conclusions are drawn in Section 5. These
sections should define the purpose of the work and its significance.

2. Signal Model and Problem Analysis

Assuming that the radar emits linear frequency modulation (LFM) pulses, a high-speed
and highly maneuverable target can be regarded as a point target, and pulse compression
of the echo signals leads to:

s(n, m) = σ(m)sinc
(

n− R(m)

ρr

)
exp

[
−j

4π

λ
R(m)

]
+ N(n, m) (1)
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where m and n are the slow-time sampling point number and the in-pulse fast-time sam-
pling point number, respectively. ρr = c/2B denotes the range resolution. c represents
the speed of light. B is the signal bandwidth. λ = c/ fc stands for the wavelength; sinc(·)
is the sinc function, where sinc(x) = sin(x)

x . Tr is the radar pulse repetition cycle and R
denotes the radial range of the target. Here, consider a target in uniformly accelerated
motion, whose radial range can be expressed as R(m) = r0 + vmTr + 1/2a(mTr)

2, where r0
represents the initial range, v is the initial velocity, and a is the acceleration. σ is the complex
backscattering coefficient of the echo for the target at different times, and N denotes noise.
Due to the high speed and the strong maneuverability of the target, echo decorrelation
occurs during radar illumination. Here, the relief target model is considered to obey the
Gaussian distribution.

Its correlation function is as follows:

Rσ(m) =
1√

2πTCI
exp

(
−mT2

r

2T2
CI

)
(2)

where TCI represents the echo decorrelation time.
According to the signal envelope resulting from pulse compression in (1), range migra-

tion causes the signal envelope peak position sin c
{

n− R(m)
ρr

}
to vary in every pulse, result-

ing in a performance loss due to integration. For the Doppler phase term exp
[
−j 4πR(m)

λ

]
in (1), when the velocity of the target is substantial, cross-Doppler cells develop, which
may also bring about integration performance loss. Therefore, the above issues cannot be
ignored for integration algorithm design.

Where the SNR is at a low level after pulse compression, it is a common practice to
improve the target detection performance of radar through pulse integration. Assuming
that K pulses are integrated, range migration compensation and Doppler phase compen-
sation should be performed before integration. The coherent integration process can be
summarized as follows:

yCI =
K
∑

i=1
[s(n, i)h(i) + N(n, i)]

=
K
∑

i=1

[
σ(i)sp(n, i)h(i) + N(n, i)

] (3)

where sp(n, i) = sinc
(

n− R(i)
ρr

)
exp

[
−j 4π

λ R(i)
]
, yCI is the coherent integration result; h

represents the phase compensation function, while |h(i)| = 1 depending on the com-
pensation method, different phase compensation functions may appear; and the phase
compensation function is discussed in subsequent sections of the present study.

The signal power after integration is calculated as:

σ2
S = E

[(
K
∑

i=1
σ(i)sp

(
R(i)
ρr

, i
)

h(i)
)(

K
∑

l=1
σ(l)sp

(
R(l)
ρr

, l
)

h(l)
)∗]

=
K
∑

i=1

K
∑

l=1
χ
(

R(i)
ρr
− R(l)

ρr

)
E[σ(i)σ∗(l)]

(4)

where χ(·) is the ambiguity function of the LFM signal; the best integration result can be
achieved through range migration compensation that is, when i = l, the compensation for
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the range migration is finished; when i = l, i.e., upon completion of the compensation task,
χ
(

R(i)
ρr
− R(l)

ρr

)
= σ2

Sp
, E[σ(i)σ∗(l)] = δ2; then, (4) can be further expressed as:

σ2
S = σ2

Sp
· E
[(

K
∑

i=1
σ(i)

)(
K
∑

l=1
σ(l)

)∗]

= σ2
Sp
·
(

Kδ2 + ∑
i 6=l

σ(i)σ∗(l)

)

= σ2
Sp
· δ2

(
K + 2

K−1
∑

i=1,

K−1
∑

j=1,i 6=j
Rσ(|i− j|)

) (5)

The post-integration noise power is:

