
����������
�������

Citation: Graves, W.; Aminfar, K.;

Lattanzi, D. Full-Scale Highway

Bridge Deformation Tracking via

Photogrammetry and Remote

Sensing. Remote Sens. 2022, 14, 2767.

https://doi.org/10.3390/rs14122767

Academic Editors: Giuseppe

Lacidogna, Craig M. Hancock, Yang

Yang and Mohamed Elchalakani

Received: 22 April 2022

Accepted: 4 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Full-Scale Highway Bridge Deformation Tracking via
Photogrammetry and Remote Sensing
William Graves * , Kiyarash Aminfar and David Lattanzi

Sid and Riva Dewberry Department of Civil, Environmental, and Infrastructure Engineering,
George Mason University, Fairfax, VA 22030, USA; kaminfar@gmu.edu (K.A.); dlattanz@gmu.edu (D.L.)
* Correspondence: wgraves2@gmu.edu

Abstract: Recent improvements in remote sensing technologies have shown that techniques such
as photogrammetry and laser scanning can resolve geometric details at the millimeter scale. This is
significant because it has expanded the range of structural health monitoring scenarios where these
techniques can be used. In this work, we explore how 3D geometric measurements extracted from
photogrammetric point clouds can be used to evaluate the performance of a highway bridge during a
static load test. Various point cloud registration and deformation tracking algorithms are explored.
Included is an introduction to a novel deformation tracking algorithm that uses the interpolation
technique of kriging as the basis for measuring the geometric changes. The challenging nature of
3D point cloud data means that statistical methods must be employed to adequately evaluate the
deformation field of the bridge. The results demonstrate a pathway from the collection of digital
photographs to a mechanical analysis with results that capture the bridge deformation within one
standard deviation of the mean reported value. These results are promising given that the midspan
bridge deformation for the load test is only a few millimeters. Ultimately, the approaches evaluated in
this work yielded errors on the order of 1 mm or less for ground truth deflections as small as 3.5 mm.
Future work for this method will investigate using these results for updating finite element models.

Keywords: photogrammetry; structure from motion; computer vision; point clouds; finite element

1. Introduction

A key aspect of infrastructure condition assessment is quantification of a structure’s re-
sponse to anticipated loading. For instance, in highway bridge load testing, heavy vehicles
of known weight are driven onto or over a bridge to observe its response and this informa-
tion is used to verify or update the bridge’s load rating. These tests can inform operating
capacity given the discovery of defects and damage [1], or the feasibility of retrofitting to
accommodate additional traffic lanes [2], for example. Structural response can be observed
directly or observed through a variety of sensors such as accelerometers, linear variable
differential transformers (LVDTs), laser Doppler-based vibrometers, and electromechanical
velocimeters [3–6]. The data collected from these sensors can be used to update finite
element models of the given bridge, as the highway bridge load rating specification [7]
from the Federal Highway Administration (FHWA) allows such models to be used for load
rating determination in certain scenarios.

In response to the logistical burden of sensor placement and the additional mainte-
nance challenges that sensor networks pose, engineers and researchers now employ remote
sensing technologies to quantify deformations. While monocular (single camera) imaging
systems have seen both research and commercial success [8], there is also increased interest
in the use of 3D point cloud data for infrastructure assessment. These point clouds can
be generated through laser scanning or photogrammetric scene reconstruction from a set
of images. Additionally, recent efforts have also employed quadocular vision systems for
creating point cloud representations of structural members [9], with considerations for
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minimizing camera calibration errors [10]. These 3D imaging technologies are flexible
and well-suited to deployment through autonomous systems such as unmanned aerial
vehicles. Of critical note is that 3D point cloud data are capable of tracking deformations in
3D, as compared to monocular imaging systems that are restricted by camera placements
and the fundamentals of optical imaging [8]. While 3D point cloud imaging offers unique
capabilities for structural response assessment, the technology poses several key technical
challenges with respect to field deployment.

1.1. Related Work

Vision-based infrastructure assessment avoids the challenges of large sensor arrays.
Image data can be analyzed in a variety of ways to capture deformations at key locations
on bridges, such as correlation-based template matching [11], optical flow [12], and feature
point mapping [13]. Many of these techniques require access the bridge for target place-
ment [8,14], although it is sometimes possible to use existing objects in the scene as targets,
such as cable connections or unique bolt patterns [14,15].

Laser scanners and image-based photogrammetry are increasingly used for 3D remote
sensing. These technologies can collect point cloud data for quantifying deformations in
a 3D space without the need for metric calibration, image warping, or targets. These 3D
field deformations are achieved by comparing point sets in deformed and undeformed
configurations, using point-to-point distance metrics in a region of interest on the target
structure [16]. However, due to the noise characteristics and unstructured nature of point
cloud data structures, recent work has looked to employ a best-fit plane to the dataset
prior to deformation measurements [17–21]. Typically, planar shapes are fitted to key
structural components, and the distances between these planar shapes in different loading
states are recorded. This approach is not restricted to planes, and combinations of best-fit
shape primitives of the point cloud data for bridge sections have also been utilized [22].
Another method is target tracking by attaching small metallic spheres to the structure before
collecting the point cloud data. These targets create data points that are easily isolated from
the rest of the captured scene and ultimately decrease the computational expense, and this
approach has been shown to quantify deformations as small as a few millimeters [23,24].
However, this approach is limited by the need to install the targets, and it does not result in
dense 3D deformation fields.

With the exception of [16], the referenced work in deformation tracking was con-
ducted with terrestrial laser scanners, and only minimal work has been carried out using
photogrammetry. While [16] collects data via photogrammetry and structure from mo-
tion (SfM), the evaluations are performed at laboratory scale. There is a lack of research
in deformation tracking of full-scale, in-service structures in a field environment using
photogrammetry. Even though the measurement techniques to determine deformations
between load states of structures may be similar, the challenges that arise from collecting
field-scale data with photogrammetry techniques for deformation tracking scenarios are
largely unexplored.

