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Abstract: While the detection of offshore ships in synthetic aperture radar (SAR) images has been
widely studied, inshore ship detection remains a challenging task. Due to the influence of speckle
noise and the high similarity between onshore buildings and inshore ships, the traditional methods
are unable to achieve effective detection for inshore ships. To improve the detection performance
of inshore ships, we propose a novel saliency enhancement algorithm based on the difference of
anisotropic pyramid (DoAP). Considering the limitations of IoU in small-target detection, we design a
detection framework based on the proposed Bhattacharyya-like distance (BLD). First, the anisotropic
pyramid of the SAR image is constructed by a bilateral filter (BF). Then, the differences between the
finest two scales and the coarsest two scales are used to generate the saliency map, which can be used
to enhance ship pixels and suppress background clutter. Finally, the BLD is used to replace IoU in
label assignment and non-maximum suppression to overcome the limitations of IoU for small-target
detection. We embed the DoAP into the BLD-based detection framework to detect inshore ships
in large-scale SAR images. The experimental results on the LS-SSDD-v1.0 dataset indicate that the
proposed method outperforms the basic state-of-the-art detection methods.

Keywords: inshore ship detection; large-scale SAR images; difference of anisotropic pyramid (DoAP);
Bhattacharyya-like distance (BLD)

1. Introduction

Synthetic aperture radar (SAR) is an all-weather and all-time remote imaging sensor
that has been widely used in many fields, such as ocean monitoring [1], agricultural develop-
ment [2], and disaster prevention [3]. Ship detection in SAR images is of great importance
in both military and commercial applications [4–7]. Although offshore ship detection in
SAR images has made great progress, there are few studies on the detection of inshore ships.
There are two main reasons for the difficulty of detecting inshore ships. First, the inherent
speckle noise of SAR images severely affects the extraction of ship features and the accuracy
of clutter statistics. Second, onshore interference objects with strong scattering intensity affect
the detection accuracy of ships, such as islands, buildings, wharves, and so on.

The constant false alarm rate (CFAR) [8] detection methods are widely used in ship
detection, which depend on the accurate modeling of background clutter. Novak et al. [9]
proposed a two-parameter CFAR algorithm, which uses a Gaussian model to model sea clutter.
Kuttikkad et al. [10] used a K-distribution to model sea clutter, and proposed the K-CFAR
to detect ships. Tao et al. [11] proposed a truncated statistic-based CFAR (TS-CFAR), which
can provide an accurate sea clutter modeling and a stable false alarm regulation property.
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However, different from offshore ships, the background clutters of inshore ships are more
complex, and are difficult for existing statistical models to describe. Hence, traditional CFAR
detectors are not suitable for detecting inshore ships. To this end, Zhao et al. [12] proposed
an inshore ship detection method based on adaptive background windows and the CFAR
with G0 distribution. Wang et al. [13] proposed a maximally stable extremal region detector to
extract ship candidates, and proposed an improved CFAR detector to detect inshore ships.
However, due to the high similarity in scattering intensity and texture information between
harbor facilities and ships, as shown in Figure 1, the above methods based on threshold
segmentation are unable to achieve effective detection results on raw SAR images. In addition,
the above methods ignore the influence of inherent speckle noise in SAR images, resulting in
inaccurate clutter statistics.

(a) (b)

Figure 1. A difficult case of inshore ship detection in an SAR image. (a) SAR image acquired by
TreeaSAR-X with 3 m resolution. (b) The mesh map of the SAR image intensity. The inshore ships and
harbor facilities are marked in blue and red dotted circles, respectively. This indicates that inshore
ships are difficult to separate from onshore pixels through scattering intensity alone.

To solve the above problems, the most direct and simplest method is to enhance the
contrast between ships and background clutters. In the human visual system, the object
saliency depends on its contrast rather than its brightness [14]. Zhang et al. [15] used a
2-D local-intensity-variation histogram to determine the saliency of the local region and
its salient scale. Chen et al. [16] proposed a local contrast algorithm that simultaneously
achieves target signal enhancement and background clutter suppression. Xie et al. [17]
proposed an improved local contrast measure to obtain a saliency map, and used the
level set method to achieve inshore ship detection. However, these methods usually
suffer from onshore objects with high contrast, resulting in a large number of onshore
false alarms. Itti et al. [18] imitated the human visual system to proposed a model of
saliency-based visual attention for rapid scene analysis. The algorithm adopts a multi-scale
Gaussian pyramid to express three features (intensity, color, and orientation), and uses
center-surround difference to yield the saliency map. Lai et al. [19] introduced the Itti
saliency model into target detection for SAR images, and used local variance, the frequency
of intensity values, and global contrast to replace intensity, color, and orientation features.
Wang et al. [20] selected some task-dependent scales for a Gaussian pyramid by introducing
the target’s prior size information. However, for SAR images corrupted by multiplicative
noise, the difference of Gaussian (DoG) cannot effectively suppress the speckle noise.
In addition, Gaussian smoothing blurs the edge position, which results in the loss of
important structural information. To overcome this problem, Fan et al. [21] utilized
nonlinear diffusion to generate the scale space (NDSS) in SAR images, which has an
advantage of preserving edges and details over the linear Gaussian scale space (GSS).
Wang et al. [22] constructed an anisotropic scale space (ASS) in SAR images instead of GSS.
However, the above methods do not scale the image at multiple scales, so they cannot
meet the requirement of saliency enhancement for multi-scale targets. Moreover, the above
methods use the differences between adjacent scales to obtain saliency maps, which will
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only preserve salient object edges with texture information losses, resulting in the contrast
reduction of salient objects.