σ2
N =

K
∑

i,l=1
E[N(n, i)N∗(n, l)]

= Kσ2
ny

(6)

where σ2
ny is the noise power in individual pulses. The post-coherent integration SNR can

be expressed as:

SNRCI =
σ2

S
σ2

N
=

σ2
Sp
· δ2

(
K + 2

K−1
∑

i=1,

K−1
∑

j=1,i 6=j
Rσ(|i− j|)

)
Kσ2

ny
(7)

When the echo is completely correlated, it is reasonable that Rσ(i) = 1. According to
(7), the SNR of the coherent integration increases K times at this point. Where the echo is
completely unrelated, it is reasonable that Rσ(i) = 0. If coherent integration is employed at
this point, there would be no SNR improvement. Where the echo is partially coherent, the
improved SNR after coherent integration is associated with the echo decorrelation time.
With the growth of the coherent integration segment, the gain from coherent integration
grows slowly because the echo correlation becomes weak, while the noise power increases
linearly with the increase in the number of integration pulses. In the areas with weak echo
correlation, the rate at which signal power integration increases is decreased; as a result,
the SNR is improved by a smaller margin.

In contrast, noncoherent integration removes the phase information from the echo,
and the objects of the integration are normally the amplitude of post-pulse compression
data or its square. In this study, the square of the signal after pulse compression is used for
integration, which can be expressed as:

yNCI =
K

∑
i=1

∣∣∣∣∣σ(i)sA

(
viTr + 1/2a(iTr)

2

ρr
, i

)
+ N(n, i)

∣∣∣∣∣
2

(8)

where sA = sinc
(

n− n0 − viTr+1/2a(iTr)
2

ρr

)
.

Noncoherent integration is a nonlinear process, in which the SNR is improved by
K~
√

K times theoretically. With the increase in the number of integration pulses, the SNR
improvement gain of noncoherent integration progressively decays to

√
K times, theoreti-

cally [49], and the effect will suffer a major setback when coherent integration is further
used for processing. As shown in Figure 1, in contrast to the case in which the integration
pulse count is proportional to the integration gain when the echo is completely correlated,
the maximum coherent integration gain cannot be achieved through the coherence of all
pulses, whereas integration is performed for a partially coherent target echo. The maximum
integration gain is impossible to achieve without matching the integration time with the
echo decorrelation time.
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Figure 1. Coherent integration performance for partially coherent echo.

Therefore, to maximize the integration gain during integration for a target that is
partially coherent with the echo, the coherent-noncoherent hybrid integration approach
should be employed, as shown in Figure 2. In this approach, the whole integration time
is divided into several coherent integration segments, within which coherent integration
is adopted in coherent integration segments while the noncoherent integration method is
employed to reintegrate the energy within the coherent integration segments. Thus, by
combining both integration methods, the echo SNR is improved to the greatest extent.
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3. Hybrid Integration Detection Algorithm

Where the echo is partially coherent, the hybrid integration algorithm offers optimal
detection performance. Therefore, it is necessary to study the hybrid integration algorithm.
This part of the study is divided into two parts: the compensation approach for range
migration and Doppler migration resulting from high-speed target maneuvering, and the
matching used for the optimal coherent integration segmentation.



Remote Sens. 2022, 14, 2695 6 of 20

Since the echo data are partially coherent, the entire echo should first be divided into
several coherent processing segments. The coherent processing segmentation time should
theoretically be close to the decorrelation time of the echo signal, allowing the maximum
integration gain to be achieved by coherent processing at this point. The matching of the
coherent processing segments is discussed in detail in a later part of this section.

The GRFT is used for coherent integration. Assuming that the total integration time is
divided into KCI coherent integration segments, the number of pulses in each segment can
be expressed as:

kCI = K/KCI (9)

The phase compensation function within the i-th coherent integration segment can be
expressed as:

hi(m) = exp
(

j4π · Rsearch(p, q, i, l, kCI)

λ

)
(10)

where
Rsearch(p, q, i, l, kCI) = v(p) · ((i− 1)kCI Tr + mTr)

+ 1
2 a(q) · ((i− 1)kCI Tr + mTr)

2.

