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Abstract: For anti-active-interference-oriented cognitive radar systems, the mismatch between the
acquired and actual interference information may result in serious degradation of cognitive anti-active-
interference performance. To yield more effective knowledge of the electromagnetic environment and
eliminate the mismatch effect, the electromagnetic activity prediction technique, which deduces future
electromagnetic behaviors based on current observations, has received increasing attention. However,
high computational complexities limit the application of conventional electromagnetic activity pre-
diction methods in dynamic active interference prediction with high real-time requirements. In this
paper, the online sequential extreme learning machine (OS-ELM)-based method, which is dedicated
to high-efficiency active interference activity prediction, is proposed. The advancement includes
two aspects. First, benefiting from the single-hidden-layer network structure and recursive-formula-
based output weight updating, the proposed OS-ELM-based frequency prediction (OS-ELM-FP) and
OS-ELM-based angle prediction (OS-ELM-AP) models can predict the interference state and update
the prediction model parameters with much higher computational efficiency. Second, the better
generalization performance enables the proposed method to achieve smaller interference activity
prediction errors compared with conventional methods. Numerical examples and prediction results
based on measured jamming data demonstrate the advantages of the proposed method.

Keywords: online sequential extreme learning machine; active interference activity prediction;
cognitive radar; anti-active interference

1. Introduction

With the rapid development of jammer technology and the increasing demand for
wireless services, active interference has seriously deteriorated the working electromagnetic
environment of radar and has become a major obstacle to radar functionality. To counter
active interference, passive processing technology performed at the radar receiver has
been well developed [1–3]. It improves the purity of the target echo by identifying and
eliminating the active interference in received signals. Such methods usually work for
certain interference types and have anti-interference capabilities limited by the degree
of freedom (DOF) of the radar receiver. Therefore, an advanced anti-active interference
technique has been regarded as a core requirement for modern radar.

The cognitive radar technique, which improves radar performance via environment
sensing and transmitted waveform design, has received increasing attention in the radar
community due to its excellent effect and considerable application prospects [4–10]. For
countering active interference by cognitive radar systems, the dynamic changes in active
interference, and the delays caused by radar processing, will result in a mismatch between
the observed interference information and the actual information. With outdated inter-
ference information, the cognitive anti-interference method cannot achieve the maximum
anti-interference gain. To mitigate this problem, some robust cognitive anti-interference
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methods have been proposed to reduce the sensitivity of interference suppression to in-
terference sensing errors to maintain the anti-interference performance [11,12]. However,
these methods often come at the cost of the interference cancellation ratio and cannot
fundamentally solve the mismatch loss problem. Since improving the effectiveness of
active interference information can mitigate the mismatch effect and suppress other pro-
cessing losses while countering active interference, it has become an urgent issue for the
anti-interference of cognitive radar.

Activity prediction can deduce future environmental states based on observations to
improve the accuracy of environmental knowledge, which has been extensively studied in
the communication field [13–15], and a few research results have been extended to radar
applications [8,9,16–22]. These prediction methods can be divided into model-based and
model-independent methods, and the main techniques involve Markov process-based
prediction [8–10,16,18], stochastic process-based prediction [19,20] and machine learning-
based prediction [21,22]. Stinco et al. [18] presented a single-channel hidden Markov model
(HMM)-based prediction method. This method can effectively model dynamic spectrum
access but cannot handle a prediction problem with a large state space. In [9,10], the Markov
decision process and partially observable Markov decision process were introduced to
model dynamic active interference behavior, and the deep Q network was introduced to
solve the model and to overcome the large state space problem. However, these methods
require considerable amounts of memory storage space and computing time to converge
to the optimal solution. In [20], researchers proposed an angle prediction method based
on Gaussian process regression (GPR). GPR is a nonparametric regression model driven
by training data but the computational complexity of this method increases significantly
with increasing training sizes, which makes it difficult for it to handle large datasets or
dynamically updated datasets. In addition, GPR-based prediction methods need to properly
set the kernel function, mean function and hyperparameter distribution. In contrast, deep
learning methods reduce the impact of manually setting parameters and can extract training
sample features in a more automatic way. Among these deep learning methods, long short-
term memory (LSTM) is a recurrent neural network (RNN) used for modeling stochastic
processes that can learn the short-term and long-term dependencies of time series [21,22]
to obtain better forecasting results. However, LSTM-based prediction algorithms have
high computational complexities and are also not capable of handling dynamic updated
datasets with real-time requirements. Moreover, the generalization ability of LSTM cannot
be guaranteed in small sample scenarios.

In a noncooperative active interference environment, the obtained effective interfer-
ence dataset is limited and dynamically updated by the interaction between radar and
active interference. To ensure the interference activity prediction performance, it is neces-
sary to update the prediction model online based on the limited new data. In addition, from
the perspective of anti-interference, dynamic countermeasure scenarios require real-time
anti-interference operations. Therefore, it is of great significance to construct a real-time
online updated active interference prediction model. An extreme learning machine (ELM)
adopts a single-layer feedforward neural network (SLFN) structure, which includes an
input layer, a hidden layer and an output layer [23,24]. The weight and bias between the
input and hidden layers are randomized in advance, and only the weight of the output
layer is calculated by the l2 loss function in the training phase. Studies have shown that,
through such a network structure and training rules, the model has a higher generalization
performance and learning speed [25,26]. Based on these advantages, Liang et al. proposed
the online sequential-ELM (OS-ELM) incremental learning algorithm [27,28]. This algo-
rithm updates the output weights of the ELM network based on newly obtained data to
enhance the original training model to adapt to the dynamic environment.