In recent years, deep learning-based methods have been widely used in the field of
target detection and have achieved great success. Existing methods can be divided into
two categories, i.e., one-stage detectors and two-stage detectors. The classic one-stage
detectors include YOLO [23], SSD [24], RetinaNet [25], and so on. The classic two-stage
detectors include R-CNN [26], Fast R-CNN [27], Faster R-CNN [28], Cascade R-CNN [29],
and so on. To further capture ship features and suppress false alarms, some attention
mechanism-based algorithms are proposed, such as the attention pyramid network [30]
and feature balancing and refinement network [31]. Cui et al. [32] combined a spatial
shuffle-group enhance attention module with CenterNet for ship detection in large-scale
SAR images. Du et al. [33] integrated the saliency into the SSD, which can acquire refined
saliency information under supervision. Furthermore, Yu et al. [34] proposed a lightweight
convolution block to reduce the parameter size of the detector and speed up the training and
inference. Xu et al. [35,36] realized a lightweight on-board SAR ship detector to promote the
deployment of the SAR application on the satellite. However, the above methods still have
some limitations in the inshore ship detection for SAR images. First, the training samples
of inshore ships are too few to learn the effective features of inshore ships. Second, these
top-down mechanisms depend on task specificity and require supervised training, resulting
in poor generalization performance. Third, the above methods ignore the influence of
inherent speckle noise in SAR images, resulting in inaccurate detection.

In addition, for large-scale SAR images, small ships usually have few pixels, which
are easily ignored. Although the above deep learning-based methods have achieved great
success in ship detection, these methods are unable to assign the correct positive and
negative samples for small ships. The reason for this is that a slight location deviation
will severely affect the intersection over union (IoU) of small ships, resulting in inaccurate
positive/negative label assignments, as shown in Figure 2. The IoU of a small ship will sig-
nificantly drop (from 0.79 to 0.49) when a slight location deviation occurs. Thus, the sample
C of the small ship may be incorrectly assigned as a negative sample, resulting in a lack of
small-ship training samples. This phenomenon implies that the sensitivity of the IoU of a
small ship may cause a slight location deviation to flip the anchor label. Wang et al. [37]
used the Wasserstein distance (WD) instead of IoU to achieve the positive/negative label
assignment. Although the Wasserstein distance is effective for small ships, it has great
limitations in large ship detection [38].

A
BC

AB
C

(a) (b) (c)

IoU(A,B)=0.93
IoU(A,C)=0.81

IoU(A,B)=0.79
IoU(A,C)=0.49

Figure 2. IoU of a large ship and a small ship. (a) Large ship detection. (b) SAR image. (c) Small ship
detection. A is the ground truth bounding box, B and C are the proposal bounding boxes with one-
and three-pixel location deviations, respectively.

In this paper, we propose a novel inshore ship detection method in SAR images based
on the difference of anisotropic pyramid (DoAP) and the Bhattacharyya-like distance-based
detector (BLD). First, we propose a novel saliency enhancement algorithm based on DoAP,
which can enhance the ship pixels and suppress the background clutter simultaneously.
Specifically, we scale SAR images at multiple scales to construct image pyramids, and then
utilize a bilateral filter (BF) to generate an anisotropic pyramid. Compared with the linear
scale space built by a Gaussian kernel, the anisotropic one can reduce speckle noise and
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preserve more textures and details at different scales. Different from other saliency map
generation algorithms that use the differences of adjacent scales, DoAP uses the differences
between the finest two scales and the coarsest two scales to generate the saliency map.
In addition, note that the ship pixels are located at the center of the bounding box, and the
background pixels are located at the boundary of the bounding box. Therefore, a 2D
Gaussian distribution can be used to represent a bounding box. Thus, the IoU of two
bounding boxes can be replaced by the similarity of two Gaussian distributions. To this end,
we propose replacing IoU in anchor-based detectors with the BLD for label assignment and
non-maximum suppression (NMS). The value of the BLD is able to drop smoothly as the
location deviation of the bounding box increases. Then, the BLD is combined with Dynamic
R-CNN [39], and finally, DoAP is embedded into the BLD-based detection framework
for inshore ship detection in large-scale SAR images. Experimental results on the LS-
SSDD-v1.0 dataset indicate that the proposed method outperforms the state-of-the-art
detection methods.