Then, the result of coherent integration in the i-th coherent integration segment can be
expressed as:

gCI(o, p, q, i) =
kCI

∑
l=1

s
(

n,
r(o) + Rsearch(p, q, i, l, kCI)

ρr

)
· hi(l) (11)

where r(o), v(p), and a(q) represent the search range, velocity, and acceleration parameters,
respectively. This is just an example of a uniform acceleration model; in essence, the
coherent integration method of the GRFT is applicable to the coherent integration of targets
with arbitrary high-order motion parameters. The data after pulse compression are a
under 2D-time domain at first, and after this step, they have been transformed into motion
parameter space.

At this point, the search for motion parameters enables an independent coherent
integration process. However, provided that it is often impossible to detect the target
within a coherent integration segment due to the low echo SNR of dim targets, it is also
necessary to perform coherent integration for each coherent integration segment and to
perform noncoherent integration for the integration result of the coherent integration
segment before the result of the hybrid integration process can be obtained. Next, the
GRT is used to perform noncoherent integration between coherent integration segments to
further improve the integration gain. The final integration result is as follows:

gHI(o, p, q) =
KCI

∑
i=1

∣∣∣∣∣ kCI

∑
l=1

s
(

n,
r(o) + Rsearch(p, q, i, l, kCI)

ρr

)
· hi(l)

∣∣∣∣∣
2

(12)

Next, all search cells should be traversed, and the presence or absence of the targets in
each search cell should be judged using the following equation:

gHI(o, p, q)
H1
≷
H0

VT (13)

where VT is the detection threshold. H1 and H0 represent the hypothetical cases in which
noise and target information coexist and only noise is present, respectively. A detailed
derivation is provided in Appendix A.

Figure 3 adequately describes the process used for this algorithm: first, all the echo data
are divided into several coherent integration segments in time, and coherent integration
is performed in the range-velocity domain. Then, noncoherent integration is performed
along the target trajectory to yield the final hybrid integration result.
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According to Figure 1, since the target echo is partially coherent, the selection of
coherent integration segments may affect the integration gain of the echo. When the
coherent integration segment length matches the echo signal correlation time, the maximum
integration gain can be achieved. Theoretically, as long as the decorrelation time of the
echo is yielded, the coherent integration segment length in the hybrid integration can be
determined based on the echo decorrelation time. However, in practice, the echo correlation
of a dim target is unpredictable, so this study proposes an optimal coherent integration
segment matching search algorithm. The algorithm consists of two steps, as shown in
Figure 4. First, the number of pulses in the coherent integration segment can be expressed
as kCI = [1, 2, · · · , K]; obviously, the number of pulses, kCI , in the coherent integration
segment should be a positive integer. The corresponding number of coherent integration
segments can be expressed as:

KCI(w) = dK/kCI(w)e (14)

where d·e denotes the “round-up-to-integer” operation.
Then, different coherent integration segments are subjected to coherent integration;

for different coherent integration segments, the phase compensation function within the
i-th coherent integration segment can be expressed as:

hi(m, w) = exp
(

j4π · Rsearch(p, q, i, l, kCI(w))

λ

)
(15)

where
Rsearch(p, q, i, l, kCI(w)) = v(p) · ((i− 1)kCI(w)Tr + mTr)

+ 1
2 a(q) · ((i− 1)kCI(w)Tr + mTr)

2.

