
Citation: Xu, X.; Zhang, L.; Yang, J.;

Cao, C.; Wang, W.; Ran, Y.; Tan, Z.;

Luo, M. A Review of Multi-Sensor

Fusion SLAM Systems Based on 3D

LIDAR. Remote Sens. 2022, 14, 2835.

https://doi.org/10.3390/rs14122835

Academic Editors: Yuwei Chen,

Changhui Jiang, Qian Meng, Bing Xu,

Wang Gao, Panlong Wu,

Lianwu Guan and Zeyu Li

Received: 5 May 2022

Accepted: 10 June 2022

Published: 13 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

A Review of Multi-Sensor Fusion SLAM Systems Based on
3D LIDAR
Xiaobin Xu 1,2,*,† , Lei Zhang 1,2,† , Jian Yang 3, Chenfei Cao 1,2, Wen Wang 1,2, Yingying Ran 1,2, Zhiying Tan 1,2

and Minzhou Luo 1,2

1 College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China;
201319010033@hhu.edu.cn (L.Z.); 211319010001@hhu.edu.cn (C.C.); 211619010135@hhu.edu.cn (W.W.);
200219030004@hhu.edu.cn (Y.R.); zytan@hhu.edu.cn (Z.T.); lmz@hhuc.edu.cn (M.L.)

2 Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou 213022, China
3 College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; jianyang@yzu.edu.cn
* Correspondence: xxbtc@hhu.edu.cn
† These authors contributed equal to this work.

Abstract: The ability of intelligent unmanned platforms to achieve autonomous navigation and
positioning in a large-scale environment has become increasingly demanding, in which LIDAR-based
Simultaneous Localization and Mapping (SLAM) is the mainstream of research schemes. However,
the LIDAR-based SLAM system will degenerate and affect the localization and mapping effects
in extreme environments with high dynamics or sparse features. In recent years, a large number
of LIDAR-based multi-sensor fusion SLAM works have emerged in order to obtain a more stable
and robust system. In this work, the development process of LIDAR-based multi-sensor fusion
SLAM and the latest research work are highlighted. After summarizing the basic idea of SLAM
and the necessity of multi-sensor fusion, this paper introduces the basic principles and recent work
of multi-sensor fusion in detail from four aspects based on the types of fused sensors and data
coupling methods. Meanwhile, we review some SLAM datasets and compare the performance of five
open-source algorithms using the UrbanNav dataset. Finally, the development trend and popular
research directions of SLAM based on 3D LIDAR multi-sensor fusion are discussed and summarized.

Keywords: SLAM; LIDAR; multi-sensor fusion; coupling methods

1. Introduction

A mobile robot is a complex system integrating computer technology, sensor technol-
ogy, information processing, electronic engineering, automation, and artificial intelligence.
With the assistance of artificial intelligence technology, mobile robots with versatile func-
tions are widely used in the fields of emergency rescue, industrial automation, and smart
life. Precise positioning is one of the key technologies for mobile robots to complete tasks au-
tonomously. With the rapid development of robot technology, a single sensor can no longer
meet the increasingly rich functional requirements of robots. Therefore, the technology of
information fusion of multi-source sensing has gradually attracted attention.

Mobile robots are widely used in indoor environments. 2D LIDAR has become the
choice for indoor navigation and positioning due to the advantages of high-precision
ranging and reduced data volume. However, with the increasing demand for outdoor
scenes, robots are gradually moving towards increasingly complex open scenes. Driven
by the DARPA (Defense Advanced Research Projects Agency Ground Challenge) [1,2],
multi-line 3D LIDAR became known and began to be widely used in outdoor scenes. 3D
LIDAR has stronger environmental awareness but at the cost of expensive price, high data
volume, and processing difficulty. In recent years, with the popularization of 3D LIDAR
and the enhancement of the computing power of embedded processors, the positioning
technology based on 3D LIDAR has developed rapidly. 3D LIDAR provides high-density
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point clouds with richer matching methods and better robustness for the matching between
frames. Furthermore, it can be fused with image and odometer information [3] to enhance
the positioning accuracy, which has become the mainstream sensor used in many fields
such as unmanned driving, robot autonomous navigation, and drone flight control.

For a SLAM system, accurate position and orientation estimation are essential. Schol-
ars have conducted a lot of studies, including vision-based methods and LIDAR-based
methods, to realize real-time high-precision 6-DOF state estimation for mobile robots. How-
ever, a single sensor system has limitations. On the one hand, the dependence of vision on
initialization and the sensitivity to the sum of illumination leads to the instability of the
system. On the other hand, the sparse information provided by LIDAR rapidly degenerates
the positioning in unstructured scenes. In addition, the rapid motion mode and long-term
error accumulation further invalidates the odometer. Therefore, many auxiliary sensors
such as IMU, GPS, MEMS, and UWB are added to the positioning system to solve the above
problems. In recent years, there have been many LIDAR SLAM review literatures. Most of
them introduce the development process of the entire 3D LIDAR SLAM in simple terms,
which includes huge but too complicated content.

Tee [4] presents a detailed analysis and comparison of several common open-source so-
lutions for 2D SLAM. The advantages and disadvantages of each method are demonstrated
by simulation and experiment. However, 3D SLAM has not been addressed. Bresson [5]
reviews LIDAR SLAM related to the large-scale problem faced by autonomous driving.
Similarly, reference [6] is an earlier SLAM review, which discusses in detail the basic issues
of SLAM and many works in the development of SLAM, including long-distance SLAM,
theoretical performance analysis, semantic association, and development directions. Both
works summarize the classic theories and work in the field of SLAM, however, the related
content of multi-sensor fusion is not involved.

Debeunne [7] divides SLAM into three parts: image-based, LIDAR-based, and image-
LIDAR fusion. The integration of SLAM work, complicated integration methods, and the
development process of data fusion have not been mentioned. Taheri [8] proposes a SLAM
review showing the development of SLAM by reviewing important works. It summarizes
and looks forward to SLAM work from multiple directions and stages. However, this
work mainly summarizes the visual SLAM, and the reference value of LIDAR SLAM is
limited. Zhou [9] summarizes the SLAM algorithm based on 3D LIDAR from the aspects of
optimization framework, key SLAM modules, and future research hotspots. Subsequently,
this work compares the performance of various SLAM algorithms in detail, which has high
reference value.

It can be seen that most of the relevant reviews of SLAM are based on key modules
such as front-end matching, closed-loop detection, back-end optimization, and mapping,
focusing on the development history and latest works of SLAM. This paper will summarize
the multi-sensor fusion SLAM algorithms based on 3D LIDAR from different perspectives.
The contributions are:

• The multi-sensor fusion SLAM systems in recent years are categorized and summa-
rized according to the types of fused sensors and the means of data coupling.

• This work fully demonstrates the development of multi-sensor fusion positioning
and reviews the works of both loosely coupled and tightly coupled systems, so as to
help readers better understand the development and latest progress of multi-sensor
fusion SLAM.

• This paper reviews some SLAM datasets and compares the performance of five open-
source algorithms using the UrbanNav dataset.

This paper provides a detailed overview of multi-sensor systems through five main
sections. The first section details the necessity of multi-sensor fusion in localization systems.
In Section 2, the basic problems to be solved by SLAM and the classical framework are
presented. In Section 3, the related works of the loosely coupled system are reviewed in
detail in two parts according to the sensor types. Similarly, the related works on tightly
coupled systems are reviewed in Section 4. A comparison table is given at the end of each
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section. Finally, a summary of the full text and an outlook for the follow-up works are
presented. Abbreviations used in this paper are summarized in Table 1.