Additionally, one of the major challenges in working with point clouds is data reg-
istration, the process of applying a spatial transformation through rotation, translation,
and potentially scaling to align the datasets into the same coordinate system. This step is
critical for making deformation measurements with point clouds, and prior studies have
worked to improve registrations through outlier analysis and removal [25–27]. Point cloud
data typically contain RGB color data and orientation of the surface unit normal vector
at each point, and this information is often incorporated into the registration process to
improve accuracy [28–30]. Machine learning approaches for point cloud registration have
also been evaluated [31–33]. A review of point cloud registration techniques can be found
in [34]. The majority of deformation tracking studies employ the iterative closest point
(ICP) algorithm [35], along with its variants, due to its ease of implementation and balance
between accuracy and computational expense.
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1.2. Contributions of This Work

This paper presents an approach for the use of 3D point cloud imaging for large-scale
deformation measurements of structures. In this study, a 3D deformation field is computed
through geometric analysis of remotely sensed point clouds, with potential applications
in structural health monitoring and finite element analysis. The work is significant due
to its use of point cloud data to measure deformations at the millimeter scale, generally
considered to be the current threshold for field-scale measurement capability [16,23,24].
The approach is demonstrated on an in-service highway bridge in Delaware, USA, with an
experiment designed to provide insights into the process of working with these data under
field conditions.

This research effort considers several critical aspects of the measurement process.
The first is an exhaustive evaluation of how the point cloud registration process, cen-
tral to deformation quantification, impacts the accuracy and precision of measurements.
Following this evaluation, comparisons are made between common algorithms that are
typically used for geometric change detection between point cloud datasets. Additionally,
this work introduces a novel metric, identified as the direct point-to-point (P2P) metric,
for quantifying deformation fields in cases of sparse data where traditional algorithms may
struggle. From an implementation standpoint, this research is designed to highlight the
challenges of using 3D remote sensing at field scale, as compared to the contemporary use
on laboratory-scale specimens or synthetic datasets.

Additionally, this effort investigates the use of point-based metrics for geometric
change detection and deformation tracking, as compared to contemporary efforts that
fit geometric shapes (such as planes) to point cloud data. Maintaining the point-based
metric is vital for potential future applications in finite element model updating with
uncertainty quantification.

2. Materials and Methods
2.1. Methodology

Figure 1 provides an overview of the 3D measurement methodology. In order to
quantify deformations, photogrammetric point cloud data are collected from a structure
in two states of deformation. The first state is referred to as the “reference” point cloud,
representing the unloaded state of the structure, and the second state is referred to as
the “compared” point cloud, representing the loaded state of the structure. Prior efforts
demonstrated accuracy at the millimeter scale under laboratory conditions for a similar,
but simplified, measurement method [36–38]. Translating this approach to full-scale field
conditions required significant modifications that included specialized image preprocessing,
and modifications to the registration algorithm. The overall process is more complex than
what is presented in Figure 1, and details are presented in the remainder of this section.

2.1.1. Data Preprocessing

Upon completion of image data collection for both the undeformed and deformed
bridge, the digital images must be processed to enhance their brightness and texture. One
of the inevitable issues in field photogrammetry is luminance variation between each
image due to changes in camera angles and environmental conditions, especially in bright
sunlight. SfM is highly dependent on the localized high-contrast regions in the image of an
object [39], and histogram equalization results in a more uniform brightness in the images,
which enhances the texture of the target and leads to a better 3D reconstruction.

In this work, contrast-limited adaptive histogram equalization (CLAHE) is em-
ployed [40]. This algorithm is a specialized form of the adaptive histogram equaliztion
(AHE) algorithm that was originally designed to overcome the challenges of performing
global histogram equalization on images with a wide range of intensity values across their
pixels. However, the AHE algorithm suffers from over-enhancement and noise amplifi-
cation in regions of the image that have a relatively homogeneous distribution of pixel
intensities, a common occurrence for large-scale structures [40–42].
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Figure 1. Overview of the methodology.

CLAHE limits the contrast by clipping and redistributing the histogram of the pixel
intensities in the image and therefore avoids the over-enhancement and noise amplification
of the AHE algorithm. This step is performed after subdividing the image into several
equally sized partitions, and the established clip limit enforces a more uniform contrast
across the entirety of the image, thus providing benefit for the SfM process. For additional
details on the algorithmic approach for CLAHE, the reader is referred to [43].

It is worth noting that an exhaustive evaluation of multiple image processing algo-
rithms was not conducted. It was shown in other studies that CLAHE is beneficial for 3D
point cloud reconstruction by increasing the number of tie points across images and, ulti-
mately, the total number of data points in the point cloud [44,45]. The original motivation
for the use of CLAHE resulted from the demonstration of its effectiveness in underwater
environments, in which enhancing image visibility and removing artifacts and noise from
the images are necessary [46,47]. Thus, because there were similar issues with noise in
the images for this work, the authors decided to apply CLAHE to solve non-uniform
illumination and brightness problems in the dataset images.

After image processing, the reference and compared point clouds are generated using
a dense structure-from-motion algorithm, such as multiview stereo approaches [48,49] or
approaches based on semi-global matching [50]. The point clouds are then scaled into
a global reference frame that accommodates an effective interpretation of the results for
deformation tracking. This scaling is typically achieved using a metric, either through
calibration targets placed within a scene or through known dimensions of objects within
a point cloud [51]. The experiments in this work employed calibration targets, as will be
discussed in Section 3.

After point cloud generation and scaling, the next step is to remove clear outliers in the
point cloud. Three-dimensional data points are classified as either inlier or outlier points
based on the local neighborhood structure, and follow the approach found in [52]. First,
a local neighborhood structure of the k-nearest neighbors is established for each point in
the dataset. Next, the average distance, d, from a point to its k local neighbors is computed,
and the mean, µ, and standard deviation, σ, of these distances (across the entirety of the
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dataset) are determined. Data points are classified as outliers when their average distances,
d, to their associated local neighborhoods meet the following condition:

doutlier ≥ µ + ασ (1)

The values for k and α are determined empirically such that a small percentage of the
data points are classified as outliers and can then be deleted from the dataset. The intent of
this statistical approach is to delete points that are far away from neighboring data points
while still preserving the curvature and local features of the data.

2.1.2. Registration

The geometric registration of the reference and compared point sets is broken into
two steps: an approximate manual alignment, followed by a fine alignment that minimizes
registration errors. For the first step, the point sets are aligned manually by identifying
eight pairs of common points. An important detail of point pair selection is that the
common points between the datasets must be in the same location between the two load
states of the structure. In other words, no point pairs may be selected on a portion of
the structure that deforms to a different spatial location during its loading. As a general
rule, point pairs should be located on the wall of the supporting abutments or convenient
locations not attached to the bridge that can be captured in the scene with point cloud data.
Such locations could include areas on immobile objects such as rock faces or artificially
placed fiducial objects. Having selected the point pairs, a transformation is applied to
the compared point cloud to roughly align the entirety of the loaded structure into the
same globally-scaled 3D space as the unloaded structure represented by the reference
point cloud.