In this paper, an OS-ELM-based method, which has a high learning speed and strong
generalization ability, is proposed for predicting active interference behavior. Specifically,
the OS-ELM-based interference frequency prediction (OS-ELM-FP) model and the OS-
ELM-based interference angle prediction (OS-ELM-AP) model are proposed for learning
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interference activity in the frequency and spatial domains, respectively. As the model
parameters are updated efficiently, based on dynamically obtained active interference data,
the proposed methods effectively predict interference behavior. The research contributions
of this paper are summarized as follows:

(1) The OS-ELM-FP algorithm is proposed to predict the active interference activity
in the frequency domain. Frequency state encoding is first performed on the per-
ceived active interference spectrum to reduce the computational complexity of the
prediction. Then, the OS-ELM-FP network architecture is constructed based on the
interference state code to predict multichannel interference states in parallel, and
the corresponding updating method for the OS-ELM-FP is given. With the single
OS-ELM-FP network prediction model, the interference state in multiple frequency
channels can be simultaneously predicted efficiently and accurately.

(2) By constructing the single-input single-output OS-ELM-AP network model and de-
ducing the corresponding updating formula, the OS-ELM-AP algorithm is proposed
to predict active interference activity in the spatial domain. Based on the current
interference direction estimates, the future interference angle can be efficiently pre-
dicted by the proposed method, and the cognitive anti-interference performance in
the spatial domain is, thus, improved.

(3) The prediction performance comparisons of various typical interference frequency
schemes (including the two-state Markov process, the triangular sweep mode, the
barrage interference and the stochastic interference with a certain probability) are
presented in the analysis stage. Both the ballistic simulation data and the measured
jamming data are accessed in the analysis stage of the interference state prediction in
the spatial domain, which provides a detailed performance analysis of the proposed
OS-ELM-AP model.

The rest of the paper is organized as follows. Section 2 presents the anti-interference
model for cognitive radar. Section 3 provides the active interference activity prediction
method. Section 4 presents the results and corresponding analyses. Finally, the conclusion
is drawn in Section 5.

2. Anti-Active Interference Model for Cognitive Radar

We consider cognitive radar with spectrum sensing, direction of arrival (DOA) esti-
mation, target detection and transmit design functions, the anti-interference framework of
which is presented in Figure 1. Based on the radar environment analyzer, the perception
of active interference can be completed, and the interference spectrum and angle infor-
mation can be obtained [29–32]. Based on this information, the intelligent control center
designs the transmit waveform to realize the transmit spectrum and beam nulling to avoid
co-frequency active interference and reduce the probability of being intercepted by a hostile
jammer. According to the transmit waveform provided by the intelligent control center, the
radar transmitter transmits a waveform suitable for the environment. Then, the cognitive
anti-interference framework is circulated until the target detection performance meets
the requirements.
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Figure 1. Anti-interference framework of cognitive radar.

Specifically, consider a uniform linear array with Q elements separated by distance d.
The emission steering vector is

a(θ) =
[
1, e−j2π d

λ sin (θ), . . . , e−j2π(Q−1) d
λ sin (θ)

]
(1)

Assuming that the estimated interference azimuth is θj, the transmit beam with the
notch formed in the interference direction can be synthesized by

ψ:,n = ψ:,n − Kn
′aH(θj

)
, n = 1, . . . , Np (2)

where ψ is the Q × NP-dimensional transmit matrix, (•):,n is the nth column of the matrix,

(•)H is the transpose conjugate operation and Kn
′ is the beam amplitude in θj:

Kn
′ =

1
Q

Q

∑
q=1

(
ψ:,n ◦ aT(θj

))
q
, n = 1, . . . , Np (3)

where (•)T refers to the transposition operation. Similarly, with the obtained interference
frequency f j, the transmit waveform with the notch at f j to avoid active interference can be
formed by

ψq,: = ψq,: − Kq
′′ ej2π f jt′ , q = 1, . . . , Q (4)

where (•)q,: is the qth row of the matrix, t′ =
[
0, ts

′, . . . , ts
′(Np − 1

)]
, ts
′ is the sampling

interval, and Kq ′′ is the amplitude of the transmitted spectrum at fj:

Kq
′′ =

1
Np

Np

∑
n=1

(
ψq,: ◦ e−j2π f jt′

)
n
, q = 1, . . . , Q (5)

Equations (2) and (4) give the methods for forming a single notch at the transmit beam
and spectrum, respectively, which can easily be extended to the case of forming multiple
notches to counter multiple interference, that is,

ψ:,n = ψ:,n − K j1
n
′aH(θj1

)
− . . .− K

jη
n
′aH
(

θjη

)
, n = 1, . . . , Np (6)

ψq,: = ψq,: − K j1
q
′′ ej2π f j1

t − . . .− K jγ
q
′′ ej2π f jγ t, q = 1, . . . , Q (7)
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where η is the number of different directions occupied by active interference, and γ is the
number of frequency points occupied by active interference.