Table 1. Abbreviations for terms.

Full Name Abbreviation

Simultaneous Localization and Mapping SLAM
Laser Detection and Ranging LIDAR

Degrees of Freedom DOF
Micro Electro-Mechanical System MEMS

Ultra-Wide Band UWB
Inertial Measurement Unit IMU

Iterative Closest Point ICP
Graphic Processing Unit GPU
Robot Operating System ROS

LIDAR Odometry and Mapping LOAM
Lidar Odometry LO
Visual Odometry VO

Visual-Inertial Odometry VIO
LIDAR-Inertial Odometry LIO

LIDAR-Visual-Inertial LVI
Extended Kalman Filter EKF

Multi-State Constrained Kalman Filter MSCKF
Unmanned Aerial Vehicles UAV

2. Simultaneous Localization and Mapping System

Over the past few decades, SLAM techniques have come a long way. SLAM systems
based on various sensors have been developed, such as LIDAR, cameras, millimeter-
wave radar, ultrasonic sensors, etc. As early as in 1990, the feature-based fusion SLAM
framework [10], as shown in Figure 1, was established and it is still in use today. The SLAM
problem has evolved from two independent modules, localization and mapping, into a
complete system that integrates the two. The two modules promote each other. The high-
precision odometer composed of multiple sensors provides real-time pose estimation for
the robot and the basis for the reconstruction and stitching of the 3D scene. Similarly, high-
precision 3D reconstruction provides important data for pose estimation for feature-based
odometry. Even a separate odometer system is also inseparable from the establishment or
storage of temporary local maps to assist pose estimation.
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Figure 1. Feature-based fusion SLAM framework.

Most modern SLAM systems are divided into two parts: front end and back end (as
shown in Figure 2). The front end is responsible for estimating the current frame pose in
real time and storing the corresponding map information. The back end is responsible for
large-scale pose and scene optimization. Loop closure detection is one of the key issues of
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SLAM, which helps the robot identify visited scenes and trigger global-scale drift correction.
Large-scale global optimization is also the main difference between SLAM and modern
odometry. The two methods have many similarities in pose estimation. Most modern
multi-sensor fusion technologies act in the front end to achieve high-precision and low drift
of the odometer systems by the means of information complementation, local pose fusion,
and multi-data source filtering.
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The development of single sensor system is relatively mature, among which LIDAR,
camera, and IMU are the most common sensors in SLAM systems. 3D LIDAR can provide
the system with rich structural information of the environment. However, the data are
discrete and numerous. The camera can capture color and texture in the environment
at high speed, but depth cannot be directly perceived by the camera and it tends to be
perturbed by light. The IMU can sensitively perceive weak changes of the system in a very
short period of time, but long-term drift is inevitable. The characteristics of the three are
distinct, and their advantages and disadvantages are obvious. Single-sensor SLAM systems
are fragile and full of uncertainty. They are not capable of dealing with multiple complex
environments such as high-speed scenes, small spaces, and open and large scenes at the
same time.

Therefore, multi-sensor fusion has become a new trend in the development of SLAM
systems. Most of the SLAM and odometry systems for multimodal sensor fusion use a
combination of LIDAR, camera, and IMU, which can be categorized as loosely coupled or
tightly coupled modes. The loosely coupled system processes measurement data of each
sensor separately and fuses them in a filter that marginalizes data of the current frame to
achieve the latest state estimation results. The tightly coupled system jointly optimizes the
measurement data of all sensors and combines the observation characteristics and physical
models of each sensor to obtain a more robust pose estimation. The loosely coupled
system has the advantages of small calculation amount, simple system structure, and easy
implementation. However, its positioning accuracy usually has limitations. In contrast, a
tightly coupled system is computationally intensive so that its implementation is difficult,
but it gains a more accurate state estimation in complex and changeable environments.

Based on these three sensors, a number of multi-sensor fusion simultaneous local-
ization and mapping works have emerged in recent years. In this paper, according to
the coupling method of the system and the types of sensors to be fused, these works are
divided into LIDAR-IMU loosely coupled system, Visual-LIDAR-IMU loosely coupled sys-
tem, LIDAR-IMU tight coupled system, and Visual-LIDAR-IMU tight coupled system. The
development of SLAM is a process of transition from loose coupling to tight coupling. The
classification of some of the SLAM systems mentioned in this paper and the developmental
relationship between them are shown in Figure 3.
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3. Multi-Sensor Loosely Coupled System Based on LIDAR

The emergence of loosely coupled systems has opened up a new stage in the develop-
ment of multi-sensor fusion systems. Until now, its application in low-cost platforms with
limited computation powers is still wide. Loose coupling is mostly applied in three aspects:
multi-sensor-based stage pose estimation, raw data-based information complementarity,
and sensor-assisted pose constraints.

3.1. LIDAR-IMU Loosely Coupled System

Most loosely coupled systems appear in earlier works. The popularity and wide
attention of LIDAR-based 3D SLAM technology can be attributed to Zhang’s original work,
the LOAM algorithm [11]. One of his important contributions was to extract the information
of effective edge and plane feature points from the complex point cloud. Furthermore,
the point-to-line and plane distances are used to construct an error function and solve the
nonlinear optimization problem of the pose, as shown in Figure 4. Even the earliest LIDAR
SLAM systems already had the concept of sensor fusion. This work uses the integration
operation of the gyroscope and accelerometer of the six-axis IMU to obtain the prior pose,
which further improves the accuracy of the LIDAR odometer. However, LOAM does
not have loop closure detection and global pose optimization at the back-end. After that,
many LIDAR-IMU loosely coupled systems were improved and perfected on the basis of
LOAM. The work presented in this section not only focuses on sensor data fusion, but also
improving the point cloud registration of the front end and the overall optimization of the
back end.

Shan [12] proposed the LeGO-LOAM algorithm on the basis of LOAM, which intro-
duced point cloud clustering and ground segmentation into data preprocessing to speed
up point cloud registration [13]. At the same time, a simple acceleration formula is used to
process the IMU data for point cloud distortion correction and provide a priori pose. The
IMU has played the same role in line/plane feature-based LOAM and two-stage LOAM.
The feature extractions have drawn more attention. The normal vector of point is used to
extend the feature types in both methods [14,15]. Different from both of the above methods,
CSS-based LOAM and ALeGO-LOAM enhance the feature quality of LOAM [16,17]. Since
the curvature scale space method and adaptive cloud sampling method are put forward,
more accuracy edge points and plane points are extracted. However, this loose integration
method does not effectively exclude the influence of the measurement bias of the IMU itself.
Moreover, the IMU is merely a supplementary means.
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In addition to the improvement in feature extraction, improved ICP and GPU ac-
celeration are also optimized. ICP is widely used in SLAM front end. Many works in
recent years have proposed faster and more robust ICP variants in order to guarantee the
real-time (10 Hz) performance of LIDAR odometry in real-life regularization scenarios. The
latest work [18] introduces symmetric KL divergence in the front end ICP algorithm. Its
optimization object includes not only the distance between points, but also the difference in
distribution shape. In order to ensure the real-time performance and calculation accuracy
of the front end, GPU acceleration is applied to point cloud computing including SuMa [19],
Elastic-LiDAR Fusion [20], and Droeschel [21]. The shape of the distance data is approxi-
mated as a set of disks called Surfel [22], which is convenient for solving point-to-plane
problem in GPU. Due to GPU acceleration, the dense point cloud is exhibited in front of
people. The visual content is more understandable. To some extent, these point clouds have
semantic meaning. Moreover, these methods can be used in virtual reality and augmented
reality. However, portable devices and mobile robots still lack powerful GPUs.