The rest of this paper is organized as follows. In Sections 2 and 3, the related works
and the proposed method are introduced. Section 4 gives the experimental results of our
proposed method as well as comparisons with other state-of-the-art methods. Section 4
gives the discussion on the effectiveness of the DoAP and BLD. Finally, conclusions are
given in Section 5.

2. Related Works
2.1. Anisotropic Scale Space (ASS)

Anisotropic diffusion is an adaptive filtering method that protects the meaningful
details from diffusion and localization in error. The Perona–Malik (PM) [40] equation is
widely used to build the ASS, which can be written as

It = div(c(x, y, t)∇I) = c(x, y, t)∆I +∇c · ∇I (1)

where It is the image at scale t. div represents the divergence operator, and ∇ and ∆
represent gradient and Laplacian operators, respectively. c(x, y, t) is the diffusion coefficient.
If c(x, y, t) is a constant, the anisotropic diffusion equation reduces to the isotropic heat
diffusion equation. The c(x, y, t) can be calculated as

c(x, y, t) = e−[||∇I(x,y,t)||/K]2 (2)

where the constant K can be estimated from the image gradient histogram [41]. However,
the PM equation constructs the ASS in an iterative way, which is unstable and time consuming.

Wang et al. [22] analyzed the relation between the PM equation and the BF, and used
the BF to replace the PM equation so as to construct the ASS quickly. The BF is defined as

BFp =
1
kp

∑
q∈S

f (||p− q||)g(||Ip − Iq||) (3)

where q is a pixel in the neighborhood of p. f (·) and g(·) are spatial and intensity Gaussian
kernels, respectively. kp is the normalization factor. The effect of iteration in the PM is
similar to spatial Gaussian filtering, and the nonlinear diffusion is equivalent to intensity
Gaussian filtering. Therefore, the BF can build the ASS fast in a noniterative way.

2.2. Dynamic R-CNN

In this paper, we adopt Dynamic R-CNN [39] as a basic detector. Generally, the thresh-
old of the IoU for label assignment in the head networks is a fixed constant. However,
positive samples from RPN networks rarely meet the fixed IoU threshold in early iterations.
The Dynamic R-CNN tunes down the initial threshold T of the IoU and progressively in-
creases it during the iteration training process to adapt to changes in the quality of proposal
bounding boxes. In addition, the regression loss of high-quality samples is small, which is
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not conducive to model updates. Therefore, in Dynamic R-CNN, the hyper-parameter β of
the smooth L1 loss function is reduced by the prediction error to increase the gradient of
high-quality samples.

We adopt ResNet50 and FPN as the backbone and neck networks, respectively, to ex-
tract deep feature maps. The feature extraction capability of ResNet as a backbone network
has been demonstrated in many detectors, and FPN is also a common strategy to scope
the multi-scale problem of target detection. Then, RPN is used to obtain proposal boxes
from the feature maps for the reason that RoIPooling will generate quantization loss in the
unified feature scale operation, which has less effect on large targets, but more on small
targets. Therefore, Dynamic R-CNN adopts RoIAlign instead of RoIPooling to deal with the
difference in feature scales caused by multi-scale proposal boxes. Finally, the unified scale
features are input into the head networks of Dynamic R-CNN, which updates the positive
sample selection threshold with the number of iterations. The head networks of Dynamic
R-CNN consist of a classification branch and a location regression branch to predict the
class and location of the target, respectively. The above steps can be summarized as follows:

• Feature extraction: ResNet50 and FPN are used as the backbone and neck networks,
respectively, to obtain feature maps;

• Label assignment: Positive and negative samples for training RPN/R-CNN are as-
signed by calculating the IoU of ground truth boxes and anchor boxes/proposal
boxes;

• NMS: The IoU of proposal boxes/predicted boxes is calculated to suppress overlap-
ping boxes;

• Region proposal: RPN is used to obtain proposal boxes, which requires label assign-
ment in the training phase and NMS during the prediction phase;

• RoIAlign: Bilinear interpolation is used to align features;
• Dynamic detection: The IoU threshold T and hyper-parameter β of the R-CNN are ad-

justed gradually with the number of iterations. The R-CNN requires label assignment
in the training phase and NMS during the prediction phase.

In this paper, a novel distance measure of bounding boxes, BLD, is proposed to replace
IoU. The BLD is specially applied in the label assignment and NMS operations.