Furthermore, the result of coherent integration in different coherent integration seg-
ments can be expressed as:

gCI(o, p, q, i, w) =
kCI(w)

∑
l=1

s
(

n,
r(o) + Rsearch(p, q, i, l, kCI(w))

ρr

)
· hi(l, w) (16)
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The final hybrid integration result under different coherent integration segments can
be expressed as:

gHI(o, p, q, w) =
KCI(w)

∑
i=1

∣∣∣∣∣kCI(w)

∑
l=1

s
(

n,
r(o) + Rsearch(p, q, i, l, kCI(w))

ρr

)
· hi(l, w)

∣∣∣∣∣
2

(17)

For optimal hybrid coherent integration detection under coherent conditions of the
target echo portion, each possible coherent time should be taken as a parameter and
searched to ensure that it can be matched with an optimal coherent processing segment.
This fact, combined with the search for target motion parameters in prior hybrid integration
activities, may necessitate an immense computing load. Therefore, fast algorithms must
be studied. To reduce the number of match searches, the echo sequence can be segmented
by the segment length corresponding to the minimum coherent time of the echo, which
is denoted as tmin. Based on current radar processing capabilities, either four or eight
pulses are normally selected as the minimum coherent integration segments. At this point,
the number of pulses in the coherent integration segment is kmin = tmin/Tr, and the total
number of coherent integration segments is Kmin = K/kmin; the echo data in the segments
are subjected to coherent integration. Thus, the compensation function in the i-th coherent
integration segment can be expressed as:

hmin(i, m) = exp
(

j4π · Rsearch(p, q, i, l, kmin)

λ

)
(18)

where
Rsearch(p, q, i, l, kmin) = ((i− 1)kminTr + lTr)v(p)

+1/2((i− 1)kminTr + lTr)
2a(q)

.

Then, the coherent integration result can be expressed as:

g(1)CI (o, p, q, l) =
kmin

∑
l=1

s
(

n,
r(o) + Rsearch(p, q, i, l, kmin)

ρr

)
· hmin(i, l) (19)

In this way, the minimum coherent integration output data are constructed. The
output data of the two adjacent segments are once more subjected to coherent integration
to form the output data of the next level of coherent integration, that is:

g(2)CI (o, p, q, l) = g(1)CI (o, p, q, 2(l − 1) + 1) + g(1)CI (o, p, q, 2l) (20)

It should be noted that the coherent integration time becomes 2tmin, while the total
number of coherent integration segments correspondingly decreases to K2 = K/2kmin.

Then, the hybrid integration output of this level can be expressed as:

g(2)HI (o, p, q) =
K2

∑
i=1

∣∣∣g(2)CI (o, p, q, i)
∣∣∣2 (21)

Similarly, two adjacent data in the next level of data are subjected to coherent inte-
gration to form the level-3 coherent integration output data. As shown in Figure 5, the
operation above is repeated until the echo coherent time corresponding to the data of this
level reaches the maximum coherent time. It should be noted that some segment lengths
will be missed due to the fixed rate of segment length increase if the segments are merged
pairwise. Thus, it is advisable to change the rate of the segment length increase in coherent
integration, to cover as many segments as possible. If possible, it is advisable to use three
smaller segments to form the data at the next level for coherent integration:

g(2)CI (o, p, q, l) = g(1)CI (o, p, q, 3(l − 1) + 1) + g(1)CI (o, p, q, 3(l − 1) + 2)
+g(1)CI (o, p, q, 3l)

(22)
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At this point, the time for coherent integration becomes 3tmin, while the total number
of coherent integration segments decreases to K3 = K/3kmin. Furthermore, the coher-
ent integration result within coherent integration segments is subjected to noncoherent
integration to yield the hybrid integration result of this level.

In this way, the original multiple hybrid integrations can be replaced by simply con-
tinually merging the coherent integration results in the segmentation mode corresponding
to the minimum coherent time, thereby favorably reducing the computational burden.

4. Simulation Results and Discussion

In this section, several simulation experiments are designed, and the simulation results
are presented to verify the effectiveness of the proposed algorithm. The radar simulation
parameters used in the simulation are shown in Table 1.
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Table 1. Main parameters of the radar.