It is essential to adopt overall optimization of the back end for the SLAM system.
In the latest work [23], Yue enriched feature types. He used the Multi-metric Linear
Least Squares Iterative Closest Point (MULLS ICP) algorithm based on categorical feature
points to efficiently estimate self-motion and construct a submap-based PGO (Pose Graph
Optimization) backend optimization. Effective loop closure detection is a significant
procedure of SLAM. In [24,25], the geometric and intensity information of the point cloud
are encoded, and a global point cloud descriptor is set to implement a rotation-invariant
loop-closure matching algorithm, which clarifies the appropriate optimization timing for
the SLAM back-end. In [26], a 2D histogram, converted by all key frames of point clouds,
determines where the loop closure occurs by calculating the similarity between the current
frame and historical key frames. The loop detection is added in LOAM and LeGO-LOAM.

In addition, there is a branch of 3D LIDAR—solid-state LIDAR. It has the advantages
of stable performance and low cost compared to the traditional multi-line LDIAR such as
VLP-16 and VLP-32. However, by using irregular scans, this kind of LIDAR with smaller
field of view tends to result in motion blurring. Solid-state LIDAR-based SLAM is a new
topic. LOAM-Livox [27] is the one of the most representative works. According to the
unique scanning method and sensor characteristics of the Livox radar, the author designed
a SLAM system suitable for Livox with LOAM as a reference. The system removes the
unqualified point cloud and extracts the line and surface features. The pose is iteratively
solved by constructing the residuals of the line and surface distances. However, IMU is not
used in this method.
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The loose coupling of the inertial system processes the IMU data for point cloud
distortion correction and provide a priori pose. In this framework, the effect of sensor
fusion is limited. Thus, most of the existing algorithms improve front end and back end.
The related work on the LIDAR-IMU tightly coupled system is compared in Table 2.

Table 2. LI loosely coupled system.

Year Method Author Strength Problem

2014 LOAM [11] J. Zhang et al. Low-drift.
Low-computational complexity.

Lack of closed loop and
backend optimization.

2018 LeGO-LOAM [12] T. Shan et al. Ground segmentation.
Two-stage optimization.

Closed loop detection accuracy
is low.
Complex terrain failure.

2018 SuMa [19] J. Behley et al.
A surfel-based map can be used
for pose estimation and loop
closure detection.

High complexity.
High computational cost.

2019 Line/plane feature-based
LOAM [14] X. Huo et al. Explicit line/plane features. Limited to an

unstructured environment.

2019 ALeGO-LOAM [17] S. Lee et al. Adaptive cloud sampling method. Limited to an unstructured
environment.

2019 CSS-based LOAM [16] C. Gonzalez et al. Curvature scale space method. High complexity.

2019 A loop closure for
LOAM [26] J. Lin et al. 2D histogram-based closed loop. Ineffective in open large scenes.

2020 Two-stage feature-based
LOAM [15] S. Zhang et al. Two-stage features.

Surface normal vector estimation. High complexity.

2020 Loam-livox [27] J. Lin et al.

Solid State LIDAR.
Intensity values assist in
feature extraction.
Interpolation to resolve
motion distortion.

No backend.
No inertial system

2021 MULLS [23] Y. Pan et al. Optimized point cloud features.
Strong real-time.

Limited to an
unstructured environment.

2021 LiTAMIN2 [18] M. Yokozuka et al.
More accurate
front-end registration.
Faster point cloud registration.

Lack of backend optimization.

It can be seen from the table that most of the LI loosely coupled systems in recent
years focus on the completion and optimization of the system. Finding accurate front
end matching and efficient back end optimization methods are their major innovations.
Although this part of the work did not make outstanding contributions to data fusion,
it provided a stable platform and interface for the subsequent work and accelerated the
development of SLAM technology. A summary of the methods in this section according to
different strategies is shown in Figure 4.

3.2. LIDAR-Visual-IMU Loosely Coupled System

LIDAR odometer degradation occurs in unstructured and repetitive environments.
Even for the positioning with the assistance of IMU, it still cannot work properly for long
periods. In contrast, vision sensors do not require specific structural features such as edges
and planes, which rely on sufficient texture and color information to accomplish local-
ization. However, vision sensors cannot obtain depth information intuitively. Therefore,
combining a camera with LIDAR provides a complementary solution. The LO and VO of
LIDAR-Visual-IMU loosely coupled systems mostly operate independently but they share
positioning information to each other for pose correction and smoother estimation.
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The authors of LOAM extend their algorithms by combining feature tracking of
monocular cameras with IMU in V-LOAM [28]. They correlated feature point depths with
point clouds to produce a visual-inertial odometry for LIDAR scan matching. However, VO
in this work only provides pose before LO and the final error solution is exactly the same as
LOAM, which is without vision coupling. Subsequently, the authors of V-LOAM released
its iterative version [29]. The improved method employs a sequential parallel processing
flow to solve the motion estimation from coarse to fine. The system uses visual-inertial
coupling methods to estimate motion and perform the scan matching to refine motion
estimation and mapping further. The resulting system enables high-frequency, low-latency
motion estimation, as well as dense, accurate 3D map registration.

Tim [30] took a different approach and chose to perform visual localization in a known
point cloud map. The method utilizes the map acquired by the camera to track the pose
of the monocular camera in a given 3D LIDAR map. Its local BA-based visual odometry
system reconstructs sparse 3D points from image features and continuously matches
them with the map to track the pose of the camera in an online manner. However, this
approach requires the map to be obtained prior. This fusion method is obviously contrary
to the original intention of SLAM and is more like an odometer. Zhang [31] combined
LOAM-based LIDAR odometry with optical flow tracking-based visual odometry. On the
premise of culling dynamic objects, the system weights and fuses the pose results of the two
according to the number of valid features. However, this method cannot run in real-time.
Pose optimization is still performed independently and without data association.

With the rapid development of VIO systems [32–34], visual-inertial odometry has
gradually become a research hotspot in SLAM with its high performance to price ratio and
high positioning accuracy. It has a profound impact on multi-sensor fusion in LO systems.
Wang [35] proposed a LIDAR-Visual-Inertial SLAM system based on V-LOAM and VINS-
MONO. He used a V-LOAM-based approach for mileage estimation and back-end global
pose graph optimization by maintaining key frame database. In this approach, the pose
estimation result of LO can correct the VIO system.

Shao [36] uses a binocular camera to form a LIDAR-Visual-Inertial system, which is
divided into two parts: binocular-based VIO and LIDAR-based LO. The binocular VIO
system employs stereo matching and IMU measurements to perform IMU pre-integration
sum and tight coupling of pose graphs to marginalize lag frames, which provides LO
with an accurate and reliable initial pose. Based on LOAM, LO adds vision-based closed-
loop detection and pose graph-based back end optimization, and uses iSAM2 [37,38] to
incrementally optimize the LIDAR odometry factor and closed-loop factor. This work has
approached tightly coupled systems, but the VIO and LO of the system are still relatively
independent. Efficient closed-loop detection and back-end optimization make up for these
shortcomings and lay the foundation for a large number of tightly coupled systems that
appeared later.