3. Methodology

Figure 3 gives the overall architecture of the proposed method. The proposed method
consists of two parts, the DoAP and BLD-based Dynamic R-CNN. First, the final saliency
enhancement result is obtained through DoAP; then, the raw SAR image and the final
saliency enhancement result are jointly used as the input of the subsequent detector. Second,
Dynamic R-CNN is used as the basic detection framework, where IoU in label assignment
and NMS operation is replaced by the BLD. In this section, we will introduce the details
and contributions of each module.
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Dynamic params update

threshold 𝑇of BLD
hyper-param 𝛽 of smooth L1 loss

DoAP

SAR image Saliency image Final saliency enhancement result

Backbone networks

ResNet50FPN

Neck networks

RPN

Region proposal

Feature unification

RoIAlign
Region proposals

Head networks

R-CNN

Result of initial iteration Result of intermediate iteration Result of final iteration 

Figure 3. Overall architecture of the proposed method.

3.1. Saliency Enhancement

At present, saliency enhancement methods can be divided into two categories, i.e., top-
down and bottom-up methods. The top-down methods scan the scene in a slower, volition-
controlled, and task-dependent manner [42]. However, the top-down methods require
task-related training samples and have poor generalization performance. The saliency-
based visual attention model proposed by Itti [18] lays the foundation for bottom-up
methods. Since then, many improved Itti saliency models have been proposed for the
saliency enhancement of SAR images. Lai et al. [19] adopted local variance, the frequency
of intensity values, and global contrast to replace the three features in an Itti saliency model.
Liu et al. [43] proposed an SAR image saliency enhancement method that combines Itti’s
pyramid model with singular value decomposition. However, Itti’s pyramid model is con-
structed by a Gaussian kernel, which blurs the edge position and loses important structural
information. In this paper, we adopt the BF to construct an anisotropic pyramid instead of
the Gaussian pyramid. In addition, we design a novel image difference strategy named
the difference of anisotropic pyramid (DoAP). This strategy uses the differences between
the finest two scales and the coarsest two scales to generate the saliency map, as shown in
Figure 4. Finally, to avoid the contrast enhancement in low-scattering regions, we multiply
the normalized saliency map by the SAR image as the final saliency enhancement result.

①

②

③

⑥
⑤
④

①-⑤

②-⑥

Saliency mapDifferences of anisotropic scalesImage pyramid

①

②

③

⑥
⑤
④

Anisotropic pyramid

Figure 4. Schematic diagram of the DoAP. Numbers 1–6 denote different scales of the image pyramid.
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First, we adopt the bilinear interpolation algorithm to construct an image pyramid.
As shown in Figure 5, the coordinates and intensities of pixels Q11, Q12, Q21, and Q22 are
known; the intensity of pixel P can be computed as

f (x, y1) ≈ x2−x
x2−x1

f (Q11) +
x−x1
x2−x1

f (Q21)

f (x, y2) ≈ x2−x
x2−x1

f (Q12) +
x−x1
x2−x1

f (Q22)

f (P) ≈ y2−y
y2−y1

f (x, y1) +
y−y1
y2−y1

f (x, y2)

(4)

where f (X) denotes the intensity of pixel X.

Q12

Q11 Q21

Q22

P

y1

y2

y

x1 x2x X

Y

Figure 5. Schematic diagram of the bilinear interpolation algorithm.

Second, we adopt a BF for each image in the image pyramid to construct the anisotropic
pyramid. The anisotropic pyramid can effectively reduce the negative influence of speckle
noise while preserving the details and edges in each image scale. Then, we propose the
DoAP to generate the saliency map of SAR images, which can enhance the ship pixels and
suppress the onshore pixels. For an n-scale anisotropic pyramid (A = {A1, A2, ..., An}),
the feature maps of the DoAP can be calculated as{

F1 = |A1 − resize(An−1)|
F2 = |A2 − resize(An)|

(5)

where resize(Ai) denotes that Ai is scaled to the same size as the minuend.
To eliminate amplitude differences, the feature maps are normalized to a fixed range [0,

M]. Then, we find the location of the global maximum M for each feature map, and compute
the average m of all its other local maxima. Now, the global normalization operator N (·)
can be written as

N (F) = F× (M−m)2 (6)

Next, the saliency map S is obtained through across-scale addition as

S = N (F1) + resize(N (F2)) (7)

where resize(F) means to scale F to the same size as the summand.
Note that most methods directly replace the original image with the saliency map as

the input for subsequent tasks. However, for the reason that most methods utilize local
contrast to enhance target saliency, non-target edges are generated in flat regions, especially
in water. Therefore, the final saliency enhancement result is obtained by multiplying the
raw SAR image and the normalized saliency map. Then, the raw SAR image and the
final saliency enhancement result are jointly used as the input of the subsequent detector.
The implementation details of the proposed DoAP are shown in Algorithm 1.