Due to noise (defined with respect to point cloud data herein as residuals between
the surface represented by the data point and the true surface location) in the data and the
limitation of the point pair selection with respect to alignment accuracy, manual alignment is
typically not accurate enough for deformation tracking at the millimeter scale. Preliminary
manual alignment is critical though, as the algorithms used for fine registration tend
to converge to a local optimum. The intent of the manual registration is to set the initial
position of the compared point cloud such that the solution to the fine registration algorithm
is the global solution.

The fine registration process in this work uses the iterative closest point (ICP) algo-
rithm [35], a point-to-point registration algorithm based on Euclidean distances between
the points in the two point clouds (Figure 2). First, the algorithm finds the nearest neighbor
point correspondences between the point clouds using kd-tree space partitioning to reduce
the search complexity [53]. Given the reference point cloud P, where all points p ∈ P,
and the compared point cloud Q, where all points q ∈ Q, the ICP calculates the Euclidean
distances of the m correspondences between all points pi and qi (denoted as a correspon-
dence pair). ICP then iteratively calculates the 3× 3 rotation matrix, R, and 3× 1 translation
vector, t, of the registration for the target point cloud, Q, through the minimization of the
cost function shown in Equation (2).

E(R, t) = arg min
R,t

n

∑
i=1
‖pi − (Rqi + t)‖2 (2)

Because the ICP minimizes Euclidean distances between point correspondences, it is
commonly referred to as point-to-point ICP. A variant of this algorithm, known as point-to-
plane ICP [54], seeks to overcome the complications from the unsigned directionality of
point-to-point Euclidean distances. This variant can be beneficial in cases where the point
sets are representative of planar surfaces. For the point-to-plane version, the Euclidean
distances between the point correspondences are projected along the direction of the
surface normal vector from the point in the reference point cloud for each correspondence
(Figure 3).
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Figure 2. Example of point correspondences between point clouds P and Q.

Figure 3. Demonstration of point-to-plane ICP. Dashed line shows the point correspondence and the
solid line shows the projection along the surface normal vector.

As a result, the cost function includes the surface normal vector, ni, for the correspond-
ing point, pi (Equation (3)).

E(R, t) = arg min
R,t

m

∑
i=1

((pi − (Rqi + t))T · ni) (3)

For either point-to-point ICP or point-to-plane ICP, it is not required to have the
same number of data points in each point cloud, as the algorithm runs based on the
correspondences between nearest neighbors. At the scale of the point clouds used in
structural assessment, this is algorithmically beneficial because it is unrealistic to expect the
point cloud datasets to have the same number of data points without point set subsampling.
However, this characteristic leads to countless correspondence arrangements where one
data point will be a nearest neighbor to multiple data points in the opposing point cloud
and therefore makes the performance of the registration algorithms sensitive to noise,
outliers, and the initial pose from manual registration.

In response to this shortcoming, researchers developed a version of the ICP [55] that
adopts characteristics of a generalized Procrustes analysis (GPA). For GPA, point cloud
datasets have the same number of points, and the point correspondences are known a priori.
The GPA-ICP algorithm mimics this arrangement by only using point correspondences from
mutual nearest neighbors before executing the ICP algorithm. A data point p ∈ P is defined
as the mutual nearest neighbor to q ∈ Q when the nearest neighbor to p in Q is q and the
nearest neighbor to q in P is p. Thus, the mutual nearest neighbors have an exclusive nearest
neighbor relationship from the remainder of the points in the datasets (Figure 4). Using the
mutual nearest neighbors to define the point correspondences for the ICP algorithm results
in less sensitivity to outliers at the expense of a higher computational cost.
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Figure 4. Mutual nearest neighbor correspondences for GPA-ICP are circled.

The version of the algorithm in this work determines the mutual nearest neighbors
between the two point sets and runs the ICP algorithm based on these correspondences.
After converging to a registration solution, the algorithm then iterates the process by
determining a new set of mutual nearest neighbors based on the position of the moving
point cloud from the previous iteration. The iterations are continued until a given criteria
is met (such as a set number of iterations or a given differential between subsequent
transformations).

Other registration algorithms explored for this work included the coherent point
drift (CPD) [56] and the normal distributions transform (NDT) [57]. These algorithms are
probability-based metrics that use the expectation-maximization algorithm while treating
the data points in the compared point cloud treated as centroids of Gaussian mixture models
(the approach for the CPD algorithm), or break the datasets into voxels and transform the
compared point cloud based on mean and variance of the data locations in each voxel (the
approach for the NDT algorithm). However, initial research with these algorithms did not
provide sufficiently accurate results and is therefore not discussed further.

2.1.3. Deformation Measurement

Once the registration step is complete, the deformations of the structure are determined
through the comparison of the two sets of point cloud data. The algorithms considered
in this work to make these calculations are the direct cloud-to-cloud (C2C) distance [58],
the multi-scale model-to-model cloud comparison (M3C2) [59], and a new approach re-
ferred to here as direct point-to-point (P2P) distance metric. While there are many tech-
niques that calculate distances from point cloud data to best fit planes and mesh surfaces,
the three algorithms in this work directly compare the distances between individual points
in the point sets. This limits unquantifiable uncertainties and undesireable data manipula-
tion that implicitly occur when working with a best-fit plane or meshed surface.

The C2C distance metric is based on a form of the directed Hausdorff distance [60].
In this case, the C2C metric computes the Euclidean distance, d, from a given point in
the compared point cloud, Q, to its nearest neighbor in the reference point cloud, P
(Equation (4)):

d(p, Q) = min
q∈Q
‖p− q‖2 (4)

In order to speed up the computation, the point clouds are divided into an octree structure
such that the nearest neighbor search includes only an immediate neighborhood of octree
cells to a given point, p.