Anti-active interference is a perception-reaction process. For the cognitive anti-
interference technology designed for the transmitter, as described in (2) and (4), the interfer-
ence information is sensed, based on the previously received signal. Due to the flexibility
of active interference and the time delays caused by the sensing and anti-interference
methods, there may be a mismatch between the acquired interference information and the
real interference state at the anti-interference moment. In this case, the interference infor-
mation

[
θj, f j

]
is outdated and, hence, greatly reduces the anti-interference performance of

cognitive radar.

3. Active Interference Activity Prediction Method

To solve the problem created by outdated active interference knowledge, research on
interference behavior prediction was conducted in this section. Based on the observed
interference data, the interference state prediction model was constructed to deduce the
future interference state to improve the effectiveness of the interference information, thereby
maximizing the cognitive radar anti-interference performance.

3.1. OS-ELM-FP-Based Active Interference State Prediction in the Frequency Domain

The frequency domain is a major electronic warfare domain. There are many cognitive
methods for countering active interference in the frequency domain, such as transmit
spectrum nulling and frequency agility. However, the performance of these cognitive anti-
interference methods is not stable. The main reason is that the active interference spectrum
is flexibly changeable, which leads to a lack of timeliness of the estimated interference
frequency information. In this subsection, we propose the OS-ELM-FP method for pre-
dicting active interference activity in the frequency domain to obtain effective interference
frequency knowledge in real time.

The block diagram of the active interference state prediction in the frequency domain
is shown in Figure 2. If the prediction is directly performed on the interference spectrum
amplitudes at all frequency points, the computational complexity will be very high. To
avoid this, the interference spectrum was first encoded. Then, based on the interference
spectrum code, the idle intervals of multiple frequency channels were calculated. Finally,
the OS-ELM-FP network model was constructed to predict the interference spectrum code
in the next time based on the input idle intervals. In the online prediction stage, the
parameters of the OS-ELM-FP network model were updated, based on the dynamically
updated interference spectrum and idle interval, to improve the adaptability of the OS-
ELM-FP to the dynamically changing active interference environment.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21 

 

 

where   is the number of different directions occupied by active interference, and   is 
the number of frequency points occupied by active interference. 

Anti-active interference is a perception-reaction process. For the cognitive anti-
interference technology designed for the transmitter, as described in (2) and (4), the 
interference information is sensed, based on the previously received signal. Due to the 
flexibility of active interference and the time delays caused by the sensing and anti-
interference methods, there may be a mismatch between the acquired interference 
information and the real interference state at the anti-interference moment. In this case, 
the interference information ,j jf    is outdated and, hence, greatly reduces the anti-
interference performance of cognitive radar. 

3. Active Interference Activity Prediction Method 
To solve the problem created by outdated active interference knowledge, research on 

interference behavior prediction was conducted in this section. Based on the observed 
interference data, the interference state prediction model was constructed to deduce the 
future interference state to improve the effectiveness of the interference information, 
thereby maximizing the cognitive radar anti-interference performance. 

3.1. OS-ELM-FP-Based Active Interference State Prediction in the Frequency Domain 
The frequency domain is a major electronic warfare domain. There are many 

cognitive methods for countering active interference in the frequency domain, such as 
transmit spectrum nulling and frequency agility. However, the performance of these 
cognitive anti-interference methods is not stable. The main reason is that the active 
interference spectrum is flexibly changeable, which leads to a lack of timeliness of the 
estimated interference frequency information. In this subsection, we propose the OS-
ELM-FP method for predicting active interference activity in the frequency domain to 
obtain effective interference frequency knowledge in real time. 

The block diagram of the active interference state prediction in the frequency domain 
is shown in Figure 2. If the prediction is directly performed on the interference spectrum 
amplitudes at all frequency points, the computational complexity will be very high. To 
avoid this, the interference spectrum was first encoded. Then, based on the interference 
spectrum code, the idle intervals of multiple frequency channels were calculated. Finally, 
the OS-ELM-FP network model was constructed to predict the interference spectrum code 
in the next time based on the input idle intervals. In the online prediction stage, the 
parameters of the OS-ELM-FP network model were updated, based on the dynamically 
updated interference spectrum and idle interval, to improve the adaptability of the OS-
ELM-FP to the dynamically changing active interference environment. 

 
Figure 2. Block diagram of the active interference activity prediction in the frequency domain. 