Remote Sens. 2022, 14, 2832 8 of 18

Algorithm 1 The proposed DoAp.

Input: SAR image I, the dimension of image pyramid n.
1: Image pyramid (IP)← IP0 = I.
2: for i = 2→ n do
3: IPi ← Equation (4).
4: end for
5: for i = 1→ n do
6: Anisotropic pyramid (Ai)← BF(IPi).
7: end for
8: Feature maps [F]← Equation (5).
9: Saliency map S← Equation (7).

10: Final saliency enhancement result← Ĩ = I × norm(S).
Output: Final saliency enhancement result Ĩ.

To verify the effectiveness of DoAP, we compare the saliency maps generated by
Itti [18] and DoG [44]. Figure 6 shows the comparison results of saliency maps generated by
different methods. We can observe that although DoG is able to suppress onshore pixels, it
reduces the intensity of ship pixels. Although the Itti method is able to enhance the saliency
of ship pixels, it blurs the target edges. In contrast, our proposed DoAP makes the ship
pixels more salient while preserving the ship edges.

(a) (b) (c)

(e)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Saliency enhancement results with different methods. (a) SAR image. (b) Ground truth of
ships. (c) The mesh map of the SAR image intensity. (d) Saliency map obtained by DoG. (e) Final
saliency enhancement result obtained by DoG. (f) The mesh map of (e). (g) Saliency map obtained by
Itti. (h) Final saliency enhancement result obtained by Itti. (i) The mesh map of (h). (j) Saliency map
obtained by DoAP. (k) Final saliency enhancement result obtained by DoAP. (l) The mesh map of (k).
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To more objectively demonstrate the advantages of the saliency enhancement results,
we give the quantitative comparison results, as shown in Figure 7. The ordinate is equal
to the label average intensity divided by the global average intensity, i.e., Ave = Ii/I, (i =
1, 2, 3), in which Ii denotes the mean value of the pixels of the i-th category, and I denotes
the mean value of SAR image intensity. We can observe that the contrast between ship
pixels and onshore pixels is low in the raw SAR image, resulting in a large number of
onshore false alarms. Both DoG and Itti methods can improve the contrast of ship pixels
and onshore pixels, whereas our proposed DoAP works best.

SAR image DoG Itti DoAP

Ship pixels
Water pixels
Onshore pixels

Av
e

Figure 7. The contrast of ship pixels, water pixels, and onshore pixels.

3.2. Bhattacharyya-Like Distance

As mention earlier, IoU has great limitations on small-target detection. As shown in
Figure 8a,c, when the target has a small size (4× 4), a slight location deviation will lead
to a significant IoU drop, which may lead to incorrect label assignments. To solve this
issue, Wang et al. [37] used WD instead of IoU to measure the distance between bounding
boxes. Although WD breaks the limitation of IoU in small-target detection, when the target
has a large size (48× 48), the WD changes too slowly and is not sensitive to large location
deviations, as shown in Figure 8f. Inspired by [37], we try to replace WD with different
distances to measure the distance between bounding boxes. In this paper, we propose
using the BLD instead of the IoU in Dynamic R-CNN.

（a）

Io
U

Bounding Box Offset Distance

N
W

D

N
B

D

Io
U

N
W

D

N
B

D

N
B

L
D

（e）
Bounding Box Offset Distance

（b）
Bounding Box Offset Distance

（f）
Bounding Box Offset Distance

（c）
Bounding Box Offset Distance

（g）
Bounding Box Offset Distance

（d）
Bounding Box Offset Distance

（h）
Bounding Box Offset Distance

A
B

A

B

N
B

L
D

Figure 8. A comparison of (a) and (e) IoU curves, (b) and (f) NWD curves, (c) and (g) NBD curves,
and (d) and (h) NBLD curves. (a)–(d) are with sizeA = sizeB. (e)–(h) are with sizeA = 4× sizeB.
The abscissa value represents the location deviation between the center points of bounding boxes A
and B.

Wang et al. [45] pointed out that foreground pixels and background pixels are concen-
trated on the center and boundary of the bounding box, respectively. Therefore, the bound-
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ing box can be modeled into a two-dimensional Gaussian distribution. Specifically, for a
rectangular bounding box B = (x0, y0, w, h), where (x0, y0) represents the center coordinate
of B and (w, h) represents the width and height of B, the equation of its inscribed ellipse
can be written as as [45]

(x− x0)
2

(w/2)2 +
(y− y0)

2

(h/2)2 = 1 (8)

The probability density function of a two-dimensional Gaussian distribution is written as

f (X) =
1

2π|Σ|1/2 exp[−1
2
(X− µ)TΣ−1(X− µ)] (9)

where X denotes the coordinate (x, y), and µ and Σ denote the mean vector and the
covariance matrix, respectively, of the Gaussian distribution.