Given Equation (4), the C2C metric necessarily suffers in situations where the point
densities between the two sets of point cloud data are different, specifically when the point
density of the reference cloud is lower than that of the compared cloud. In such cases, there
are many reported distance values among data points in the compared point cloud that
are calculated from the same nearest neighbor point in the reference point cloud (Figure 5).
However, the benefit of this algorithm is that it is fast and direct.
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Figure 5. Comparison of nearest neighbor correspondences under differing point cloud densities.
In (a), the reference point cloud has a higher density than the compared point cloud. The figure in
(b) is the opposite.

As an alternate to the fast and direct C2C metric, the M3C2 algorithm accounts for the
geometry of the point cloud through the incorporation of the surface normal vectors of the
reference point cloud, albeit at the expense of higher computational complexity. For a given
set of core points, the M3C2 algorithm determines the surface normal vector through an
eigen analysis of the corresponding local neighborhood of points. The spatial covariance
matrix of the neighborhood is determined (Equation (5)), and then the smallest eigenvector
resulting from a singular value decomposition of this covariance matrix provides a good
approximation of the surface normal vector.

C =
1
n

n

∑
i=1

(pi − p)⊗ (pi − p) (5)

Next, a cylindrical spatial volume at each core point is projected along the surface
normal vector. Once this volume is defined, it captures two subsets of data, one from
each of the point clouds. The average spatial locations are determined, then the reported
distance from the M3C2 algorithm is calculated as the Euclidean distance between the
two locations projected on the direction of the calculated surface normal vector for the
associated core point. Of note, in cases where the compared point cloud is missing data and
no associated data points fall within the spatial volume defined from a given core point,
then no M3C2 distance is calculated or reported at that core point (Figure 6).

Figure 6. Execution of M3C2 algorithm.

One of the drawbacks of the C2C and M3C2 metrics is that neither algorithm estab-
lishes exact correspondences between identical locations on the target structure represented
by the point clouds. As a result, the nearest neighbor correspondence for C2C and the mean
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position correspondence within the core point search volume for M3C2 do not necessarily
measure the same exact position on the surface of the structure, leading to measurement
error. These algorithms also struggle in instances where data collection is sparse, leading
to potential error and an overall lack of confidence in the results. To address this issue,
this paper presents a new distance metric, P2P, that establishes point correspondences via
interpolation of point cloud data onto a regularized grid that is shared between the two
datasets (Figure 7). An interpolation grid is established in the plane that is orthogonal
to the direction of primary deformation (i.e., the direction of loading). Gaussian process
regression (also known as kriging) [61,62] is conducted on the grid points for each dataset.
While other interpolators could also be considered, kriging was selected due to its ability to
provide explicit uncertainty quantification, a highly desirable characteristic for structural
monitoring applications [63,64].

Once the kriging predictions are made on the orthogonal grid for each dataset, the de-
formations can be measured through the differences of the kriging predictions. Of note,
the kriging process is executed on one-meter-wide local regions of the bottom flange of the
outer bridge girder. Results from a cross-validation (not reported here for brevity purposes)
support the stationary assumption for the kriging process.

Figure 7. P2P distance metric algorithm.

The primary advantage of this approach is that it is robust to locations of missing data
(a common occurrence in many practical field applications). Given data point locations in
the interpolation grid that lie in the areas of missing data, kriging uses the spatial autocorre-
lation of the observations in the point cloud to make predictions at these locations to fill in
the missing data. While the accuracy of this feature is dependent on the ability to accurately
capture and model the spatial autocorrelation, it is preferable in relevant situations.

2.2. Highway Bridge Dataset

The test for the evaluation of this approach was conducted on a highway bridge in
New Castle County, Delaware, in 2020. The DE I-213 highway bridge (NBI #1213000) is
a privately owned steel girder bridge with a maximum span approximately 21 m long
(Figure 8). The targeted structural component for this work was the external steel girder,
which was the focus due to its ease of access for data collection. Various load tests for
multiple researchers were conducted on the bridge using arrangements of two 20-ton
trucks, and this work focused its efforts on two quasi-static load tests. These particular tests
were arranged to induce realistically large deflections, although the predicted magnitudes
of these tests were predicted to be on the order of only a few millimeters. Experimental
validation was provided by installing a string potentiometer at midspan of the target girder.
Digital photographs were collected of the unloaded bridge prior to the loads tests to create
the reference point cloud.

A Nikon D800E 36-megapixel digital camera with 24 mm lens and a Nikon D850
45-megapixel digital camera with a 50 mm lens were used to collect the digital photographs
for raw data. Two photographers worked simultaneously to maximize the number of
photographs for the SfM process due to the time constraints for the overall research effort
of the day. The data collection approach followed a pattern to ultimately create a set of
digital images that would result in one point for every square millimeter of surface area
of the bridge girder after completion of the SfM process. This target point cloud density
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was intended to facilitate capturing deformations at the millimeter scale. The point clouds
were created using Agisoft Metashape Professional v 1.5.5 computer software [65]. Settings
for the software were determined empirically to produce the best output for the given data.
However, the majority were left at default settings after the photographs were screened
and discarded if the images were poor in quality.

Figure 8. Delaware I-213 bridge.

During data collection, a non-coded fiducial target was placed in the scene, along with
coded scale bars accurate to 10 µm, near midspan of the outer bridge girder (Figure 9). While
the coded scale bars were placed in the scene for scaling the point clouds, the non-coded
target was designed to create a convenient coordinate axis system such that the direction of
primary deformations was collinear with a selected coordinate axis. It is important to note
that these targets were not used during the generation process or registration. Rather, they
were used to simplify the reporting and interpretation of experimental results.

Figure 9. Placement of fiducial elements.

Additionally, four coded targets were placed on each bridge support (eight total
targets) and these locations served as the reference points for the alignment of the initial
pose of the compared point cloud (Figure 9). It should be pointed out that even though
these were coded targets, they were not used in any sort of automatic recognition algorithm
from the computer software. Instead, these targets were used because they were easy to
identify in the point cloud.

2.2.1. Data Preprocessing

Image processing via CLAHE was conducted using MATLAB R2020a [66], and the
SfM process was executed using Agisoft Metashape. Images were transformed into the
L*a*b* color space and partitioned into 64 tiles for processing, and the normalized lightness
value for the clipping limit was set at 0.01 in the L-channel (Figure 10); these settings
were determined empirically. Based on the environmental factors in the field and the
time constraints for data collection, the ultimate goal of the image processing was to
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improve image characteristics to enable a better execution of the SfM process. Figure 10
demonstrates the smoothing effects on the three-channel histograms for one of the images,
which ultimately results in higher quality point clouds after SfM (results with and without
image processing are shown later in Section 3.3).