Khattak [39] proposed another loosely coupled method similar to V-LOAM, which
uses the inertial prior results of visual and thermal imaging for LIDAR scan matching. To
adapt to a variety of complex environments, the authors employed visual and thermal
imaging inertial odometry to work in long tunnels without illumination. In [40], the authors
combined the VO and LO systems with a leg odometer. In its core, an Extended Kalman
Filter (EKF) fuses IMU and legged odometry measurements for attitude and velocity
estimation. The system also integrates attitude corrections from VO and LO and corrects
attitude drift in a loosely coupled manner. This method has a good localization effect on
the legged robot platform.

Lowe [41] proposed a LIDAR-aided vision SLAM system, which employs a novel fea-
ture depth and depth uncertainty estimation method. The system uniformly parameterizes
three different types of visual features using measurements from LIDAR, camera, and IMU,
simultaneously. The system has good adaptability to handheld devices.

CamVox [42] is the first Livox LIDAR SLAM system for assisted vision. The system is
built on ORB-SLAM2 [43] and uses Livox to provide a more accurate depth estimation for
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the camera. Unlike LOAM-Livox, IMU is used for distortion correction of non-repetitively
scanned point clouds. In addition, the authors utilized the non-repeating scanning feature
of Livox LIDAR to perform automatic calibrations between the camera and LIDAR at
uncontrolled scenes. The system achieved better pose estimation results than VINS-MONO
and ORB-SLAM2. Shin et al. [44] believe that the relatively sparse point cloud is not mean-
ingful for the depth associated with visual features. They applied the direct method [45]
to the combination of low-line LIDAR and camera to implement a loosely coupled SLAM
system, which addresses the sparsity problem in data association.

The latest representative loosely coupled work [46] proposed a system composed of
multiple odometry methods. The system takes point clouds and images as outputs. Pose
estimation algorithms include GICP (Generalized Iterative Closest Point) [47], P2P-ICP
(Point-to-Plane Iterative Closest Point) [48], NDT (Normal Distributions Transform) [49],
ColorICP (Color Iterative Closest Point) [50], and Huang’s method of combining LiDAR
and camera data [51]. The system utilizes multiple odometers to improve integrity and
robustness. Point cloud-based localization evaluation methods and scoring criteria are
defined to generate the optimal pose results. However, the system does not have data
association or sharing. Wang [52] proposed a LIDAR-assisted VIO system, which relies
on the voxel map structure to efficiently assign the depth information of LIDAR to visual
features. Moreover, this work innovatively introduced the vanishing point information in
the image into the visual odometry to reduce the rotation drift further. The localization
accuracy of this method is superior to the state-of-the-art VIO and LIO systems. Table 3
summarizes the related works on the LIDAR-Visual-IMU loosely coupled system.

Table 3. LVI loosely coupled system.

Year Method Author Strength Problem

2015 V-LOAM [28] J. Zhang et al. Visual feature fusion point
cloud depth.

Weak correlation between
vision and LIDAR.

2016 Monocular Camera
Localization [30] T. Caselitz et al. Rely on a priori maps

Local BA. Unknown environment failure.

2018 LVIOM [29] J. Zhang et al.

VIO preprocessing.
Addresses sensor
degradation issues.
Staged pose estimation.

Inertial system state stops
updating when vision fails.

2018 Handheld SLAM [41] T. Lowe et al.

The incorporation of
depth uncertainty.
Unified parameterization of
different features.

System failure when vision
is unavailable.

2018 Direct Visual SLAM for
Camera-LiDAR System [44] Y. Shin et al.

Direct method.
Sliding window-based pose graph
optimization.

Not available in open areas.
Poor closed-loop detection
performance.

2019 VIL SLAM [35] Z. Wang et al.
VIO and LO assist each other.
Addresses sensor
degradation issues.

Closed loop unavailable when
vision fails.

2019 Stereo Visual Inertial
LiDAR SLAM [36] W. Shao et al. Stereo VIO provides initial pose.

Factor graph optimization.

No raw data association
between VIO and LO.
Sngle factors.

2020 Pronto [40] M. Camurri et al.

EKF Fusion Leg Odometer
and IMU.
LO and VO corrected
pose estimation.

Drifts seriously.
Not bound by historical data.
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Table 3. Cont.

Year Method Author Strength Problem

2020 CamVox [42] Y. Zhu et al.
Livox LIDAR aids
depth estimation.
An automatic calibration method.

No inertial system..
No LO.

2021 Redundant Odometry [46] A. Reinke et al. Multiple algorithms in parallel.
Filter the best results.

High computational cost.
No data association.

2021 LiDAR-Visual-Inertial
Estimator [52] P. Wang et al.

LIDAR assists the VIO system
Voxel map structures share depth.
Vanishing Point optimizes
rotation estimation.

System failure when vision
is unavailable.

This part of the work becomes more flexible with the introduction of vision. The
point cloud increases the stability of the depth acquisition of visual features. In addition,
the robustness of system positioning is also stronger. However, loose coupling leads to
the independence between vision and LIDAR. The constraints between the data are not
strong enough.

4. Multi-Sensor Tightly Coupled System Based on LIDAR

Positioning and mapping techniques are applied to more complex and changeable
scenes with the rapid development of robotics. The previous loosely coupled system has
the advantages of real-time and low computational complexity. However, it is still difficult
to guarantee the accuracy in high-speed motion or degradation scenarios. With its high-
frequency motion response characteristics, IMU has always been an indispensable sensor
for mobile robots. For tightly coupled systems, it is a key issue to effectively fuse the IMU
with other odometers.

Tightly coupled systems based on IMU assistance have made a breakthrough in visual
odometry [53,54]. In this work, the IMU pre-integration formula, error transfer model,
and definition of residual are deduced, which have a profound impact on the subsequent
development of LIO and VIO. Moreover, these equations and models become the theoretical
basis for joint optimization of tightly coupled systems. The world coordinate system is
defined as W, the binding of the robot coordinate system and the IMU coordinate system is
defined as B; the state vector x of robot can be defined as:

x =
[
RT, pT, vT, bT

]T
(1)

where R ∈ SO(3) which is the rotation group, p and v are the position and velocity vectors
of the robot, and b is the bias of the IMU. The measurement value of the IMU can be
written as:

ω̂t = ωt + bω
t + nω

t (2)

ât = RBW
t (at − g) + ba

t + na
t (3)

where ω̂ and â represent the angular velocity and angular velocity measurements of the
IMU, b and n represent the bias and noise of the gyroscope and accelerometer, respectively,
ω and a represent the true value, g represents the local gravitational acceleration, RBW

represents the world coordinate system to the rotation matrix of the IMU coordinate system,
and t represents the time. Using the discrete pre-integration method in [53], the relative
motion can be obtained. ∆vij, ∆pij and ∆Rij can be expressed as:

∆vij = RT
i
(
vj − vi − g∆ti j

)
(4)

∆pij = RT
i

(
pj − pi − vi∆ti j −

1
2

g∆t2
i j

)
(5)
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∆Rij = RT
i

Rj (6)

The residuals for the terms are expressed as:

rij =
[
r∆vij , r∆Rij , r∆pij

, rbω
ij

, rba
ij

]
(7)

For the specific derivation of residuals, please refer to the literature [53,54]. With
the pre-integration formula and the definition of the error term, the coupling relationship
between the IMU and the world coordinate system can be decoupled in the process of joint
optimization. The system can update the biases of the IMU to ensure that the IMU data
are added and optimized. Hence, a measured value closer to the true one is obtained. The
definition of the residual makes it easier for the IMU to combine the residual terms of other
sensor odometers to create a more complete error function. This is also the rationale of the
tightly coupled optimization. The factor graph representation of the tightly coupled system
is shown in Figure 5.
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4.1. LIDAR-IMU Tightly Coupled System

On the theoretical basis of pre-integration, a large amount of LIO-related work has
gradually emerged in recent years. One of the early approaches to tightly couple LIDAR
and IMU was proposed in LIPS [55], which employs a graph-based optimization framework.
In this framework, a planar representation of the closest point is proposed. A set of point
clouds is parameterized as plane features, and then the residuals-function is converted
into the differences between the plane parameters of two frames, which, together with the
residual term of the IMU pre-integration, constitutes the final optimization function. This
tightly coupled approach was deeply influenced by the VINS series and began to emerge
in the field of LIDAR SLAM. This form lays a solid foundation for the subsequent LIO and
LVI tightly coupled systems.