When (X− µ)TΣ−1(X − µ) = 1, the ellipse will be a density contour of the two-
dimensional Gaussian distribution [37]. Therefore, B can be modeled into a two-dimensional
Gaussian distribution G(µ, Σ) with

µ =

[
x0
y0

]
, Σ =

[
w2

4 0
0 h2

4

]
(10)

Now, the distance between the bounding boxes is transformed into the similarity
between two-dimensional Gaussian distributions. The similarity of distributions is usually
calculated by Kullback–Leibler (KL) divergence [46], Jensen–Shannon (JS) divergence [47],
and Bhattacharyya distance (BD) [48]. Among them, KL divergence is asymmetric. JS
divergence is a constant when the two distributions do not overlap. The BD of two Gaussian
distributions, G1(µ1, Σ1) and G2(µ2, Σ2), can be defined as

BD(G1,G2) =
1
2

log

(
|Σ|√
|Σ1Σ2|

)
+

1
8
(µ1 − µ2)

TΣ−1(µ1 − µ2) (11)

where Σ = (Σ1 + Σ2)/2.
However, as shown in Figure 8c,g, although the BD is able to break the limitation of

the IoU in small-target detection, it is not sensitive to large location deviations for target
with a large size. The reason is that the second term of the BD is greatly affected by the size
of the bounding boxes. Therefore, we define a BLD to measure the distance of bounding
boxes with multiple sizes, which can be written as

BLD(G1,G2) =
1
2

log

(
|Σ|√
|Σ1Σ2|

)
+

1
8
(µ1 − µ2)

TΣ̃−1(µ1 − µ2) (12)

where Σ̃ = (
√

Σ1 +
√

Σ2)/2.
Then, we substitute Equation (10) into Equation (12):

BLD(G1,G2) =
1
2

{
log

[
(w2

1 + w2
2)(h

2
1 + h2

2)

w1w2h1h2

]
+

[
(x1 − x2)

2

w1 + w2
+

(y1 − y2)
2

h1 + h2

]}
(13)

Finally, we normalize the BLD to the range [0, 1] through an exponential form normal-
ization, which can be written as

NBLD(G1,G2) = exp

(
−
√

BLD(G1,G2)

2

)
(14)
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It can be seen from Figure 8d,h that the BLD has the advantage of smoothness to
location deviation. Therefore, the proposed BLD breaks the limitation of the IoU in small-
target detection, and overcomes the issue of WD and BD in large-target detection.

4. Experimental Results and Analysis

In this section, we evaluate the performance of the proposed method of inshore
ship detection in large-scale SAR images. First, we briefly describe the used SAR images
and parameter settings. Then, we show the final saliency enhancement results of the
SAR images with different scenarios. Finally, different detectors are conducted on the
LS-SSDD-v1.0 dataset to investigate the effectiveness of our proposed method.

4.1. Data Description and Parameter Settings

In this paper, we conduct experiments on the LS-SSDD-v1.0 dataset [49]. LS-SSDD-
v1.0 is acquired by the Sentinel-1 system for small-ship detection in large-scale SAR images,
which contains 15 large-scale images with 24,000 × 16,000 pixels. To facilitate network
training, the large-scale images are cut into 9000 sub-images with 800× 800 pixels.

In our experiments, the dimension of the anisotropic pyramid is set to six. The filter
window size of the BF is 3× 3, and the σ in spatial and intensity Gaussian kernels of
the BF are set to 2 and 0.2, respectively [22]. The initial threshold of R-CNN in Dynamic
R-CNN is set to 0.4. The initial β of smooth L1 loss is set to one. The thresholds of positive
and negative label assignment for RPN are set to 0.7 and 0.3. The thresholds of NMS
for RPN and R-CNNs are set to 0.7 and 0.5. All models are trained using the stochastic
gradient descent (SGD) optimizer for 12 epochs with 0.9 momentum, 0.0001 weight decay,
and 0.01 learning rate. All experiments are performed on the same platform, and the basic
experimental environment settings are listed in Table 1.

Table 1. The basic experimental environment settings.