Once the point clouds were created, they were imported into CloudCompare v2.11.3 [67].
The non-coded fiducial target was used to orient the point cloud such that the longitudinal
axis and width of the target bridge girder were oriented in the xy-plane, while the direction
of loading and deformation (coincident with the depth of the girder) was oriented along the
z-axis. The scale was set based on the average of the calibration distances along two coded
scale bars. Statistical outliers were removed based on a local neighborhood size, k, of 30 data
points, with points being considered outliers if their nearest neighbor distance was greater
than two standard deviations, α, away from the mean distance between the neighbors.
The use of these parameters generally resulted in slightly less than a 2% reduction in the
number of data points. Although this number was slightly larger than what was suggested
in [52], it was deemed appropriate due to the expected noise from environmental conditions.

Figure 10. Images before (top) and after (bottom) image processing using the CLAHE algorithm.
The three-chanel histograms are to the right.

2.2.2. Registration

The manual registration of the point clouds for the initial pose of each of the compared
point clouds was conducted in CloudCompare computer software using point-pairs of coded
fiducial targets between the compared and reference points clouds.

As mentioned in the previous section, the manual registration is a critical step to set the
initial pose of the compared point cloud such that the fine registration algorithms converge
to the correct global registration solution. Throughout testing and analysis, small changes
in the selection of point pairs between the point clouds resulted in numerous registration
solutions for each of the tested fine registration algorithms. As a result, 30 iterations of the
manual registration were conducted to enable a cursory statistical evaluation of the fine
registration results.

The algorithms for fine registration were executed only on the bridge abutments,
as point data in these areas occupied the same physical location between loading scenarios.
This approach avoided registration errors from data points in the deformed portion of the
structure. The resulting transformation matrix was then applied to the compared point
cloud data of the bridge. The fine registration algorithms were executed using MATLAB.

For all tested versions of the ICP algorithm, the full point density of each point
cloud was preserved for the fine registration process. While subsampling can speed up
the registration process, the total point density was maintained to maximize registration
accuracy [34].

For the GPA-ICP algorithm, iterations were executed until the curvature of the com-
pared point cloud demonstrated lower deformations at the quarter spans than mid span.
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Of note, this step required executing the deformation tracking algorithms after each itera-
tion of the registration.

2.2.3. Deformation Tracking

After registration, the deformation tracking algorithms were conducted on 1-meter-
long regions of interest along the bottom flange of the bridge girder. These regions included
midspan and each quarter span of the girder, and the bottom flange was used for the
calculations because its generally planar shape created a convenient feature for the metrics.
The meter-span of each region of interest was chosen to provide enough point comparisons
for the distance metrics to statistically evaluate the deformation in the presence of noise
and any remaining outliers that may not have been removed during the statistical outlier
removal process.

For the C2C metric, the reference point cloud in each region of interest was randomly
subsampled such that it would have less than or equal to the same number of data points
as the corresponding compared point cloud in the region of interest. This reduced the
likelihood of multiple nearest neighbor measurements from the same data point in the
reference point cloud. Because the C2C metric uses a Euclidean distance for its calculation,
it tends to overestimate the deformations in cases where the one of the point clouds has
gaps in the data. In such cases, the distance vector of the point correspondence is off-axis
from the primary direction of the deformation (z-axis). As a result, the z-axis components
of the C2C distances are reported to better represent the true deformations (Figure 11). It
should be pointed out that this approach is not adequate for large gaps in data, in which
case other approaches (such as P2P) should be considered. The C2C metric was executed
using CloudCompare.

Figure 11. C2C algorithm performance in areas of missing data.

For the M3C2 distance metric, a value of 40 mm was selected for the neighborhood size
for surface normal estimation at core points, and this value was slightly over 20 times the
size of the smallest eigenvalue, as suggested in [59]. In order to maintain a robust response
to local noise, core points were selected from the raw point data with a minimum spacing
of 10 mm, spatial volume dimensions of d = 11.3 mm, and a projection length of 10 mm.
This cylinder diameter was chosen to result in a surface area roughly equal to 100 mm2,
while the length was chosen empirically to ensure the capture of all of the associated points
in the compared point cloud. The M3C2 metric was executed using CloudCompare.

The P2P metric was computed in R v3.6.1 [68–70]. For the P2P metric, a uniform
interpolation grid was established with over 150,000 points at each region of interest
in the xy plane, which, in this case, is orthogonal to the primary direction of loading
and deformation. This ensured an approximately equivalent point density to the raw
point cloud data. The ordinary kriging process was carried out on a local neighborhood
of 100 nearest neighbors for each prediction location, and this number was chosen to
balance computational expense with having enough observations to capture the spatial
autocorrelation of the data.
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2.3. Evaluation and Metrics
2.3.1. Registration Approaches

First, the registration approaches are evaluated based on their sensitivity to the initial
manual alignment of the point clouds. Given the tendency for the algorithms to converge
to local optima, the transformations of 30 iterations of each fine registration technique are
compared in terms of the range and average values of the three translations along the x, y,
and z axes and the three Euler angles (α, β, γ) around its corresponding axis.

Then, in order to demonstrate the effects of the range of registration solutions, defor-
mation tracking results are compared for each fine registration algorithm. These results are
based on the C2C distance metric applied at midspan and each quarter span of the girder.
These results are reported in terms of their range and average values. Additionally, a “best
case” result is reported from the 30 iterations of each registration. This result is defined,
in this context, as the one that most closely matches the reported midspan deflection of the
string potentiometer while simultaneously displaying lower values at the quarter spans
than midspan. It is recognized that the string-potentiometer has error (as do all sensors),
but it is used as the benchmark in this case.

Last, a record of the progression of the GPA-ICP algorithm is presented. Because this
algorithm iterates the mutual nearest neighbor determination, the record shows the changes
in the reported deformation measurements based on the number of iterations of the al-
gorithm. It is intended to show the computational effort required to report deformation
results that demonstrate proper beam curvature at midspan and the quarter spans.

Of note, a single deformation tracking metric (C2C) was chosen for brevity purposes to
display the impacts of the translation and rotation ranges from the registration algorithms.
The C2C metric was specifically chosen for its simplicity and broad familiarity.