In the spectrum coding stage, the spectrum sensing range of the radar system was 
divided into multiple subchannels, and a binary vector s  was used to represent the active 
interference spectrum state. When a subchannel was encoded as 0, the active interference 
in the subchannel was considered negligible, and when the code was 1, the subchannel 
was considered to be occupied by active interference with sufficient energy. A block 
diagram of interference spectrum coding is shown in Figure 3. First, the spectrum sensing 
bandwidth was divided into M frequency subchannels with the minimum working 
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In the spectrum coding stage, the spectrum sensing range of the radar system was
divided into multiple subchannels, and a binary vector s was used to represent the active
interference spectrum state. When a subchannel was encoded as 0, the active interference
in the subchannel was considered negligible, and when the code was 1, the subchannel was
considered to be occupied by active interference with sufficient energy. A block diagram of
interference spectrum coding is shown in Figure 3. First, the spectrum sensing bandwidth
was divided into M frequency subchannels with the minimum working bandwidth of
the radar system as an interval. Then, the received interference signal energy in each
subchannel was counted, and the channel code was determined based on a threshold



Remote Sens. 2022, 14, 2737 6 of 21

decision. If the counted interference energy was less than the decision threshold, the
corresponding subchannel was coded as 0, while the subchannel was coded as 1 if the
interference energy was greater than the decision threshold.
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An example of interference spectrum coding is given in Figure 4. The spectrum sensing
bandwidth and the minimum working bandwidth were set to 100 MHz and 20 MHz,
respectively, so a total of 5 subchannels were divided. The noise level in the subchannel
was counted, based on signals received from angle-range bins without active interference
sources. With the obtained noise level, the decision threshold could be determined by
using the Neyman-Pearson criterion. Then, the state code s = [1 0 0 1 0]T could be obtained
for the interference spectrum in Figure 4. The coding result indicated that the first and
fourth subchannels were occupied by active interference. In addition to the threshold
determination method, based on the Neyman-Pearson criterion, the posterior probability
of active interference identification, which does not require environmental knowledge, is
also suitable for the decision in a noncooperative interference environment. Related details
can be obtained by referring to [10].
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Based on the interference spectrum code s, the continuous idle interval of each sub-
channel could be accumulated. Then, the idle interval vector t = [t1, t2, . . . , tM]T could
be obtained. Taking t as the input of the OS-ELM-FP network, the interference state bi-
nary vector s′ = [s1

′, s2
′, . . . , sM

′]T at the next moment could be predicted. Therefore, the
OS-ELM-FP network model with M-dimensional input and M-dimensional output was
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constructed, as shown in Figure 5. The weight and bias used to connect the input and
hidden layers of the OS-ELM-FP network were expressed as(

wji, bj
)
, j = 1, . . . , L; i = 1, . . . , M (8)
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In OS-ELM-FP, the value of (w, b) was set randomly, or based on offline training data,
and would not be updated during the online test phase. Let hj be the output of the hidden
layer. hj was expressed as

hj = g
(
wj,:t + bj

)
(9)

where g(x) was the transfer function of the hidden layer of the OS-ELM-FP network. The
weight of the output layer of the OS-ELM-FP network was expressed as

βkj, k = 1, . . . , M; j = 1, . . . , L (10)

Hence, the output of the OS-ELM-FP network was defined as

s′ = βh = βg(wt + b) (11)

During the training phase, the OS-ELM-FP determined the weight of the output
layer by minimizing the squared difference between the prediction results and the sensed
interference states. The computing formula was given by

β̂ = sT
′H† (12)

where sT
′ was the frequency state of active interference perceived at the next time, and (•)†

was the pseudoinverse operation.

H = [h1, h2, . . . , hN ] (13)

where N was the number of offline training samples. In the online test phase, state coding
was performed on the newly obtained active interference spectrum, and the idle interval
vector t was updated according to the new spectrum code. Then, based on the updated idle
interval vector t and interference spectrum code sT

′, the output weight of the OS-ELM-FP
network was updated by

βv+1 = βv +
(
sT
′
v+1 − βvHv+1

)
H†

v+1 (14)

where v was the number of updates.
The prediction and updating steps of the OS-ELM-FP network model are summarized

in Algorithm 1.
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Algorithm 1 OS-ELM-FP-based interference frequency prediction

Perform the following in the offline training phase.
(1) Encode the active interference frequency state based on the radar system settings (spectrum
sensing bandwidth and minimum working bandwidth), and count the idle interval vector t based
on the state codes.
(2) Determine the OS-ELM-FP network structure according to the dimension of the interference
spectrum code, and randomly set the weight and bias connecting the input and hidden layers of
the OS-ELM-FP network.
(3) Compute the weight of the output layer by (12).
Perform the following in the online training phase.
(4) Update the idle interval vector t based on the updated interference spectrum code, and update
the output weight of the OS-ELM-FP network by (14).

3.2. OS-ELM-AP-Based Active Interference State Prediction in the Spatial Domain

Although the variation in the interference in the spatial domain is not as flexible as
that in the frequency domain, a small deviation in the estimated interference direction can
greatly degrade the anti-interference performance in the spatial domain. Therefore, an
active interference angle prediction method was investigated in this subsection.