Platform Windows 10
Torch V 1.9.0
CPU Intel Core i7-10870H

Memory 32 G
GPU Nvidia GeForce RTX 3080 Laptop

Video memory 16 G

4.2. Final Saliency Enhancement Results

Here, we show the final saliency enhancement results of inshore SAR images with
different scenes, as shown in Figure 9. It can be seen from Figure 9(a1,a2) that when there
are strong scattering buildings onshore, the contrast between onshore pixels and ship
pixels is very low, so it is difficult for inshore ship detection by scattering intensity alone.
However, the contrast between onshore pixels and ship pixels can be significantly improved
in the final saliency enhancement results, as shown in Figure 9(b1,b2). When the scattering
intensity of onshore pixels is low, a large number of onshore pixels can be completely
suppressed while enhancing the intensity of ship pixels, as shown in Figure 9(a3,b3). When
ship detection is interfered by onshore pixels and complex sea conditions at the same
time, a large number of ship signals are covered by background clutters, which easily
leads to a large number of false alarms and missed detections, as shown in Figure 9(a4,a5).
However, in the final saliency enhancement results obtained by our proposed method,
as shown in Figure 9(b4,b5), background clutter is effectively suppressed, whereas ship
pixels are preserved. As shown in Figure 9(c1–c5), we can conclude that our proposed
DoAP can enhance ship pixels while suppressing water and onshore pixels in SAR images
with different scenes.
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Figure 9. Results of final saliency enhancement. (a1)–(a5) Ground truth maps. (b1)–(b5) Final saliency
enhancement results obtained by the DoAP. (c1)–(c5) The contrast results of ship pixels, water pixels,
and onshore pixels.
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4.3. Comparison with Other Methods

To validate the effectiveness of the proposed method, it is compared with Reti-
naNet [50], ATSS [51], YOLOv5 [52], Faster R-CNN [53], Double-head R-CNN [54], Cascade
R-CNN [29], and Dynamic R-CNN [39]. The detection results of five SAR images with
different scenes are shown in Figures 10–14. The quantitative comparison results are listed
in Table 2.

It can be seen from Figure 10 that the detection results of RetinaNet, ATSS, Faster
R-CNN, and Cascade R-CNN all have many missed detections. The detection results
of Double-head R-CNN and Dynamic R-CNN both show many onshore false alarms,
as shown in Figure 10e,g. The detection results of YOLOv5 have fewer onshore false alarms,
but still have some missed detections However, our proposed method is able to detect tiny
ships while reducing onshore false alarms.

(a) (b) (d)

(e) (f) (g) (h)

!"#

Figure 10. Visualization of detection results with different detectors in scene 1. (a) RetinaNet.
(b) ATSS. (c) YOLOv5. (d) Faster R-CNN. (e) Double-head R-CNN. (f) Cascade R-CNN. (g) Dynamic
R-CNN. (h) The proposed method.

Due to the negative influence of onshore pixels, a large number of tiny inshore ships are
not detected by RetinaNet, ATSS, YOLOv5, Faster R-CNN, and Cascade R-CNN, as shown
in Figure 11. Although Double-head R-CNN and Dynamic R-CNN are able to increase the
recall of inshore ships, more onshore false alarms are introduced, as shown in Figure 11e,g.
Our proposed method further improves the recall of inshore ships and reduces onshore
false alarms.

(a) (b) (d)

(e) (f) (g) (h)

!"#

Figure 11. Visualization of detection results with different detectors in scene 2. (a) RetinaNet.
(b) ATSS. (c) YOLOv5. (d) Faster R-CNN. (e) Double-head R-CNN. (f) Cascade R-CNN. (g) Dynamic
R-CNN. (h) The proposed method.
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As shown in Figure 12, the detection results of RetinaNet, ATSS, Faster R-CNN,
Cascade R-CNN, and Dynamic R-CNN have a lot of onshore false alarms. YOLOv5 and
Double-head R-CNN obtain good detection results, but still have few onshore false alarms,
as shown in Figure 12e. However, our proposed method obtains the best detection results
and the fewest onshore false alarms. The above results indicate that our proposed method
can reduce the negative influence of onshore pixels with strong scattering, and obtain the
best detection results for tiny ships.

(a) (b) (d)

(e) (f) (g) (h)

!"#

Figure 12. Visualization of detection results with different detectors in scene 3. (a) RetinaNet.
(b) ATSS. (c) YOLOv5. (d) Faster R-CNN. (e) Double-head R-CNN. (f) Cascade R-CNN. (g) Dynamic
R-CNN. (h) The proposed method.

When ships are in an extremely complex background, a large number of ships cannot
be detected by RetinaNet, ATSS, YOLOv5, Faster R-CNN, Cascade R-CNN, and Double-
head R-CNN, as shown in Figure 13. Dynamic R-CNN obtains good detection results,
but still misses some tiny ships, as shown in Figure 13g. However, our method still detects
the most ships and gives the fewest false alarms.

(a) (b) (d)

(e) (f) (g) (h)

!"#

Figure 13. Visualization of detection results with different detectors in scene 4. (a) RetinaNet.
(b) ATSS. (c) YOLOv5. (d) Faster R-CNN. (e) Double-head R-CNN. (f) Cascade R-CNN. (g) Dynamic
R-CNN. (h) The proposed method.