2.3.2. Deformation Tracking Approaches

The deformation calculations for C2C, M3C2, and P2P are compared against the results
from string-potentiometer measurements taken at midspan during the load tests. The same
evaluation is conducted at the quarter-spans despite the lack of a string potentiometer at
those locations. The results are presented as the average and the range of values from the
30 iterations of the given registration algorithm, along with the “best case” result. Similar
to the previous evaluation method, a single registration algorithm is chosen for brevity
purposes to showcase the performance of the different deformation tracking algorithms.
In this case, the ICP algorithm is chosen for its ubiquity across research of point cloud data.

Additionally, a statistical comparison of the deformation tracking algorithms is then
performed based on the average results at midspan. Because these values are based on
a distribution of measurements from the corresponding region of interest, the standard
deviation is used to determine the z-score of a value equivalent to the string-potentiometer
measurement. Thus, a lower z-score indicates a higher level of accuracy.

2.3.3. Evaluation of Image Processing Effects

Once the results are presented and the reader has context of the performance of this
approach, a comparison is shown that highlights the effects of using the CLAHE image
processing algorithm on the digital photographs. Results for midspan deflection, deter-
mined by the same initial manual alignment–ICP–C2C workflow, are compared in terms
of the z-score corresponding to a sampled value equivalent to the string-potentiometer
measurement for the associated load test. For the comparison, one set of results includes
the CLAHE image processing step while the other excludes it.

3. Results
3.1. Results of Registration Approaches

Given the methodology presented in Section 2, the registration step serves as a crucial
part of the overall process that, if executed ineffectively, has the potential to prevent any
sort of reasonable deformation measurement on the millimeter scale. The registration
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algorithms used in this work were all observed to be dependent on and sensitive to the
initial pose of the point cloud data from the manual alignment. This indicates that the
registration is a non-convex optimization problem, particularly when considering complex
full-scale conditions.

Ideally, the selection of unique point pairs between the datasets should set the com-
pared point cloud into an initial pose that converges to the global optimum registration.
Additionally, this global optimum should be found regardless of the choices made by the
user for the unique point pairs during manual alignment. However, Tables 1–3 show that
the choice of unique point pairs between the two datasets affects the registration results
despite the small changes made to the location of the point pair selection.

Table 1. ICP registration results.

α β γ Tx Ty Tz

Max 3.0 × 10−4 2.5 × 10−4 −4.7 × 10−5 5.3 0.8 2.0
Avg 1.6 × 10−4 2.3 × 10−4 −5.8 × 10−5 0.1 0.6 1.8
Min 6.4 × 10−6 2.1 × 10−4 −8.0 × 10−5 −1.6 0.4 1.6

Table 2. ICP point-to-plane registration results.

α β γ Tx Ty Tz

Max 3.3 × 10−3 3.4 × 10−4 −3.0 × 10−4 7.0 6.0 3.2
Avg 2.9 × 10−3 2.3 × 10−4 −3.7 × 10−4 1.2 5.2 1.9
Min 2.2 × 10−3 1.3 × 10−4 −5.4 × 10−4 −0.9 3.9 0.8

Table 3. GPA-ICP registration results.

α β γ Tx Ty Tz

Max 2.0 × 10−4 2.9 × 10−4 −2.6 × 10−4 11.0 6.2 2.3
Avg −3.3 × 10−4 1.6 × 10−4 −4.4 × 10−4 4.3 4.2 1.1
Min −1.0 × 10−3 2.9 × 10−5 −7.7 × 10−4 2.2 2.9 −0.1

The tables show the range of values for the Euler angle rotations in radians about each
coordinate axis and the translations in millimeters along each respective coordinate axis for
all 30 iterations of the given registration algorithm. The results shown are for the first load
test. Results for the second load test were similar.

For every registration algorithm, each of the 30 iterations resulted in a slightly different
registration solution. This range of values in rotation and translation highlights that the
optimization function has many local optima close to the global solution. Concerning
the effects of these different solutions on the results of the deformation metrics, the key
indicators are the β and Tz values, the rotation about the y-axis, and the translation along
the z-axis, respectively. While the range of values for the y-axis rotation may seem small,
the effects of these values result in large relative rotational errors for large-scale structures,
evident in the differences between the deformations at the left and right quarter spans in the
deformation tracking step when applied at scale. The quarter span reference measurements
for this field test are approximately ten meters apart, and associated rotations about the
y-axis on the 10−4 order of magnitude in radians resulted in rotational differences between
the quarter span measurements on the order of millimeters. This difference is significant
given that the scale of midspan deflection for each load test is only a few millimeters
in magnitude.

Likewise, a range of values for translation along the z-axis can be seen across the
registration algorithms. Similar to the range of y-axis rotational values, the range of
these translations results in large differences among the registration results relative to the
millimeter-scaled bridge deformations that were experienced during the load tests.
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One of the reasons that the iterations show the range of values for the resulting
registration components can be seen in the inherent noise of the point cloud data of the
targets. The varying lighting conditions of the field environment during data collection
caused the point cloud reconstruction during SfM to result in areas of missing data points
and areas with scattered data points that were unable to be isolated and removed during the
statistical outlier removal process (Figure 12). This happened regardless of the application
of the CLAHE image processing algorithm. The missing and scattered data not only make
it difficult to properly select unique point pairs for initial alignment of the point clouds,
but also increase the sensitivity of the registration algorithms to finding the correct global
registration solution.

Figure 12. Point cloud data of a registration target.

When comparing the registration algorithms against each other, a larger range for key
rotational (β) and translation (Tz) errors are seen in the ICP point-to-plane and GPA-ICP
algorithms when compared to the traditional ICP algorithm. In general, the surface normal
vectors for the data points on the bridge supports were oriented along the x-axis, the longi-
tudinal span of the bridge girder. As these points served as the data for the registration
algorithms, the increased range in β and Tz values likely resulted from the minimization of
x-axis component of the Euclidean distances between point correspondences. Likewise,
the GPA-ICP algorithm similarly shows a larger range in these values compared to the ICP
algorithm, and this relationship likely occurs due to the algorithm finding a unique set of
mutual nearest neighbors for each of the 30 registration iterations.

Tables 4–6 show the deformation tracking results in millimeters at midspan and each
quarter span based on the three registration algorithms. These results are for the first
load test using the C2C distance metric, and they are in contrast to a −3.5 mm midspan
deformation, as measured by the string-potentiometer.