Parameters Value

Carrier frequency ( fc) 3 GHz
Sampling frequency ( fs) 20 MHz

Bandwidth (B) 10 MHz
Pulse width (Tp) 51 µs

PRT (Tr) 1 ms
Pulse number (N) 1024

Integration time (THI) 1.024 s
The SNR of the individual pulses −20 dB

4.1. Comparison of the Individual Target Integration Results

To facilitate the comparison of various algorithms in this experiment, the motion of the
target is set to a uniformly low-speed motion and then a uniformly accelerated motion; the
motion parameters are shown in Table 2. The decorrelation time for the echo is tCI = 0.128 s.
The SNR of the individual pulses of the echo is SNR = −20 dB. Figures 6 and 7 display
the integration simulation results of the coherent integration algorithm GRFT, the nonco-
herent integration algorithm GRT, the hybrid integration algorithm MTD-GRT, and the
proposed algorithm for the two modes of motion. Figures 6a and 7a present the noncoher-
ent integration results in three modes of motion; due to the low echo SNR, it is difficult to
clearly identify the integration spikes from both figures. Figures 6b and 7b show the results
of coherent integration in two modes of motion; according to the general cognition, the
coherent integration incorporating all the phase information of the echo usually yields the
optimal integration gain, but the prior condition that must be met is that the echo signal is
completely correlated. Where the echo signal is only partially coherent, the phase is not
entirely beneficial to the integration process; as a result, the integration result is not satisfac-
tory when the whole echo is subjected to coherent integration processing. Figure 6c,d and
Figure 7c,d compare the hybrid integration MTD-GRT and the proposed algorithm integra-
tion result in two modes of motion, respectively. According to Figure 5, the initial coherent
integration segment is set to tmin = 0.008 s; that is, kmin = 8. After iterating four times,
the system gets the optimal output. The coherent integration segment of the MTD-GRT
method is 0.128 s, which is the same as the echo decorrelation time. As shown in the figures,
since a cross-range cell situation is not observed within the coherent integration segment
for the target during constant low-speed motion, both the MTD-GRT algorithm and the
proposed algorithm can integrate the echo signal well. Where the high-speed motion of the
target causes a cross-range cell situation to develop and the maneuverability of the target
brings about the cross-Doppler cell situation, the integration gain of the MTD-GRT method
decreases sharply, although the proposed algorithm can still yield a favorable integration
gain. Figures 6e and 7e present the detection probability curves of the target in two motion
modes, respectively, after 1000 Monte Carlo simulations, where the false alarm probability
is set to 10−6, and while the SNR interval after pulse compression is set to −18 to 20 dB. It
is evident that neither coherent integration nor noncoherent integration offers a favorable
detection probability where the echo is partially coherent, while the hybrid integration
is approximately 8 dB greater than the coherent integration and noncoherent integration.
Furthermore, when the target involves complex motions in the time period of coherent
integration, the detection performance of the MTD-GRT method decreases, whereas the
proposed method can still offer satisfactory detection performance.

Table 2. Targets motion parameters in different cases.

Case 1 Case 2

Initial range (R0) 800 km 800 km
Initial velocity (v) 60 m/s 3400 m/s

Acceleration 0 m/s2 −10 m/s2
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Figure 6. Simulation results in case 1. (a) Integration result via GRT; (b) Integration result via GRFT;
(c) Integration result via the proposed method; (d) Integration result via MTD-GRT [47]; (e) Detection
performance for four integration methods [47].
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4.2. Processing of the Measured Data

In this experiment, a set of echo data acquired through frequency-modulated continuous-
wave radar is processed to verify the effectiveness of the proposed algorithm. The radar



Remote Sens. 2022, 14, 2695 13 of 20

parameters are shown in Table 3; according to the radar parameters, the radar is high reso-
lution. The absolute speed of the target motion is not high during the long-time integration,
but compared with the high-resolution radar, both the cross-range cell situation and cross-
Doppler cell situation still occur. Furthermore, when the pedestrian moves tangentially
relative to the radar, the observation angle of the radar changes greatly in a short period of
time, which may lead to a situation in which the echo is partially coherent. For partially
coherent target echoes, hybrid integration can theoretically achieve optimal integration
detection performance.

Table 3. Main parameters of the FMCW radar.