The pre-integration of the IMU was used for removing the distortion of the raw point
cloud in Gentil’s work [56]. It tightly integrates the IMU and LIDAR data into a batch
manifold optimization formulation, which describes the motion in the LIDAR scan based
on the extrinsic parameters of IMU. The system also considers the first-order form of
the pre-integration error to the time difference and solves the problem of hardware time
asynchrony. Ye [57] proposed a tightly coupled LIDAR inertial localization and mapping
framework, LIOM (LIO-mapping), which jointly optimizes measurements from LIDAR and
IMU. A sliding-window model was further used to maintain a certain scale of optimization
data. The accuracy of LIOM is better than that of LOAM. However, real-time cannot be
achieved since LIOM is designed to process the measurements by all sensors.

Inspired by Hess’s work [58], Ding [59] introduced the subgraph representation of 2D
SLAM into the 3D LIDAR odometry and added inertial data to establish motion prediction
and constraints between frames. In this system, the 3D occupancy grid method is utilized
to replace the 2D occupancy grid to realize the pose measurement of all 6 degrees of



Remote Sens. 2022, 14, 2835 12 of 27

freedom. Finally, the iterative solution is performed in the solver Ceres [60]. The system
innovatively joins the environmental change detection (ECD) module, which can detect
whether the known surrounding environment has changed. However, this feature is not
used to eliminate the influence of unknown dynamic environment on SLAM.

The authors of LeGO-LOAM released LIO’s follow-up work LIO-SAM [61] in combi-
nation with IMU-related theories. The system builds the LIDAR-inertial odometry on a
factor graph, and multiple relative and absolute measurements including closed loops are
incorporated into the system as factors, as shown in Figure 6. The innovation of LIO-SAM
is to marginalize old pose and point cloud data to replace matching scans to global maps.
The system uses local map matching instead of global matching to significantly improve
real-time performance. In addition, the system also adds the GPS absolute positioning
factor [62], which is used to correct the long-term drift of the system. However, since
feature extraction relies on geometric environments, this method still cannot work for a
long time in open scenes.

The latest work of LIRO [63] proposed a sensor fusion scheme combining LIO with
UWB ranging. The solution can be easily deployed with minimal cost and time. The system
tightly couples IMU, LIDAR, and UWB data with timestamp-based robot states in a sliding
window to construct a cost function consisting of UWB, LO, and IMU pre-integrations.
Finally, a factor graph model is used to incrementally marginalize and update the data
within the window. However, the usage scenarios of UWB have great limitations. The
system will no longer have an advantage in a huge range of occlusion scenarios.

The tightly coupled LIO system proposed by Chen [64] further refines the front-end.
He proposed an efficient algorithm to simultaneously extract the explicit mixed features of
the original point cloud, including ground features, edge features, and plane features. The
system also introduced a deep learning-based LPD-Net to generate global descriptors for
point clouds. The loop closures detection can be accomplished in the key frame database.
This method greatly improves the accuracy of closed loop detection. In order to ensure the
real-time performance of the system, Li [65] proposed a quantitative evaluation method
for point cloud feature constraints and a screening algorithm for key features. An effective
compromise is traded off between accuracy and computational cost. Lv [66] proposed
a high-accuracy continuous-time trajectory estimation framework for LIO systems to
efficiently fuse high-frequency asynchronous sensor data. The system uses a non-rigid
body registration method for continuous-time trajectory estimation. Dynamic and static
control points are defined to further optimize trajectory estimation. At the same time, a
two-stage closed-loop correction method is proposed to effectively update the closed-loop
pose and control points, respectively. However, the computational cost of closing the
loop is not reported, nor does it address the uncertainty in motion that might suffer from
motion degradation.
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RF-LIO [67] is a dynamic SLAM framework proposed on the basis of LIO-SAM. The
system adaptively adds a multi-resolution range image composed of point clouds and
removes moving objects using tightly coupled LIDAR inertial odometry. The LIDAR scans
are then matched with the subgraphs. Therefore, it can obtain accurate pose estimation
results even in highly dynamic environments. LIO tightly coupled systems based on solid-
state LIDAR have also been gradually attracting attention. However, LIO degradation
still occurs when moving in open scenes for a long time. FAST-LIO [68] proposed an
efficient and robust LIO framework based on tightly coupled iterative Kalman filters for
UAV systems. However, the system discards the impact of historical data on the current
state. Global pose correction cannot be performed.

The tight coupling of the inertial system will undoubtedly increase the computational
burden of the system while improving the accuracy. Most of the existing algorithms
improve computing speed by marginalizing historical data or limiting local map capacity.
The back end optimization generally only builds the pose graph of the LIDAR without
adding the bias and speed measured by the IMU. These methods achieve excellent results
in most scenarios. However, due to the dependence on geometric features, once the inertial
system loses the LO constraint in the open unstructured scene, the SLAM will suffer serious
drift and degradation. The related work on the LIDAR-IMU tightly coupled system is
compared in Table 4.

Table 4. LI tightly coupled system.

Year Method Author Strength Problem

2018 LIPS [55] P. Geneva et al.
The singularity free plane factor.
Preintegration factor.
Graph optimization.

High computational cost.
No backend or local optimization.

2019 IN2LAMA [56] C. Le Gentil et al.
Pre-integration to remove distortion.
Unified representation of inertial
data and point cloud.

The open outdoor scene fails.

2019 LIO-mapping [57] H. Ye et al. Sliding window.
Local optimization.

High computational cost.
Not real time.

2020 LiDAR Inertial
Odometry [58] W. Ding et al.

The occupancy grid based LO.
Map updates in
dynamic environments.

Degradation in unstructured scenes.

2020 LIO-SAM [61] T. Shan et al.

Sliding window.
Add GPS factor.
Marginalize historical frames and
generate local maps.

Poor closed loop detection.
Degradation in open scenes.

2021 LIRO [63] T.-M. Nguyen et al. UWB constraints.
Build fusion error. UWB usage scenarios are limited.

2021 Inertial Aided 3D
LiDAR SLAM [64] W. Chen et al.

Refine point cloud feature
classification.
Closed Loop Detection Based on
LPD-Net.

Degradation in unstructured scenes.

2021 KFS-LIO [65] W. Li et al. Point cloud feature filtering
Efficient Computing. Poor closed loop detection.

2021 CLINS [66] J. Lv et al.

The two-state continuous-time
trajectory correction method.
Optimization based on dynamic and
static control points.

High computational cost.
Affected by sensor degradation.