Table 4. Deformation tracking based on ICP.

Left Quarter Midspan Right Quarter

Max −4.8 −4.4 −4.7
Avg −2.6 −2.8 −2.3
Min −1.1 −1.3 −0.3
Best −3.24 −3.29 −2.69
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Table 5. Deformation tracking based on ICP point-to-plane.

Left Quarter Midspan Right Quarter

Max −3.7 −3.6 −3.5
Avg −2.5 −2.5 −1.8
Min −1.7 −1.5 −0.3
Best −3.25 −3.62 −3.49

Table 6. Deformation tracking based on GPA-ICP.

Left Quarter Midspan Right Quarter

Max −4.6 −4.8 −4.6
Avg −2.7 −3.2 −3.1
Min −1.6 −2.1 −2.1
Best −3.20 −3.42 −3.04

The variations among the registration algorithms resulted in a range of several mil-
limeters at midspan for each method. They also resulted in cases where the rotational errors
in the registration are evident, based on a given quarter span deflection being larger than
the corresponding midspan and remaining quarter span deflection. It is worth noting that
even though the traditional ICP algorithm showed the smallest range in key registration
parameters of β and Tz, it nevertheless shows the largest range for the deformation mea-
surements. This relationship results from translations and rotations along and around the
other axes that affect this deformation metric, as it changes the relative location of the noisy
data points that were not removed during the outlier removal step. This arrangement then
affects the point correspondences for the distance metric calculations.

While the results show close agreement with the potentiometer measurement in the
first load test, the second load test results are not as consistent. Table 7 shows the results
from the registration algorithms using the C2C distance metric for the second load test.
This load test had a field measurement of −2.85 mm of deformation at midspan based
on string-potentiometer data. The point cloud created during the second load test was
noticeably of lower quality due to time constraints, and this is the most likely cause for
the degradation in measurement accuracy. Even though these load tests occurred on the
same day under similar lighting conditions, this difference in performance highlights the
importance of the data collection phase of the methodology. Note that values at right
quarter span for this particular load test are unreliable based on poor-quality local data at
the region of interest.

Table 7. Second load test averaged deformations.

Left Quarter Midspan Right Quarter

ICP −1.32 −0.88 −2.65
ICP Point-to-Plane −1.63 −2.37 −6.01

GPA-ICP −2.42 −2.83 −6.16

The GPA-ICP algorithm shows promising results for both load tests, but it should be
pointed out that the algorithm required multiple iterations to reach a reasonable registra-
tion solution (Table 8). As the other two versions of the ICP in this work demonstrated
convergence to local optima based on the manual alignment, the GPA-ICP avoids this
problem through its mutual nearest neighbors approach. The problem with the use of
GPA-ICP is that it did not demonstrate convergence to a global solution after a reasonable
number of iterations, and the number of iterations of the algorithm for each load test were
determined empirically based on the a priori knowledge of the midspan deformation.
Further, the algorithm was not executed for a similar number of iterations for each load
test, as the first load test required 100 iterations and the second required only 7 iterations.
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Table 8. Progression of GPA-ICP algorithm.

Iteration # Left Quarter Midspan Right Quarter

1 −2.85 −4.12 −5.09
10 −2.68 −3.56 −3.98
30 −2.62 −3.30 −3.48
60 −2.65 −3.23 −3.30
90 −2.70 −3.23 −3.22

100 −2.71 −3.22 −3.19

3.2. Results of Deformation Tracking Approaches

Tables 9–11 show a comparison of the results for the different deformation tracking
algorithms. In order to have a consistent registration method for comparison purposes of
the deformation tracking algorithms, this table shows the results using the traditional ICP
algorithm only.

A consistent pattern that is demonstrated in these results is that the C2C metric in
this scenario measures a lower deformation value than the M3C2 and direct P2P metrics.
For such situations that measure generally planar point cloud data with deformations in
the orthogonal direction, the C2C metric records the distance within the inner boundaries
of the inherent noise of the point cloud datasets, while the M3C2 metric records distances
at the mean positions of the point set (Figure 13). Variable lighting conditions in a field
environment, as occurred for this field test, are a potential root source of the point noise.

Table 9. C2C results using ICP registration.

Left Quarter Midspan Right Quarter

Max −4.8 −4.4 −4.7
Avg −2.6 −2.8 −2.3
Min −1.1 −1.3 −0.3
Best −3.24 −3.29 −2.69

Table 10. M3C2 results using ICP registration.

Left Quarter Midspan Right Quarter

Max −6.4 −5.4 −5.4
Avg −3.8 −3.6 −2.8
Min −2.0 −1.8 −0.5
Best −3.66 −3.50 −2.92

Table 11. Direct P2P results using ICP registration.

Left Quarter Midspan Right Quarter

Max −7.7 −6.9 −5.1
Avg −4.6 −4.6 −2.9
Min −2.3 −2.5 −0.6
Best −2.62 −3.57 −2.89

Figure 13. Example disposition of point cloud noise that can lead to disagreement in deformation
tracking algorithms.
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Additionally, the reported values of the C2C metric are based strictly on the z-axis
component of the nearest neighbor distances, while the M3C2 metric is based on the
orientation of the calculated surface normal vector at the sampled core points. The noise in
the data and the likelihood that the deflection was actually off-axis affects the orientation
of each surface normal vector, and despite measures taken to ensure that these results
are robust to noise, there are undoubtedly normal vectors that are off-axis relative to the
direction of deformation. It therefore contributes to an overestimation, albeit very slight,
of the distance between measuring locations for the M3C2 algorithm.

It should also be noted that most results for the M3C2 algorithm displayed rotational
errors in the deformation tracking based on the ICP registration algorithm, with most of
the bias favoring a larger deformation at the left quarter span when compared to midspan.
However, this relationship is not universally true for all the registration algorithms. Such
results do not necessarily mean that the registration had a rotational error, as there is
potential for the large projection length for the search volume of the M3C2 algorithm (set to
10 mm for this work) to capture data noise at the given quarter span location that may not
otherwise be present at the other target locations on the bridge girder. Additionally, as the
algorithm selects core points based on subsampling of the point cloud, the core points
do not represent a unique dataset among the iterations of registration and deformation
tracking. Thus, changes to the selected core points can contribute to the bias in the results.