Parameters Value

Carrier frequency ( fc) 77 GHz
Sampling frequency ( fs) 10 MHz

Bandwidth (B) 800 MHz
Modulation time (Tr) 320 µs
Integration time (THI) 2.4576 s

The detection scenario is shown in Figure 8a, where the target is a man raiding an
electric bicycle moving tangentially relative to the radar. Since the position relative to the
radar changes dramatically in a short period of time, it may lead to a partial correlation
with the echo. His initial radial velocity is about 3 m/s; and the initial radial range is about
12 m. It is almost 40 range cells that the target has crossed although the radial velocity is
apparently small. The echo data acquired through frequency-modulated continuous-wave
radar is a kind of beat signal. The result after FFT is shown in Figure 8b. This operation
is equivalent to pulse compression. The data have been transformed to a beat frequency
domain. After this step, the target position cannot be seen in the graph, so it is necessary
to perform a long-time integration. Figure 8c,d show the integration results of the GRT
and GRFT, respectively. It is obvious that neither coherent integration nor noncoherent
integration yield significant “spikes” in the cases in which the target echo is partially
coherent. Figure 8e shows the integration result of the proposed method. The initial
coherent integration segment is set to be tmin = 0.0026 s; that is, kmin = 8. After iterating
four times, the system obtains the optimal output. The sought after coherent integration
segment time is 0.04096 s. It is evident that the peak clearly appears in the correct motion
of the target. Figure 8f shows the integration result of MTD-GRT method, and the coherent
integration segment time is set to 0.04096 s. One can see that there is no “peak”. Figure 8g–j
show the integration results of GRT, GRFT, the proposed algorithm, and MTD-GRT with
the simulated data. The parameters of the simulated data are the same as those of the
measured data. The initial coherent integration segment of the proposed algorithm is also
set to be tmin = 0.0026 s. In addition, the iterating time is also four to gain the optimal
output. The integration results from Figure 8g–j are consistent with those from Figure 8c–f.
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GRFT; (i) Simulated data integration result via the proposed method; (j) Simulated data integration
result via MTD-GRT.

5. Conclusions

This study presents a brand-new hybrid integration method for partially fluctuating
targets. First, the GRFT method is used for the coherent integration within the coherent
integration segment, and then the GRT method is used for the noncoherent integration
between coherent integration segments. To yield the optimal coherent integration gain, this
study proposes the optimal coherent integration segment search method. The proposed
method offers the following benefits: (1) it is suitable for low SNRs, (2) it can be generalized
to multitarget situations, and (3) it is applicable to arbitrary fluctuating targets. Compared
with noncoherent integration, coherent integration, the MTD-GRT, and other methods,
the proposed method offers optimal detection performance and contributes to optimal
coherent integration segmentation. Since the results of the simulation experiment and the
results from the measured data processing show the highest gain in the partially coherent
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echo and up to 8 dB higher than other methods in high-speed situations, thus verifying the
effectiveness of the proposed method, the proposed method has bright prospects. However,
each coin has two sides. The high degree of computational complexity for the global search
of the proposed algorithm should be further decreased in our future work.
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Abbreviations

s Pulse compressed signal.
m Slow-time sampling point number.
n in-pulse fast-time sampling point number.
c Speed of light.
B Signal bandwidth.
ρr Range resolution.
λ Wavelength.
fc Carrier frequency.
R Radial range of the target.
σ Complex backscattering coefficient.
N Noise.
Rσ Correlation function.
Tr Radar pulse repetition cycle.
TCI Echo decorrelation time.
h Phase compensation function.
K Totally integrated pulses.
KCI Coherent integration segments.
kCI Number of pulses in each coherent integration segment.
gCI Coherent integration result in coherent integration segment.
gHI Hybrid integration result.
tmin The minimum coherent time.
kmin Minimum number in coherent integration segment.
VT Detection threshold.
CH1 Covariance matrix of the observation matrix.
CS Covariance matrix of the target echo signal.
A Integration matrix.
S Matrix of echo signal.

g(i)CI Coherent integration result via level-i data.

g(i)HI Hybrid integration result via level-i data.
(·)H Hermitian transpose operation.
d·e Round-up-to-integer operation.
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Appendix A

Under the H1 hypothesis, noise and target information exist at the same time, and the
covariance matrix of the observation matrix can be expressed as:

CH1 = E
[
SSH

]
= CS + I

(A1)

where S =


s(1, 1) s(1, 2) · · · s(1, m)
s(2, 1) s(2, 2) · · · s(2, m)

...
...