The prediction of the active interference state in the spatial domain refers to predicting
the interference angle θ′ at the next moment with the previous estimated interference angle
θ. Therefore, the single-input and single-output OS-ELM-AP network was constructed as
shown in Figure 6.
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The weight and bias used to connect the input and hidden layers of the OS-ELM-AP
network were expressed as (

ws
j , bs

j

)
, j = 1, . . . , L (15)

The output hs
j of the hidden layer of the OS-ELM-AP was defined as

hs
j = gs

(
ws

j θ + bs
j

)
, j = 1, . . . , L (16)

where gs(x) was the transfer function of the hidden layer of the OS-ELM-AP network. The
output weight of the OS-ELM-AP network was denoted as βs

j , j = 1, . . . , L. The output of
the OS-ELM-AP network was defined as

θ′ = βshs = βsgs(wsθ + bs) (17)

Similarly, the values of the weight and bias used to connect the input and hidden
layers of the OS-ELM-AP network were randomly generated in the offline phase. During
the online learning phase, the weight and bias were not updated, and only the weight
βs between the hidden and output layers was updated, based on the newly obtained
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interference DOA estimation data. Specifically, in the training phase, the calculation
formula of the output weight was

β̂s = θT
′Hs† (18)

where θT
′ was the training label, and

Hs = [hs
1, hs

2, . . . , hs
N ] (19)

In the online testing phase, the update formula for the weight of the output layer of
the OS-ELM-AP network was

βs
v1+1 = βs

v1
+
(

θT
′
v1+1 − βs

v1
hs

v1+1

)
Hs†

v1+1 (20)

where v1 was the number of updates.
The prediction and learning steps of the OS-ELM-AP network model are summarized

in Algorithm 2.

Algorithm 2 OS-ELM-AP-based interference angle prediction

Perform the following in the offline training phase.
(1) Set the dimension of the input and output layers of the OS-ELM-AP network to 1, and
randomly set the weight and bias connecting the input and hidden layers of the OS-ELM-AP
network.
(2) Determine the weight connecting the hidden layer and the output layer by (18).
Perform the following in the online training phase:
(3) Update the output weight of the OS-ELM-AP network by (20) based on the updated
interference DOA estimation.

4. Results and Analyses

In this section, simulation experiments performed in MATLAB, and measured active
interference data, were used to analyze and verify the interference behavior prediction
performance of the proposed algorithm. To present the optimal performance of the pro-
posed method, the noise in the interference parameter estimation results was ignored in the
following numerical experiments. In practice, the influence of noise on prediction results
could be mitigated by training in the presence of noise or introducing advanced training
technology that could enhance the robustness of the prediction model [33,34].

For the analysis of the interference behavior prediction in the frequency domain, the
available maximum bandwidth and the minimum working bandwidth of the radar system
were assumed to be 100 MHz and 20 MHz, respectively, so 5 subchannels were divided in
the frequency domain. Four active interference schemes were used to verify the interference
frequency state prediction performance of the OS-ELM-FP algorithm. The specific active
interference schemes in the frequency domain are shown in Table 1.

Table 1. Active interference activity schemes in the frequency domain.

Interference Scheme

Markov

Occupies each frequency subchannel according to the two-state

Markov process defined as:
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Domain 

Offline Training 
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Initial Learning 
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Learning Rate 
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.
Triangular sweep Sweeps over the available frequency bands with triangular behavior.

Barrage Occupies all the frequency channels.

Stochastic Occupies the 5 frequency subchannels with probabilities
[0.5 0.3 0.1 0.1 0].
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For the analysis of the interference behavior prediction in the spatial domain, both
simulation data and measured data were used to verify the performance of the OS-ELM-AP
algorithm. Specifically, the simulated interference angle data were generated based on the
simulated missile trajectory. A ship target was assumed to move in the horizontal plane
with the initial geodetic coordinate (6000, 7504, 0) m, a speed of 15 m/s and a direction
of −120◦. The active interference was inboard, so its movement was consistent with that
of the ship target. The starting point of the missile was at the geodetic coordinate of (0, 0,
1500) m, the flight speed of the missile was vm = 300 m/s, the initial azimuth angle of the
missile was ohx= 30◦, and the initial pitch angle was o f y= 0◦. The radar sensor was turned
on to obtain the interference angle data when the missile-target distance was 10 km. The
measured angle data of active interference were obtained by multichannel array radar in
a sea-surface target detection experiment. The specific experimental settings are given in
Section 4.3.

The comparison algorithms used in this section included GRP-based [19] interference
behavior prediction and LSTM-based [21] interference behavior prediction. The two com-
parison algorithms were implemented based on MATLAB’s toolkit. The parameter settings
of the prediction methods are given in Tables 2–4.

Table 2. Parameter setting of the GRP-based interference activity prediction model.

Signal Domain Offline Training
Set Size

Input/Output
Size

Kernel
Function

Initial Noise
Standard
Deviation

Signal
Standard
Deviation

Feature Length
Scale

Space 10 1 square
exponential 0.2 3.5 6.2

Frequency 10 1 square
exponential 0.2 3.5 6.2

Table 3. Parameter setting of the LSTM-based interference activity prediction model.

Signal
Domain

Offline
Training Set

Size

Input/Output
Size

Hidden
Layer Size

Solution
Machine Iterations

Initial
Learning

Rate

Reduction
Factor of

Learning Rate

Space 10 1 10 ‘adam’ 250 0.005 0.2

Frequency 10 5 10 ‘adam’ 250 0.005 0.2

Table 4. Parameter setting of the OS-ELM-based interference activity prediction model.