The direct P2P algorithm also displays higher deformations than that of the C2C
algorithm. Because the P2P algorithm bases its interpolation results on the spatial auto-
correlation of the data, the resulting measurements follow the same pattern as what is
seen for the M3C2 metric in Figure 13. However, the performance range (Table 11) and
statistical evaluation (Table 12) of the P2P algorithm indicates that it provides a satisfactory
performance, even though the other metrics appear to have results closer to the benchmark
for this dataset.

Table 12. Statistical evaluation of deformation tracking.

Midspan Std Deviation Z-Score

C2C −2.8 2.8 0.25
M3C2 −3.6 2.5 0.03

Direct P2P −4.6 3.3 0.32

Table 12 shows the average midspan deformation measurement in millimeters for
all 30 registration iterations using the ICP. The reported standard deviations are deter-
mined from these iterations, and the z-score is determined based on an observation value
equivalent to the string-potentiometer measurement (−3.5 mm).

Given the demonstrated performance and underlying potential of the P2P algorithm,
it serves as a satisfactory alternative to the C2C and M3C2 algorithms in instances where
there are gaps in the data. However, it is not the intention to communicate that it will
work in all cases of missing data. Sparse data that do not have enough observations to
adequately capture the spatial autocorrelation of the point cloud dataset will ultimately
negate any benefit for using the P2P algorithm. Figure 14 provides an example of missing
data where the P2P algorithm did not perform well (nor did the C2C or M3C2 algorithms,
for that matter). This figure highlights the right quarter span target area (Figure 14a) where
the point cloud should appear similar to how it appears for the first load test (Figure 14b),
but instead ends up being very sparse for the second load test (Figure 14c). These data
are sparse enough that none of the deformation tracking algorithms could provide a
reasonable result.
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Figure 14. Example of missing point data located at (a) right quarter span. Part (b) shows the results
for the first load test, while part (c) shows the results for the second load test.

3.3. Results of Image Processing

Previous iterations of the methodology shown in Section 2 were executed without
image processing. Preliminary measurement results without the application of the CLAHE
algorithm had much larger relative errors than those point clouds that had been prepro-
cessed for histogram equalization. This result suggests that the quality of the point clouds
plays a critical role in measurement accuracy, a result that was not observed in previous
laboratory-scale studies [16]. Table 13 demonstrates the benefits of using this algorithm
on the raw image data for this particular dataset. The results are based on one iteration
each of the research approach (one with and one without CLAHE) that used the same
selected point pairs for manual registration, the ICP fine registration algorithm, and the
C2C deformation tracking algorithm. The change in relative error is not meant to insinuate
that the CLAHE algorithm will universally improve the final results, but it is meant to
highlight that point cloud quality is an essential factor for proper execution of the research
approach. Units for deformations in Table 13 are millimeters.

Table 13. Comparison of relative errors based on CLAHE implementation.

C2C Midspan String-Potentiometer Relative Error

with CLAHE −2.75 −3.5 −21%
w/o CLAHE −0.98 −3.5 −72%

4. Discussion

A methodology was presented that considered several critical aspects of the measure-
ment process that included efforts in image processing, scaling, and orientation of point
clouds, registration, and deformation measurements. An exhaustive evaluation of the
registration process through the implementation of registration algorithms was conducted.
The results demonstrated that this step of the methodology is a non-convex optimization
problem, and small differences in the initial manual alignment of the point clouds can lead
to a wide range of registration solutions and inconsistencies in deformation measurements.
The recommended way to avoid this is to implement an approach for the manual align-
ment and initialization of the registration algorithms that is as accurate and repeatable
as possible.

For measuring the deformations, this research investigated the C2C and M3C2 distance
metrics, and introduced the direct P2P distance metric, which employs Gaussian process
regression to interpolate the point cloud. The evaluation of these techniques showed that,
in general, the C2C metric underestimated the deformation while the M3C2 and direct
P2P metrics overestimated the deformation when compared to the field measurements
recorded by the string-potentiometer. Even though these metrics did not consistently agree
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with the field measurements, statistical evaluation demonstrated that they were able to
capture the benchmark midspan deformation within one standard deviation of the mean
reported value. These distance metrics demonstrated applicability to measuring changes
between planar surfaces that deform along a known coordinate axis direction. In cases
where structural deformations are less predictable, or in other scenarios where changes
between point cloud data are not understood a priori, other approaches for deformation
tracking should be considered. In general, these approaches should consider deformations
in all principal directions as opposed to a singular direction, as demonstrated in this work.

This research did not conduct an exhaustive evaluation of image processing techniques
for data preprocessing. The inclusion of the CLAHE algorithm made a noticeable and
satisfactory improvement to the results, and it was not the intention of the authors to
optimize the image processing step. However, it is important to recognize that the quality of
the point cloud data, improved in this case by CLAHE, is vital for successful implementation
of the registration and deformation tracking algorithms.

It is important to highlight that this approach is limited to scenarios where geometric
changes of the target structure are the indicators of structural performance or behavior.
In this context, the presented approach is not necessarily applicable for such applications as
crack detection. Additionally, because the approach focuses on geometric changes between
point clouds in different loading scenarios, it must be applied in static loading conditions.
While this has connotations of use in long-term structural health monitoring scenarios to
identify problems from fatigue or settlement, it also means that it is not appropriate for
dynamic loading situations intent on monitoring the vibratory response of a structure.

5. Conclusions

The purpose of this work was to present a case study on the use of photogrammetric
point cloud analysis for static load testing and deformation tracking of a highway bridge in
Delaware, USA. This case study is significant because it used remotely sensed point cloud
data to measure 3D bridge deformations at the millimeter scale in a field environment,
and it stands in contrast to other research efforts that either used laser scanning for data
collection or worked with laboratory or synthetic datasets. This approach to deformation
tracking shows promise for continued research and future implementation as there is
a continually growing body of research looking for more efficient ways for structural
assessment that do not rely on installed sensor arrays.

Additional research efforts in deformation tracking of highway bridges from pho-
togrammetry point cloud data can evaluate operational practices to support point cloud
registration. This approach could include the use of natural and geometric objects placed
at strategic locations in the scene to support the manual alignment of the point clouds.
Additionally, implementation of these algorithms against point cloud data of other bridges
(i.e., truss, suspension, or other multi-span bridges) could strengthen the merit of this work.
Other future research could include efforts to apply these algorithms, or variations of them,
to structural systems with higher curvature.
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