2021 RF-LIO [67] IEEE Remove dynamic objects.
Match scan to the submap. Low dynamic object removal rate.

2021 FAST-LIO [68] W. Xu et al. Iterated Kalman Filter.
Fast and efficient.

Cumulative error.
No global optimization.
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With the development and improvement of the IMU pre-integration theory, the LO
system can establish a stronger constraint relationship with the IMU. The localization
accuracy of the SLAM system has also been further improved. However, tight coupling
involves a great amount of computation. Finding a balance between the speed and the
precision is the difficulty of this stage of work.

4.2. LIDAR-Visual-IMU Tightly Coupled System

Although the study of visual SLAM started relatively late, it quickly became a research
hotspot of SLAM technology due to its advantages of small size and low cost. Many
VIO works have reported in recent years. Vision forms an excellent complementation
with LIDAR because it is not constrained by the structure of the scene. Therefore, LVI
systems have received increasing attention owing to their stronger robustness in sensor
degradation scenarios.

The strong data association between point clouds and images enables the system to
tightly combine multiple effective features in the preprocessing stage. They will play an
important role in the matching and optimization process. The LVI tightly coupled system is
divided into two coupling methods based on optimization and filtering. The optimization-
based approach tightly integrates the error models of individual sensors and reduces the
sensitivity of time synchronization by using local maps or sliding windows. This method
simultaneously optimizes historical poses and achieves real-time performance with BA. In
addition, this paper classifies the tight association of sensor data level as a special category
of the tightly coupled. Although no joint optimization is performed during the pose solving,
these works strongly correlate the data through preprocessing, and already contain the
necessary key information of the sensor in single objective function. They all have a closed
system, which is less scalable and compatible with other sensors. Filter-based approaches
merely use the sensor data of the current frame and rely on the time synchronization of
each data. Since the influence of historical data on the current pose is not considered, the
amount of computation is relatively small and the scalability is relatively good.

LIMO [69] is one of the multi-sensor fusion positioning systems. The system performs
strong correlation between point clouds and images through a variety of data prepro-
cessing methods to achieve a stable and robust system. The system performs foreground
segmentation, plane fitting, and ground fitting on point clouds for different scenes so as
to obtain the best depth estimation of visual features. The system combines the 3D-2D
PNP (Perspective-n-Point-Problem) [70] pose estimation method and the 2D-2D epipolar
constraint [71] to achieve a good localization effect. Reference [72] is another example
of strong data correlation, where point and line features are extracted in the image, and
the position information of points and lines are obtained by a similar method to LIMO.
Furthermore, a 3D-3D ICP model and reprojection error functions of points and lines are
constructed, which achieves higher accuracy pose estimation. Recent work [73] fuses data
from two sensors in a higher-level space using geometric features co-detected in LIDAR
scan and image data. Correspondences between 3D lines extracted in the LIDAR scan and
2D lines detected in the image were determined. Wang [74] proposed a DSP-SLAM system
by combining object detection with SLAM. This work uses a DeepSDF network to generate
object shape vectors and 7D poses from keyframed point cloud and image data. Sparse
point clouds and image segmentation results are used as observations to minimize surface
loss and depth rendering loss functions. Object reconstruction and pose update are added
to the ORB-SLAM2-based BA factor graph to simultaneously optimize camera pose, map
points, and object pose. These works do a lot of meaningful work on data association,
which makes the whole system more robust. However, these systems obviously lack the
tight coupling of the optimization process. The combination of correlation between raw
data and integration of errors will lead to a stronger system.

On the other hand, the very matured framework of the LIO system paves the way for
the establishment of the LVI tightly coupled system, which has led to the emergence of a
large number of tightly coupled systems based on the optimized LIDAR-Vision-IMU in the
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past two years. GR-Fusion [75] uses camera, IMU, LIDAR, GNSS, and encoder of motion
chassis as main sensors to build a factor graph model in a sliding window. The LIDAR factor,
the visual factor, the IMU factor, and the odometry factor are added as primary constraints
to the factor graph. Meanwhile, local constraints are tightly coupled with GNSS constraints
to optimize the global state of the robot. The system can detect the degradation of the
sensor in real time and flexibly configure multi-working modes, which is suitable for a wide
range of scenarios. LVIO-Fusion [76] adopts a similar system architecture. The difference is
that the binocular camera is used as the visual sensor. This paper innovatively proposed
different optimization strategies for straight and turning. Moreover, reinforcement learning
networks are introduced to adaptively adjust the weights of sensors in different scenarios.
LVI-SAM [77] is the latest work by the authors of LeGO-LOAM and LIO-SAM. The system
consists of VIS (Visual-Inertial System) and LIS (LIDAR-Inertial System). VIS can provide
pose prior for LIS, which can provide pose estimation and accurate feature point depth for
VIS initialization. However, this system does not consider the marginalization of the LIO
system and the problem of timestamp synchronization.

Some recent odometry systems also employ a tightly coupled approach to obtain
low-drift pose estimates. Super Odometry [78] and MetroLoc [79] both use an LVI system
with an IMU as the main sensors. The system consists of three parts: IMU odometer, VIO,
and LIO. The observation data provided by VIO and LIO can constrain the bias of the
IMU. On the other hand, the constrained IMU odometry provides predictions for VIO and
LIO to achieve coarse-to-fine pose estimation, which is shown in Figure 7. The system can
simultaneously extend GPS and wheel odometer with robustness to sensor degradation.
Wisth [80] proposed a tightly coupled system based on LIDAR and a binocular camera.
The factor graph optimization problem is composed of initial prior factor, visual factor, line
factor, plane factor, and IMU pre-integration, and is solved by GTSAM [81]. The system
shares a representation of vision-based point features and point cloud-based line and
area features. The reprojection error function is then defined by parameterizing different
features. In addition, based on the data timestamp of the camera, the system splits and
merges the adjacent scan data of LIDAR to realize the time hard synchronization at the
software level. There is no doubt that these works have good real-time positioning effect.
However, a pure odometer system often discards historical data and only focuses on current
or local observations, which leads to the loss of correlation and optimization of global
data. Therefore, excellent front end odometer and reasonable back end optimization are
necessary for SLAM system.
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Filter-based methods also play an important role in the field of multi-sensor fusion.
For joint state optimization, many methods use the EKF or the MSCKF framework [82].
Yang [83] used MSCKF to tightly couple planar features from RGB-D sensors, IMU mea-
surements, and visual point features within 3.5 m. To limit the scale of the state vector, the
system linearly marginalizes most of the point features and retains a few point features with
plane-enhanced constraints in the state vector as SLAM features. The LIC-Fusion proposed
by Zuo [84] adopts the MSCKF fusion framework, which tightly combines IMU measure-
ments, extracted LIDAR edge features, and sparse visual features. Subsequently, in the
latest follow-up work, LIC-Fusion 2.0 [85], the authors introduced a sliding-window-based
planar feature tracking method to efficiently process 3D LIDAR point clouds in real time.
R2LIVE [86] is a tightly coupled work based on solid-state LIDAR. The system combines
an error-state-based iterative Kalman filtering front end and a new step of factor graph
optimization-based sliding window optimization to refine the visual pose and landmark
estimation. It achieves high accuracy and robustness in harsh scenarios such as indoors,
outdoors, tunnels, and high-speed motion. These methods are fast and computationally
inexpensive, but are sensitive to time synchronization. Measurements during filtering may
degrade or fail. Therefore, a special sorting mechanism is required to guarantee the correct
order of the measurement results of the different sensors.