Signal Domain Offline Training Set Size Input/Output Size Transfer Function Hidden Layer Size

Space 10 1 Sigmoid 10

Frequency 10 5 Sigmoid 10

Based on the prediction models described in the above tables, the performance of
the algorithms was verified from four aspects: online single-time interference behavior
prediction performance, continuous multi-time interference behavior prediction perfor-
mance, computational complexity and cognitive anti-interference performance based on
the prediction results.

4.1. Analysis of the Single-Time Prediction Performance

Based on the time series of the interference angle obtained by the simulated ballistic
trajectory, the single-time online prediction results obtained by different angle prediction al-
gorithms are shown in Figure 7. The OS-ELM-AP and GRP-AP algorithms had significantly
smaller prediction errors than the LSTM-AP algorithm. This was because only the time
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series of length 10 was used for prediction model training in the offline training phase, and
the training dataset was only updated by one sample at an updating time in the online test
phase. As a deep learning algorithm, small samples cannot guarantee the performance of
LSTM-AP. For noncooperative active interference countermeasure applications with high
real-time requirements, it is obvious that the available effective training data are limited.
Therefore, as a single-layer feedforward neural network, OS-ELM-AP was more suitable
for predicting noncooperative active interference activity than the LSTM-AP method. In
addition, Figure 7b shows that the OS-ELM-AP algorithm achieved a better prediction
performance than the GRP-AP algorithm.
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Figure 7. Online single-time interference angle prediction results. (a) Angle prediction error. (b) Mag-
nified view of (a).

In Figure 8, the active interference frequency state prediction results are given. Since
the interference spectrum was represented by a binary vector, the prediction error was
zero or one. The results show that for the interference frequency scheme generated by
the two-state Markov process, the prediction errors obtained by the LSTM-FP algorithm
and the OS-ELM-FP algorithm decreased with the updating model during the online test
process, compared with those obtained by the GRP-FP algorithm. Specifically, for the
45 predictions starting from the 45th test, the LSTM-FP algorithm generated a total of
11 prediction errors, and the OS-ELM-FP algorithm had a total of 2 prediction errors. For
the triangular sweep interference mode, the OS-ELM-FP algorithm had zero prediction
errors in the test phase. This means that, based on a small number of offline training
samples, the OS-ELM-FP algorithm successfully learned the scheme of the triangular
sweep interference. In contrast, the GRP-FP algorithm and the LSTM-FP algorithm did
not fully learn the interference behavior during the offline training process and could not
accurately predict the interference state in the frequency domain based on online updating.
In fact, the incorrect prediction results in Figure 8c appeared in the idle-busy transition
state. Therefore, compared with the GRP-FP algorithm and the LSTM-FP algorithm, the
proposed OS-ELM-FP algorithm could maintain a higher prediction accuracy for the
interference state at the turning point. For stochastic interference, Figure 8e shows that the
prediction performance of the GRP-FP algorithm and the LSTM-FP algorithm decreased
with the increasing time delay of the online test data. In contrast, the proposed OS-ELM-FP
algorithm could effectively improve the prediction performance by updating the prediction
model parameters online. Specifically, for the 45 subsequent predictions, starting from
the 45th test, the GRP-FP algorithm obtained a total of 13 prediction errors, the LSTM-FP
algorithm made a total of 23 prediction errors and the OS-ELM-FP algorithm generated a
total of 3 prediction errors. Finally, the prediction results of the three prediction algorithms
in the barrage interference environment are given in Figure 8g. The three prediction
algorithms could successfully learn the interference frequency behavior in this constant
frequency scheme.
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Then, we analyzed the cost time of the numerical examples in Figures 7 and 8. The
online update time of the prediction models is given in Table 5. As shown, the online
update time of the OS-ELM-based method was much smaller than the online update times
of the GRP and LSTM algorithms in both interference angle and frequency predictions. The
main calculation complexity of the OS-ELM-based algorithm came from the pseudoinver-
sion operation in the updating formula. Since the OS-ELM-based prediction model was
updated based on a single sample in the online test phase, its computational complexity
depended mainly on the hidden layer dimension L, i.e., o

(
L3). The GRP-based prediction

algorithm updated the model parameters with accumulated samples and could not achieve
multichannel predictions in parallel. Therefore, with the increase in the number of sam-
ples N and the number of channels M, the computational complexity of the GRP-based
method would increase greatly. Specifically, the computational complexity of the GRP-
based method was o

(
MN3). For the LSTM-based method, the computational complexity

was o(NI(KNH + KCS + NH I + CSI)), where NI , K, NH and C were the numbers of train-
ing iterations, output units, hidden layer units, and memory element blocks, respectively,
S was the size of memory element blocks, and I was the number of units connecting
the memory elements, gate units, and hidden layer. Compared with the OS-ELM with a
single hidden layer, the LSTM structure was more complex and, hence, resulted in greater
calculation complexity in the updating process.
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Figure 8. Online single-time interference frequency prediction results. (a) Prediction error for
the Markov case. (b) Magnified view of (a). (c) Prediction error for the triangular sweep case.
(d) Magnified view of (c). (e) Prediction error for the stochastic case. (f) Magnified view of (e).
(g) Prediction error for the barrage case.

Table 5. Numerical examples of the cost time.