As shown in Figure 14, RetinaNet and ATSS produce a lot of false alarms on onshore
pixels. We find that many tiny ships in complex sea conditions are not detected by YOLOv5,
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Faster R-CNN, Double-head R-CNN, and Cascade R-CNN. Dynamic R-CNN improves
the recall of inshore ships, and reduces some false alarms, as shown in Figure 14g. Our
proposed method further improves the recall of inshore ships by increasing the contrast
between ship pixels and water pixels, and reduces the onshore false alarms by increasing
the contrast between ship pixels and onshore pixels.

(a) (b) (d)

(e) (f) (g) (h)

!"#

Figure 14. Visualization of detection results with different detectors in scene 5. (a) RetinaNet. (b)
ATSS. (c) YOLOv5. (d) Faster R-CNN. (e) Double-head R-CNN. (f) Cascade R-CNN. (g) Dynamic
R-CNN. (h) The proposed method.

Table 2 gives the quantitative comparison results with different detectors on the LS-
SSDD-v1.0 dataset. We can find that RetinaNet obtains the lowest mean average precision
(mAP) of 56.80%. Faster R-CNN obtains the lowest recall of 72.80%. The higher recall and
lower mAP of RetinaNet and ATSS mean that their detection results have a lot of false
alarms. Our proposed method improves the detection performance by 5.30% for recall
and 4.10% for mAP, compared to those of Double-head R-CNN; by 9.50% for recall and
5.30% for mAP, comapred to those of Cascade R-CNN; by 4.80% for recall and 3.30% for
mAP, compared to those of Dynamic R-CNN; and by 2.90% for recall and 1.90% for mAP,
compared to those of YOLOv5.

Table 2. Quantitative comparison with different detectors on LS-SSDD-v1.0.

Method Recall (%) mAP (%)

RetinaNet 79.70 56.80
ATSS 77.30 64.20

YOLOv5 81.00 70.60
Faster R-CNN 72.80 65.30

Double-head R-CNN 78.60 68.40
Cascade R-CNN 74.40 67.20
Dynamic R-CNN 79.10 69.20
Proposed Method 83.90 72.50

5. Discussion

Here, we conduct ablation experiments to verify the effectiveness of the saliency en-
hancement and BLD for different detectors. Table 3 gives the quantitative results of RetinaNet,
Faster R-CNN, Cascade R-CNN, and Dynamic R-CNN. By using saliency enhancement or
BLD in RetinaNet, the mAP can be significantly improved, although the recall is slightly
reduced. The reason for this is that there are a lot of false alarms in the baseline RetinaNet;
saliency enhancement and the BLD are able to reduce false alarms, but inevitably, affects
recall. The recall and mAP of Faster R-CNN, Cascade R-CNN, and Dynamic R-CNN can be



Remote Sens. 2022, 14, 2832 16 of 18

significantly improved by using saliency enhancement or the BLD. The simultaneous use
of saliency enhancement and the BLD can further improve the recall and mAP of Cascade
R-CNN and Dynamic R-CNN.

Table 3. Ablation experiments on different detectors.

Detector Saliency BLD Recall (%) mAP (%)Enhancement

RetinaNet

× × 79.70 56.80
X × 78.80 59.70
× X 76.50 64.10
X X 78.40 65.20

Faster R-CNN

× × 72.80 65.30
X × 73.20 66.70
× X 80.80 67.80
X X 79.50 68.30

Cascade R-CNN

× × 74.40 67.20
X × 74.70 68.40
× X 81.00 71.20
X X 81.90 71.40

Dynamic R-CNN

× × 79.10 69.20
X × 80.40 71.20
× X 83.50 71.80
X X 83.90 72.50

6. Conclusions

In this paper, we propose a saliency enhancement algorithm based on the DoAP and
a small-target detector based on the BLD for inshore ship detection in large-scale SAR
images. DoAP utilizes a BF to build a anisotropic pyramid, and uses the difference between
the finest two scales and the coarsest two scales to generate the saliency map. Extensive
experimental results indicate that the DoAP is able to enhance ship pixels and suppress
onshore pixels and water pixels. For the reason that ships usually have few pixels in large-
scale SAR images, we propose a BLD-based detection framework which replaces IoU with
BLD for label assignment and NMS. Finally, the DoAP is embedded into the BLD-based
detection framework to detect inshore ships in large-scale SAR images. The experimental
results on the LS-SSDD-v1.0 dataset show that our proposed method can effectively detect
inshore ships and obtain state-of-the-art detection results. However, the looser bounding
box metric would select some low-quality training samples, which decreases the detector
performance. In future work, we would evaluate the quality of samples at different scales
to decide which samples can be used in model training to obtain more precise detection
results based on higher recall rates.
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