In this paper, the LVI tightly coupled system is divided into three parts: strong data
correlation, nonlinear optimization tight coupling, and state filter. Among them, the tightly
coupled front end based on optimization is the main implementation. Table 5 compares the
related works of the LIDAR-Vision-IMU tightly coupled system.

Table 5. LVI Tightly coupled system.

Year Method Author Strength Problem

2018 LIMO [69] J. Graeter et al.

Point cloud scene segmentation
to optimize depth estimation.
Epipolar Constraint.
Optimization PnP Solution

Unused LO.
Sparse map.

2019 Tightly-coupled aided
inertial navigation [83] Y. Yang et al. MSCKF.

Point and plane features. LIDAR is unnecessary.

2019 LIC-Fusion [84] X. Zuo et al. MSCKF.
Point and Line Features.

High computational cost.
Time synchronization is
sensitive..
Unresolved sensor degradation.

2020 LIC-Fusion 2.0 [85] X. Zuo et al.
MSCKF.
Sliding window based plane
feature tracking.

Time synchronization is
sensitive..
Unresolved sensor degradation.

2020 LIDAR-Monocular Visual
Odometry [72] S.-S. Huang et al.

Reprojection error combined
with ICP.
Get depth of point and line
features simultaneously.

Poor closed-loop detection
performance.
High computational cost.

2021 LIDAR-Monocular Surface
Reconstruction [73] V. Amblard et al.

Match line features of point
clouds and images.
Calculate reprojection error for
points and lines.

Inertial measurement not used.

2021 GR-Fusion [75] T. Wang et al.
Factor graph optimization.
Address sensor degradation.
GNSS global constraints.

No apparent problem.

2021 Lvio-Fusion [76] Y. Jia et al.

Two-stage pose estimation.
Factor graph optimization.
Reinforcement learning adjusts
factor weights.

High computational cost.
Difficult to deploy.
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Table 5. Cont.

Year Method Author Strength Problem

2021 LVI-SAM [77] T. Shan et al.

Factor graph optimization.
VIS and LIS complement
each other.
Optimize depth information.

Poor closed loop performance.

2021 Super Odometry [78] S. Zhao et al.

IMU as the core.
LIO and VIO operate
independently.
Jointly optimized pose results.
Address sensor degradation.

High computational cost.

2021 Tightly Coupled LVI
Odometry [80] D. Wisth et al.

Factor graph optimization.
Unified feature representation.
Efficient time synchronization.

Unresolved sensor degradation.

2021 DSP-SLAM [74] J. Wang et al.

Add object reconstruction to
factor graph.
The DeepSDF network
extracts objects.

No coupled inertial system.
Poor closed loop performance.

2021 R2LIVE [86] J. Lin et al.
The error-state iterated Kalman
filter.
Factor graph optimization.

No closed loop detection and
overall backend optimization.

The emergence of a complete system in which LIDAR, vision, and IMU cooperate and
complement each other is a milestone for multi-sensor fusion SLAM. The integration is not
limited to these three sensors. Wheel/leg odometer and GNSS have also been effectively
integrated into the system. Similarly, the increase in computational complexity is one of the
toughest problems. In addition, there are some details that need to be optimized, such as
dynamic environments, unstructured environments, rain and snow weather.

5. Performance Evaluation
5.1. SLAM Datasets

Evaluating the performance of SLAM algorithms is often inseparable from the help of
open-source datasets. The mobile carriers for research and application of 3D LIDAR SLAM
include unmanned vehicles, unmanned ships, and unmanned aerial vehicles. However,
the current LIDAR point cloud datasets are mainly for autonomous driving scenarios. Data
collection in outdoor scenes is complex and cumbersome, involving time synchronization,
coordinate calibration, and calibration among various sensors. Public datasets save the
time for data preparation for algorithmic research. The sequences and benchmarking
frameworks provided also facilitate algorithm development.

The current public LIDAR-based datasets in the field include: KITTI dataset [87], which
is currently the largest international evaluation dataset for autonomous driving scenarios
and is also the most commonly used dataset in academia. The Waymo dataset [88] is a data-
open project of the autonomous driving company Waymo. The PandaSet dataset [89] is used
to develop safe and controllable autonomous driving technology in complex environments
and extreme weathers. Oxford Robotcar dataset [90] is a public dataset proposed by Oxford
University Robotics Laboratory. The UrbanNav dataset [91] provides a challenging data
source to the community to further accelerate the study of accurate and robust positioning
in challenging urban canyons. The UrbanNav dataset includes complex and dynamic
urban road environments and closed tunnel environments. It also provides the real pose of
the GNSS system as a reference. Compared with the commonly used KITTI dataset, the
collection environment of the UrbanNav dataset is closer to the complex environment of
unmanned driving. At the same time, the related team of the UrbanNav dataset provides
an overview [92] of LIDAR Odometry, which uses this dataset to evaluate open-source
algorithms based on point clouds and features, respectively.
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Obviously, the complex scene of the city can magnify the advantages and disadvan-
tages of the SLAM algorithm. Therefore, this paper uses the UrbanNav dataset to evaluate
some open-source algorithms in the following section.

5.2. Performance Comparison

The evaluation of the SLAM algorithm is mainly based on evaluating the positioning
accuracy. The relative pose error (RPE) is used to describe the accuracy of the pose difference
between two frames separated by a certain time difference. The changes of the real pose and
the estimated pose are calculated at the same time interval. Then, the difference between
the two is calculated to obtain the relative pose error. Afterwards, the relative pose error
of each period of time can be counted by the root mean square error (RMSE) to obtain the
overall value. The absolute trajectory error (ATE) describes the direct difference between
the estimated pose and the real pose, which can intuitively reflect the accuracy of the
algorithm and the global consistency of the trajectory. Many SLAM algorithms and review
papers have analyzed the performance of open-source algorithms using datasets in the
experimental part. Jonnavithula [93] provides an overview of existing LO systems for the
application environment of autonomous driving. This paper uses the KITTI dataset to
experimentally verify some of the reviewed algorithms. Huang [92] uses the UrbanNav
dataset for comparison to demonstrate the pros and cons of point cloud-based and feature-
based localization methods. Yokozuka [18] also conducted many comparative experiments
using the KITTI dataset in the experimental part of his algorithm.

This paper selects five open-source 3D LIDAR SLAM algorithms for testing and evalu-
ation. They are A-LOAM [94], LeGO-LOAM [12], SC-LeGO-LOAM [24], LIO-SAM [61],
and F-LOAM [95]. A-LOAM is an open-source version that uses an optimizer for code
simplification based on LOAM. SC-LeGO-LOAM uses scan context to optimize loop clo-
sure detection based on LeGO-LOAM. F-LOAM is an odometer system that only relies
on LIDAR but has good performance. We apply them to ROS running on a laptop with
an Intle i7-10875H CPU to achieve the functionality, and the platform has 2 × 8 GB of
RAM memory and an RTX2060 GPU. All algorithms are evaluated and compared in ex-
periments based on the UrbanNav public dataset benchmark. We collect experimental
results under the same conditions and carry out performance metrics in order to evaluate
the performance of the tested algorithms. This paper focuses on two competitive datasets,
UrbanNav-HK-Medium-Urban-1 (Data1) and UrbanNav-HK-Tunnel-1 (Data2). Data1 are
in an urban center area with heavy traffic and towering buildings. Data2 were collected
while moving fast in a closed tunnel. The pictures corresponding to the two scenarios are
shown in Figure 8.
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Data1 as an example to show the official environment map and the different results of each
algorithm (as shown in Figure 9).