Algorithm Online Update Time of
Angle Prediction (s)

Online Update Time of
Frequency Prediction (s)

OS-ELM-AP/FP 0.0016 0.0017

GRP-AP/FP 0.1038 0.9510

LSTM-AP/FP 3.7835 3.8407

4.2. Analysis of the Continuous Multitime Prediction Performance

In the active interference countermeasure scenario, due to the noncooperative property
of active interference and the uncertainty of other environmental factors in the perception
process, the sensed effective active interference data might be interrupted. Therefore, it
was of great significance to design a prediction algorithm with good continuous multi-time
prediction performance. The multi-time prediction results of the active interference angle
with different algorithms are shown in Figure 9. The later the time of the sample to be
predicted, the larger the prediction error would be. This was because the prediction error
accumulated in the continuous multi-time prediction. Nevertheless, Figure 9 shows that
the OS-ELM-AP algorithm could keep the interference angle prediction errors within 0.01◦

in the first 41 consecutive predictions. This was much better than the GRP algorithm and
the LSTM algorithm.
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Figure 9. Online continuous multi-time angle prediction results.

In Figure 10, the continuous multi-time prediction results of the active interference
frequency state are given. Since there was no online update process in the continuous
multi-time prediction, for the triangular sweep frequency mode, the OS-ELM-FP algorithm
made prediction errors at the idle-busy transition points similar to the other two prediction
algorithms. In the barrage interference environment, the three algorithms could accurately
predict the interference state in the continuous multi-time prediction. For the stochastic
interference case, the multi-time prediction performance of the OS-ELM-FP algorithm was
better than that of the other two methods.
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Figure 10. Online continuous multi-time frequency prediction results for the (a) Markov, (b) triangular
sweep, (c) stochastic and (d) barrage interference schemes.
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The average multi-time prediction errors of different algorithms are given in Table 6
by counting the interference behavior prediction results at 90 consecutive moments. The
interference azimuth prediction error of OS-ELM-AP was much smaller than that of the
other two methods. For the interference frequency state prediction, the average continuous
multi-time prediction error of the OS-ELM-FP was consistent with that of the other two
methods in the cases of the Markov-process-based interference mode, the triangular sweep
interference mode, and the barrage interference mode. For stochastic interference, the
average prediction error of the OS-ELM-FP method was smaller than that of the other
methods. The results in the table further highlight the superiority of the OS-ELM-based
active interference activity prediction method in multi-time prediction scenarios.

Table 6. Average continuous multi-time prediction error.

Algorithm Angle Prediction Error
Frequency Prediction Error

Markov Triangular Sweep Stochastic Barrage Interference

OS-ELM-AP/FP 0.1340◦ 0.5111 0.2000 0.1444 0

GRP-AP/FP 3.8678◦ 0.5111 0.2000 0.2444 0

LSTM-AP/FP 16.8456◦ 0.5111 0.2000 0.5000 0

4.3. Analysis of Interference Activity Prediction Performance Based on Measured Data

This subsection analyzes and verifies the performance of the OS-ELM-AP based on
the measured data. The experimental scenario is shown in Figure 11. The target used for
calibration was within the range of the radar transmit beam, and the ship carrying an active
jammer entered the irradiation range of the radar system along Path 1 from the right side
of the beam. After reaching the designated position, the ship returned along Path 2.
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Figure 11. Experimental scenario.

Under the above experimental conditions, the interference azimuth data in Path 1 and
Path 2 were measured. Based on this collected interference azimuth data, the prediction
results of different methods are shown in Figure 12, and the prediction errors are given in
Figures 13 and 14. As shown, the prediction performance of the LSTM-AP algorithm was
poor due to the small number of samples. Both the OS-ELM-AP algorithm and GRP-AP
algorithm could achieve better prediction performance with online updating. Specifically,
after four online updates, the prediction errors of the OS-ELM-AP algorithm and the GRP-
AP algorithm were less than 0.005◦. In addition, Figures 13b and 14b show that starting
from the fifth online test, the jammer angle prediction error generated by the OS-ELM-AP
algorithm was smaller than that generated by the GRP-AP algorithm.



Remote Sens. 2022, 14, 2737 16 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 

 

 

4.3. Analysis of Interference Activity Prediction Performance Based on Measured Data 
This subsection analyzes and verifies the performance of the OS-ELM-AP based on 

the measured data. The experimental scenario is shown in Figure 11. The target used for 
calibration was within the range of the radar transmit beam, and the ship carrying an 
active jammer entered the irradiation range of the radar system along Path 1 from the 
right side of the beam. After reaching the designated position, the ship returned along 
Path 2. 

 
Figure 11. Experimental scenario. 

Under the above experimental conditions, the interference azimuth data in Path 1 
and Path 2 were measured. Based on this collected interference azimuth data, the 
prediction results of different methods are shown in Figure 12, and the prediction errors 
are given in Figures 13 and 14. As shown, the prediction performance of the LSTM-AP 
algorithm was poor due to the small number of samples. Both the OS-ELM-AP algorithm 
and GRP-AP algorithm could achieve better prediction performance with online 
updating. Specifically, after four online updates, the prediction errors of the OS-ELM-AP 
algorithm and the GRP-AP algorithm were less than 0.005°. In addition, Figures 13b and 
14b show that starting from the fifth online test, the jammer angle prediction error 
generated by the OS-ELM-AP algorithm was smaller than that generated by the GRP-AP 
algorithm. 