. . .
...

s(n, 1) s(n, 2) · · · s(n, m)

, and CS is the covariance matrix of the target

echo signal. Since the noise is white Gaussian noise, its covariance matrix should be I. CH1
is a positive definite matrix, so it can be expressed as [50]:

CH1 = LLH (A2)

where L is a K× K-dimension invertible matrix.
Hybrid integration can also be expressed in matrix form:

vH1 = SHAS

where A =


ACI

ACI
. . .

ACI

 is an integration matrix and ACI =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 is

a kCI × kCI-dimension all-1 matrix. A linear transform VK = L−1S is defined, such that the
original hybrid integration result can be expressed as:

vH1 = VH
K PVK (A3)

where P = LHAL is a Hermitian Matrix, when VK is still a Gaussian process [51].
Hence, the similar diagonalizable matrix of P is:

UHPU = diag(λ1, λ2, · · · , λK) (A4)

where U is a unitary matrix, and λi, i = 1, 2, · · · , K is the eigenvalue of P. Since the rank
of A is the same as that of P, then λi = 0, i = KCI + 1, · · · , K. Another linear transform
Y = UHV is defined; then, the hybrid integration result can be further expressed as:

vH1 = YHDY =
KCI

∑
i=1

λi|yi|2 =
1
2

KCI

∑
i=1

λi

(
2|yi|2

)
(A5)

where D = UHPU = diag
(
λ1, λ2, · · · , λKCI , 0, · · · , 0

)
is a diagonal matrix; Y is a Gaussian

process; yi is an element in Y, namely, an independent and identically distributed Gaussian
variable; then, 2|yi|2 is a Chi square variable with two degrees of freedom. Then, vH1
should obey the Gamma distribution [52], and its probability density function can be
expressed as:

pvH1(x; α1, β1|H1 ) = fΓ(x; α1, β1/2) (A6)

where α1 =

(
KCI
∑

i=1
λi

)2

/
KCI
∑

i=1
λ2

i ,β1 = 2
KCI
∑

i=1
λ2

i /
KCI
∑

i=1
λi, fΓ(x; α, β) = βαxα−1e−βx

Γ(α) ,

Γ(α) =
∫ ∞

0 xα−1e−xdx.
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Then, the detection probability can be expressed as:

Pd =
∫ +∞

VT

pvH1(x; α1, β1|H1 )dx = F(VT ; α1, β1/2) (A7)

where F(x; α, β) = η(α,βx)
Γ(α) is the Gamma distribution function and VT is the detection

threshold.
There is only noise under the H0 hypothesis; similar to the above-noted deviation, the

following is achieved through the similar diagonalization of matrix P:

UHPU = diag(ε1, ε2, · · · , εK, 0, · · · , 0) (A8)

where εi = kCI , i = 1, 2, · · · , KCI . Then, the hybrid integration result can be simplified as:

vH0 = kCI

KCI

∑
i=1
|yi|2 (A9)

The false alarm probability of the hybrid integration process can be expressed as:

Pf a =
∫ +∞

VT

pH0(x|H0 )dx = Qχ2
2KCI

(2VT/kCI) (A10)

where pH0(x|H0 ) =
∫ +∞

VT
2

kCI
pχ2

2KCI

(
2

kCI
x
)

is the probability density function of the hybrid

integration process, and pχ2
2KCI

(x) represents the probability density function of the variable

with a Chi-square distribution.
The detection threshold can also be expressed as:

VT =
kCI
2

Q−1
χ2

2KCI

(
Pf a

)
(A11)

where Q−1
χ2

2KCI

(·) represents the inverse function of the right tail probability of the Chi-square

distribution variable.
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