The comparison chart intuitively shows the mapping results of the five algorithms.
A-LOAM suffers severe drift in traffic-congested sections, which leads to poor localization
and mapping. The mappings of LeGO-LOAM, SC-LeGO-LOAM, and LIO-SAM are good
and the localizations are effectively constrained by the closed loop. However, it is worth
emphasizing that the search radius of the closed loop detection of LeGO-LOAM and LIO-
SAM is adjusted to 50 m before the closed loop can be accurately identified. F-LOAM still
has high global consistency in the absence of loop closure detection.

Second, trajectories of different algorithms and ground truth are plotted together for
comparison (as shown in Figure 10). In order to facilitate the observation, we take the
trajectory generated by the first lap of data for comparison. The first loop closure occurs at
the zoomed-in position on the left, which is the same as that marked in the point cloud map.

The trajectories generated by the five algorithms are clearly shown in Figure 10. The
trajectory of A-LOAM has poor positioning accuracy when there are many traffic jams
or dynamic vehicles. Therefore, it basically loses the positioning ability in the urban
canyon environment. The other four algorithms have good global consistency. It is worth
emphasizing that F-LOAM only deviates a small distance from the closed loop position
without loop closure detection. The positioning accuracies of the five algorithms are listed
in Table 6. We use the RMSE and mean of relative pose errors to describe the accuracy of
the algorithm. The odometer’s average processing time for per-frame (APTFP) is used to
describe the algorithm efficiency.

Table 6. Performance comparison of five algorithms.

Methods
Relative Translation Error (m) Relative Rotation Error (deg)

Odometry APTPF (s)
RMSE Mean RMSE Mean

A-LOAM 1.532 0.963 1.467 1.054 0.013
LeGO-LOAM 0.475 0.322 1.263 0.674 0.009

SC-LeGO-LOAM 0.482 0.325 1.278 0.671 0.009
LIO-SAM 0.537 0.374 0.836 0.428 0.012
F-LOAM 0.386 0.287 1.125 0.604 0.005

From the data in the table, it can be seen that the overall performances of F-LOAM
and LIO-SAM are better. The relative translation error of F-LOAM is the smallest, while the
relative rotational error of LIO-SAM is the smallest. The addition of IMU pre-integration
can effectively improve the positioning accuracy of rotation. The positioning accuracy and
processing time of A-LOAM are relatively poor. We recommend using LIO-SAM when
there is a closed loop in the environment dealt with. If no closed loop presents, the real-time
performance of F-LOAM is better.

Finally, the operation on Data2 will be summarized and discussed. The tunnel envi-
ronment in Data2 is more challenging than congested urban canyons. There are very few
structural features and the light changes rapidly in the closed tunnel. The tunnel seems to
be a long corridor so that the point cloud data generated by LIDAR is basically the same
no matter where it is located. Unfortunately, none of the five algorithms can effectively
complete the positioning process without using GPS data. However, they show different
behaviors and have different odometer failure locations. The real point cloud map and the
actual performance of the five algorithms are shown in Figure 11.
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Figure 9. Point cloud maps generated by different algorithms. (a) The actual point cloud map given
by the dataset. (b) Result of A-LOAM. (c) Result of LeGO-LOAM. (d) Result of SC-LeGO-LOAM.
(e) Result of LIO-SAM. (f) Result of F-LOAM. We zoomed in where the loop was first generated to see
the effect of generating the map. The white dots indicate the starting point and the red dots indicate
the ending point.
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The A-LOAM was disabled before entering the tunnel due to the large number of
dynamic vehicles congested around the LIDAR. The results of LeGO-LOAM and SC-LeGO-
LOAM are similar. They both degenerate when they first enter the tunnel because their
system compositions are basically the same. F-LOAM performs slightly better than the
previous two thanks to the feature weights it assigns. Degradation of F-LOAM occurs after
a certain distance in the tunnel. Finally, LIO-SAM performs the best. The front end of
LIO-SAM is also feature-based. However, the system can still run robustly for some time as
the LO degenerates due to the addition of IMU data constraints. This allows it to travel the
longest distance effectively in the tunnel. Obviously, the tight coupling of the IMU cannot
completely solve the long-distance tunneling problem.

The long corridor problem is a difficult problem often faced in practical applications.
The above experiments show that assigning weights to features and adding IMU pre-
integration can effectively alleviate the phenomenon of odometer degradation. Clearly,
feature-based methods encounter a bottleneck in the tunnel environment. This problem
will be better solved if the precise control model and kinematic model of the robot chassis
are combined with a feature-based odometry system or aided by visual features [96]. At
the same time, UWB is also suitable for such closed scenes within a certain range. This is
also an effective way of carrying out multi-sensor fusion.
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6. Conclusions and Future Outlook

The development of SLAM technology based on 3D LIDAR in recent years has been
rapid. Among them, excellent works of multi-sensor fusion have emerged in an endless
stream. Throughout the development history of fusion SLAM, we have seen from filter-
based probabilistic methods to information-based optimization methods; from raw data-
assisted front end fusion to error-coupling-based back end optimization; from single sensor
systems to complex systems with multiple subsystems coupled; from independent error
models to tightly coupled complete graphical models. Various application scenarios and
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demands have promoted the diversity of SLAM technology. Continuous advancements in
sensor technology provide the foundation and impetus for it.

This paper mainly classifies and summarizes the papers and works that have appeared
in recent years based on the data coupling method of the SLAM system. The main innova-
tions of the paper are mentioned together when describing the details of data association.
The strengths and weaknesses of each work are based on the qualitative analysis of the
system composition. However, our work is far from perfect. Obviously, this paper does
not list all related works for readers’ reference. Only a portion of representative works are
shown. There are more works based on deep learning for multi-sensor fusions, mostly
used in environment perception, object detection and semantic segmentation. They may
play auxiliary roles in SLAM systems.

Multi-sensor fusion is a key to building robust systems. Complex systems based on
multi-sensors need to be lightweight, accurate, scalable, and versatile for SLAM. From
the experimental part, we know that dynamic environment, object occlusion, and long
corridor environment are the key challenges for feature-based SLAM methods. Combining
the sensor with the control model of the robot or vehicle can effectively alleviate the
problem of odometer degradation in special cases. With the increase of the number of
sensors, the amount of data, and the continuous expansion of application scenarios, it is
difficult for SLAM systems to further improve the accuracy of positioning and mapping
within a specified computing time. Therefore, SLAM has large development space in the
applications of various scenes. Distributed multi-robot collaboration, land–air collaboration,
and sea–air collaboration systems can effectively solve the problems faced in large scenes.
In addition, hardware acceleration and parallel processing feature extraction and pose
optimization can effectively relieve the computational pressure of the system due to the
multi-sensor data fusion. On the other hand, deep learning is undoubtedly one of the
hottest directions at present. There have been a lot of efforts towards combining deep
learning with SLAM systems. The application of deep learning can be seen in almost
all key steps such as feature extraction, depth estimation, environment perception, pose
estimation, and semantic map. In the current works, deep learning only replaced limited
parts of the SLAM system. For example, optimizing depth estimation of monocular camera
to obtain landmark points, directly estimating pose without feature extraction, perceiving
the environment to distinguish moving objects, and building high-precision semantic maps.
These are research directions with great potential in the future. The application of deep
learning will further improve and expand the performance and functions of SLAM. In
future work, the combination of data fusion of multiple sensors and deep learning to
optimize and improve the SLAM algorithm will receive more attention.
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