  
(a) (b) 

Figure 12. Online angle prediction results for (a) Path 1 and (b) Path 2. 

0 5 10 15
Time index

-4.5

-4

-3.5

Estimation
OS-ELM-AP
GRP-AP
LSTM-AP

0 5 10 15
Time index

-2.5

-2

-1.5

-1 Estimation
OS-ELM-AP
GRP-AP
LSTM-AP

Figure 12. Online angle prediction results for (a) Path 1 and (b) Path 2.
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Figure 13. Online angle prediction errors for Path 1. (a) Prediction errors. (b) Magnified view of (a).
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Figure 14. Online angle prediction errors for Path 2. (a) Prediction errors. (b) Magnified view of (a).

4.4. Analysis of the Anti-Active Interference Performance Based on Interference Activity
Predictions

This subsection illustrates the boosting effect of the proposed interference behavior
prediction method on the cognitive anti-interference performance. For cognitive anti-
interference in the spatial domain, the radar system designs the transmitting beam with
notches formed in the interference direction to reduce the probability of the radar signal be-
ing intercepted by enemy jammers and suppresses the electromagnetic interference to other
equipment. Therefore, we measured the spatial cognitive anti-interference performance by
the transmit beam nulling level in the interference azimuth. For cognitive anti-interference
in the frequency domain, the transmit waveform design is usually combined with the
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receiver filter to counter active interference. Therefore, we assessed the cognitive anti-
interference performance in the frequency domain by the output signal-to-interference
ratio (SIR) of the receiver filter.

The transmit beams synthesized using the sensed and predicted results of the 10th
sample in Figure 12a are shown in Figure 15a,b, respectively. The actual interference
angle corresponding to the 10th sample was −4.3◦, the sensed result was −4.2◦, and
the prediction result was −4.3◦. The nulling level of the transmitted beam at the true
interference azimuth was −37.44 dB, based on the sensed interference information, while
the formed nulling level was −152.9 dB with the predicted interference angle. Obviously,
the interference behavior prediction based on OS-ELM-AP could effectively improve the
cognitive anti-interference performance in the spatial domain.
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Figure 15. Transmit beampattern synthesized using (a) sensed and (b) predicted interference
knowledge.

The spectrum of the traditional chirp signal with a bandwidth of 100 MHz is given in
Figure 16a. The active interference was composed of multicarrier signals, and the signal-
to-noise ratio (SNR) and the interference-to-noise ratio (INR) of the received signal were
10 dB and 50 dB, respectively. By using the perception and prediction frequency results
of the triangular sweep interference in Figure 8c, the spectra of the designed cognitive
transmit waveforms are shown in Figure 16b,c. Corresponding to the interference frequency
perception results, the designed transmit waveform was null at 0-20 MHz. Through OS-
ELM-FP-based interference frequency prediction, it could be learned that interference
occupied the second frequency subchannel. With the prediction result, the cognitive radar
system designed a transmit waveform with a notch at 20-40 MHz.
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Figure 16. Normalized spectra of the (a) LFM waveform, (b) waveform designed using sensed
interference information and (c) waveform designed using the OS-ELM-FP-based interference
frequency prediction.

Following the transmit waveforms in Figure 16, the corresponding output results of the
matched filter are shown in Figure 17. In the two cases of transmitting the chirp signal and
transmitting the cognitive anti-interference signal designed, based on the sensed interfer-
ence frequency state, the output target echo was completely suppressed by the active inter-
ference signal. In contrast, using the interference frequency information predicted based on
OS-ELM-FP to design the anti-interference waveform could effectively improve the output
SIR. Specifically, the SIRs obtained by the chirp signal, the waveform designed based on the
sensed interference frequency state and the waveform designed according to the OS-ELM-
FP-based prediction result were −19.4 dB, −20 dB and 36.8 dB, respectively. Therefore, the
proposed OS-ELM-FP could effectively optimize the cognitive anti-interference capability
by improving the effectiveness of the active interference information.
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Figure 17. Outputs of the matched filter for the (a) LFM waveform, (b) waveform designed using
sensed interference information, and (c) waveform designed using the OS-ELM-FP-based interference
frequency prediction result.

5. Conclusions

In this paper, an OS-ELM-based method that contains interference frequency and angle
prediction models, i.e., OS-ELM-AP and OS-ELM-FP, is proposed for active interference
activity prediction in cognitive radar. Due to the flexible single-hidden-layer network
structure and recursive-formula-based output weight updating, the interference state in
multiple frequency channels can be simultaneously predicted efficiently and accurately by
the proposed OS-ELM-FP method. Furthermore, based on the current interference direc-
tion estimates, the future interference angle can be efficiently predicted by the proposed
OS-ELM-AP model, and the cognitive anti-interference performance is, thus, improved.
The proposed method can achieve smaller prediction errors with a low computational com-
plexity than state-of-the-art methods, which has been verified by simulation and measured
interference data.

Considering the intelligence of active interference and extending the method to a
multiagent application are future research directions of this work.
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